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1 | INTRODUCTION

| Gillian C. Gibb

| Steve A. Trewick

Abstract

The physiological demands of flight exert strong selection pressure on avian mor-
phology and so it is to be expected that the evolutionary loss of flight capacity would
involve profound changes in traits. Here, we investigate morphological consequences
of flightlessness in a bird family where the condition has evolved repeatedly. The
Rallidae include more than 130 recognized species of which over 30 are flightless.
Morphological and molecular phylogenetic data were used here to compare species
with and without the ability to fly in order to determine major phenotypic effects
of the transition from flighted to flightless. We find statistical support for similar
morphological response among unrelated flightless lineages, characterized by a shift
in energy allocation from the forelimbs to the hindlimbs. Indeed, flightless birds ex-
hibit smaller sterna and wings than flighted taxa in the same family along with wider
pelves and more robust femora. Phylogenetic signal tests demonstrate that those
differences are independent of phylogeny and instead demonstrate convergent mor-
phological adaptation associated with a walking ecology. We found too that mor-
phological variation was greater among flightless rails than flighted ones, suggesting
that relaxation of physiological demands during the transition to flightlessness frees

morphological traits to evolve in response to more varied ecological opportunities.
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powerful pectoral muscles in order to make flapping flight possible
(Roots, 2006; Xu et al., 2014). Their bodies also became smaller and

Living neoaves include more than 10,000 extant species around the
world in many different habitats (Brusatte, O'Connor, & Jarvis, 2015).
An almost universal feature of this diversity is a reliance on aerial
flight.

Studies of morphological evolution based on fossil evidence
showed that birds developed laterally wide and robust oriented fore-
limbs along with a large extension of the sternum called a keel and

streamlined (Turner, Pol, Clarke, Erickson, & Norell, 2007), and their
bones and muscles evolved to generate powered flight for a reduced
weight (Roots, 2006). Flight is energetically demanding which appears
to be one of the reasons for the relatively high metabolic rate in birds
compared with reptiles and mammals (Maina, 2006; Mgller, 2009). For
instance, a bird expends around 75% more energy during one day than
a terrestrial mammal of similar size (Maina, 2006).
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1.1 | Flightlessness in birds

Flight demands significantly impact the morphological and physio-
logical characters in birds (Elliott et al., 2013). Indeed, this ability has
a substantial energetic cost which leads to many constraints in terms
of body size, weight, reproduction, shape etc. (McNab, 1994). Such
constraints exert intense ecological trade-offs (Alexander, 1998;
Lighthill, 1975; Rayner, 1988; Ricklefs, 1973). Therefore, flightless-
ness can be positively selected in an environment where the flight
does not provide a significant benefit. This can lead to conservation
issues if the habitat changes swiftly and the flight is required again.
For example, if predators are introduced, flightless birds could be
unable to avoid them.

Transitions to flightlessness are considered rapid and irrevers-
ible (Kirchman, 2009; McNab, 1994; Slikas, Olson, & Fleischer, 2002)
and have occurred independently in more than 20 avian families
(Roff, 1994). A notable example is the ratites (including ostriches,
kiwi, and emus), a polyphyletic group characterized by multiple inde-
pendent loss of flight (Harshman et al., 2008; Phillips, Gibb, Crimp,
& Penny, 2010).

Flightlessness has been observed in many island species and
is interpreted as an effect of the insular conditions which often
provides an habitat with few or no predators and limited compe-
tition for resources (McNab, 1994). Flightlessness evolves most
frequently in island birds that belong to lineages for which flight is
not essential for foraging, and are released from the need to escape
predators (McNab, 1994; Olson, 1973). On islands with reduced
raptor species richness and no mammalian predators, birds evolve
smaller flight muscles, consistent with selection for flightlessness
(Wright, Steadman, & Witt, 2016). The loss of flight removes many
constraints in terms of weight and body size leading to significant
morphological changes (Livezey, 2003). For instance, many flightless
birds are larger than their flighted relatives (Roots, 2006). The most
prominent examples are the ostrich which stands 2.5 m tall, and the
recently extinct 2-m high South Island giant moa (Dinornis robustus).
Nevertheless, flightless species have a great size range. Some of
them are small compared with their flying relatives like the 12.5 cm-
long Inaccessible Island rail (Atlantisia rogersi; Roots, 2006).

The rails or Rallidae are a family of birds that diversified
during the Eocene around 40 million years ago (Garcia-R, Gibb, &
Trewick, 2014b) and includes around 130 species among which over
30 are (or were, for recently extinct species) flightless (Garcia-R,
Gibb, & Trewick, 2014a; Kirchman, 2012; Steadman, 1995). Despite
the fact that many rails have a terrestrial lifestyle (Taylor, 1998), some
lineages have a tendency to colonize oceanic islands (Olson, 1973;
Ripley, Lansdowne, & Olson, 1977) resulting in a wide represen-
tation around the world. Fossil records show that extensive late
Quaternary extinction within this group resulted from human col-
onization of islands (Steadman, 2006). The majority of the flightless
birds within this family are endemic to single islands, which implies
that in most of the cases, their ancestors had to be flighted to reach
this habitat as most of the islands were never connected to conti-
nental landmasses (Trewick, 1996, 1997a, 1997b).

Fcology and Evolution o 6187
= WILEY- 4%

Qualitative and morphometric analyses of flighted and flight-
less rails suggest that transition to flightlessness in rails often in-
volves some common traits, but the phylogenetic hypothesis used
to examine transitions to flightlessness relied on many of the same
morphological characters (Livezey, 2003). We now know that the
morphological phenogram (Livezey, 2003) poorly represents many
evolutionary relationships within the family possibly reflecting mor-
phological convergence associated with flightlessness (Garcia-R
et al., 2014a).

Phylogenetic analyses based on five genes (three mitochondrial
and two nuclear) show that rails are separated in eight clades: Fulica,
Aramides, Porphyrio, Rallina, Porzana, Laterallus, Gallicrex, and Rallus
(Garcia-R et al., 2014a). Four of these clades contain flightless spe-
cies (Fulica, Gallicrex, Porphyrio, and Rallus), and this is particularly
pronounced in the Rallus clade where a majority of sampled birds
are flightless. Here, we use a modern and independent molecular
phylogenetic hypothesis for the rails to investigate morphological
evolution of flightlessness in the rail family, among which repeated
loss of flight could yield convergent morphological evolution.

2 | METHODS
2.1 | Datasets
2.1.1 | Morphological data

We assembled a matrix that includes 10 morphological traits for 90
species including extant taxa and those that went extinct after they
were first described (Livezey, 2003), (Appendix 1: Table A1). The se-
lected traits are among the most commonly used in the literature con-
cerning morphological differences between flighted and flightless
birds (Cubo & Arthur, 2001; Lambertz & Perry, 2015; Livezey, 1992;
Roots, 2006; Trewick, 1997b). These data were supplemented by the
standard body lengths of rails reported in the Handbook of the Birds
of the World Alive Online (del Hoyo, Elliott, Sargatal, Christie, & de
Juana, 2015). Mean metric values were used when data from differ-
ent individuals, or a range of values, were available. The amount of
missing values in the full dataset is close to 32%.

The taxonomy used in this study follows the “Clements Checklist
2018” (Clements et al., 2018), so some of the names presented in
Livezey (2003) have been modified accordingly.

Each species was characterized as a flighted or flightless spe-
cies according to Taylor (1998) or Garcia-R et al. (2014a). Other in-
formation including the distribution and habitat was added to the
dataset based on Garcia-R et al. (2014a). A subset of the data was
created including only those species for which molecular phyloge-
netic information was available (Appendix 1: Table A2). This subset
included 52 species and 11 morphological traits: body length, wing
length (chord of the flattened wing), body mass, cranial length, cra-
nial depth, cranial width, sternum length (the length of the extension
of the sternum called keel or carina), sternum depth (perpendicular

depth of the keel), pelvis width (interacetabular width), femur length,
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and femur width (the width of femoral head or caput) and contains
only 11% missing values.

We treated the purple swamphens (genus Porphyrio): P. bellus, P.
melanopterus, P. melanotus, P. melanotus ellioti, P. poliocephalus, P. por-
phyrio, P. pulverulentus, P. samoensis, considered by Livezey (2003) as
different species, as a single taxon: Porphyrio porphyrio (Garcia-R &
Trewick, 2014). Mean metric values (when data were available) were
used to determine P. porhyrio morphological data.

2.1.2 | Molecular data

Molecular data are available for 88 rail species and seven outgroup
species. Five genetic markers were used including 3 mitochon-
drial genes (COI, cyt-b, 16S) and 2 nuclear genes (FGB, RAG-1)
from Garcia-R et al. (2014a) (NCBI accession numbers available in
Appendix 1: Table A3). The number of available sequences per gene
varies between 64 (FGB) and 85 (cyt-b).

2.2 | Analysis.
2.2.1 | Phylogenetics

Phylogenetic inference was tailored to the different phylogenetic
signal tests we undertook. For each of the five genes, the sequences
were independently aligned (Geneious Alignment, free gaps, 65%
similarity) using the software Geneious 11.1.4 (https://www.genei
ous.com) then concatenated into a single alignment (see supple-
mentary data). The alignment was processed using PartitionFinder2
(Lanfear, Frandsen, Wright, Senfeld, & Calcott, 2017) via the Cipres
portal (Miller, Pfeiffer, & Schwartz, 2010) to select the best parti-
tioning scheme and associated models of molecular evolution as fol-
lows: 16S: GTR + I+G; COI first codon positions: GTR + I1+G; COI
second codon positions: TVM + I+G; COI third codon positions:
TIM + G; cyt-b first codon positions: TVM + |+G; cyt-b second and
third codon positions: GTR + I+G; FGB7: TVM + G; RAG1 first codon
positions: GTR; RAG1 second codon positions: HKY + |; RAG1 third
codon positions: SYM + G. Maximum likelihood (ML) analyses were
implemented in RAXML v8.2.10 (Stamatakis, 2014) via the CIPRES
Science Gateway (Miller et al., 2010) with bootstrapping automati-
cally stopped employing the majority rule criterion. The consensus
tree was then visualized in Geneious (Appendix 1: Figure A1). All
available rail data (88 rails plus 7 outgroup species) were used to cre-
ate the phylogenetic tree which was then pruned down to the subset
of 52 rail species for which morphological data were available. This
52 taxa tree was used for all downstream analyses. Discrete traits
(e.g., habitat and the ability to fly) were mapped to that tree using R
package phytools (Revell, 2012). The same tree was used in associa-
tion with the results of the PCA on morphological data to generate
a graph of phylomorphospace depicting the projection of a phyloge-
netic tree within the two first dimensions of a principal component

analysis.

2.2.2 | Statistics

Statistical analysis was performed in R (R Core Team, 2014; the script
is available in supplementary data) using the following packages:,
FactorMineR (Lé & Husson, 2008), car (Fox & Weisberg, 2018), phy-
tools (Revell, 2012), ggplot2 (Wickham, 2011), and phylosignal (Keck,
Rimet, Bouchez, & Franc, 2016). A first principal component analy-
sis (PCA) on 90 species (65 flying and 25 flightless) was performed
to observe the variation within the rail group and to determine the
importance of the different traits and their correlation (Appendix 1:
Figure A2). This analysis revealed a high level of correlation between
all the morphological traits (Appendix 1: Figure A2). After detect-
ing a significant correlation between the trait “Body length” and the
first dimension of the PCA (that covers 75.6% of the variance) using
a linear model (F(1, 67) = 244.7, p < .000, R? = .78), a correction was
applied to dataset by dividing each trait by the body length of the
relevant species. This standardization of the dataset allowed us to
analyze the differences in the overall body shape between flighted
and flightless rails rather than to compare the actual size of each
body part. Thus, the corrected dataset represents a ratio of each
trait compared the body length of each species. The body mass was
log-transformed as the distribution of that trait was not normally
distributed.

A subset of the data for the 52 species with phylogenetic infor-
mation was generated and contained a lower frequency of missing
values (11% compared to 32% in the 90 species dataset). For each
trait, a phylogenetic hypothesis was obtained by pruning the full
phylogeny as appropriate to represent only the species for which
the trait values were available for that trait. The phylogenetic signal
was quantified using Blomberg's K statistic (Blomberg, Garland, &
Ives, 2003), which estimates the phylogenetic signal (branch length)
using the morphological trait variance relative to an expectation
under a Brownian motion null model of evolution. A K values less
than one imply that relatives resemble each other less than would
be expected under Brownian motion evolution across the candidate
tree.

PCA on the dataset of 52 species dataset was performed after
replacing the remaining missing values within the matrix by the av-
erage value of the available data for each trait. Coordinates from the
three first dimensions were used to evaluate variance differences
between the groups. We used a Shapiro-Wilk test to determine the
normality of each distribution and then performed F tests if the dis-
tribution was normal or Levene's test if it was not.

Bivariate correlation plots were then used to visualize patterns
associated with flight ability including all the species for which the
“Body length” value was available (75 species) were used in that
analysis.

Major differences between flightless and volant species were ob-
served in the correlations involving traits associated with flight and
traits associated with walking. To investigate this phenomenon, a 52
species dataset of ratios was created by dividing the trait values from
the upper part of the body (sternum depth and wing length) by the trait

values from the lower part of the body (pelvis width and femur length)


https://www.geneious.com
https://www.geneious.com

GASPARET AL.

and body mass. Body length divided by body mass and sternum depth
divided by sternum length were also investigated. t Tests were used to
compare flighted and flightless birds on different trait ratios.

Binary logistic regression was performed on the data for 52 spe-
cies to evaluate the influence of each trait on the character “Flying.”
In order to minimize loss of information resulting from missing values,

this analysis was performed independently for each of the 10 traits.

2.3 | Data deposition

Data available from the Dryad Digital Repository: https://doi.
org/10.5061/dryad.dz08kprsz.

3 | RESULTS
3.1 | Trait correlations

A scatter plot matrix of ten traits was used to visualize patterns associ-
ated with flight (Figure 1), although the number of species for each cor-
relation was not constant due to some missing values. For some traits,
differences between the flying group (red) and the flightless group
(black) were readily apparent observed from the density plots (Figure 1
on the diagonal); the most obvious being body mass and sternum depth.
Scatterplots of the three cranial measurements showed, as expected,
that they were correlated with one another despite no difference be-
tween flighted and flightless taxa. Among other traits, scatterplot clus-
tering and group differences were mostly observed where sternum
depth and, to a lesser extent, sternum length were included. Wing
length when compared with leg traits (pelvis width, femur length, and
width) also exhibited differences between flighted and flightless groups.
Broadly speaking, group differences were observed in plots of traits as-
sociated with flight (wing length and sternum depth) and traits associ-
ated with walking (pelvis width, femur length, and femur width). Finally,
we note that the evolution of the sternum depth relative to the sternum
length presents group clustering along a similar slope for both groups.

3.2 | Principal component analysis

A principal component analysis (PCA) was performed on the 52 spe-
cies dataset including 14 flightless and 38 flighted rails using the 10
traits (Figure 2). The two first principal components (Figure 2) ex-
plained 41.8% and 23.4% of the variance, respectively (Table 1). PC1
was mostly influenced by cranial length, depth, and width contrib-
uting 21%, 21%, and 20% of the variance respectively, and PC2 by
sternum depth (36%), sternum length (17%), and femur width (16%,;
see Table 2). Flighted and flightless species clustered separately with
flighted taxa mostly in the upper part of the plot and most flightless
species in the lower part. The distinction between these groups was
therefore mainly explained by the second principal component (the

vertical dimension on the plot).
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Generally, the ability to fly was positively correlated with the
sternum depth and length and with the wing length. The flightless
rails generally had wider femora and pelves and a heavier body.
Cranial traits did not seem to be discriminant variables. Although the
flightless group had fewer species, its variance and the 95% confi-
dence ellipse appeared larger than the flighted group. To test that, a
variance test was run on each of the three first dimensions. Variances
in flighted and flightless group were not significantly different in di-
mension 1 and 3, but in dimension 2, the variance of the flightless

group was significantly higher than in the flying one (Table 1).

3.3 | Logistic regression

Logistic regressions revealed that five of the ten analyzed traits had
a significant effect on the “flying” character: wing length, sternum
length, sternum depth, pelvis width, and femur width (Table 3). The
regression coefficients were positive for the wing length, the ster-
num length, and the sternum depth but negative for pelvis width
and femur width. This means that the possibility of being flighted
increases when the wing length and the sternum size increase but

decreases when the pelvis and femur width are large.

3.4 | Ratio comparison

The flighted group showed significantly higher ratio values in all the
comparisons except two, body length divided by body mass and wing
length divided by body mass (Figure 3). This was expected as traits
associated with flight should be higher in flighted rails. We note that
the ratio between the depth and the length of the sternum showed
significant group difference. This suggests that a single bone may
give an indication regarding the flight capacity of a bird, although
the ratio values between flightless and volant groups overlap. The
flightless group always had a lower ratio value when a trait associ-

ated with walking was involved.

3.5 | Phylogenetic tree

A maximum likelihood phylogeny was generated using 5 genes and 95
birds species (88 rails and 7 birds from other families as an outgroup;
Appendix 1: Figure Al). Maximum likelihood bootstrap support was
largely consistent with the phylogeny of Garcia-R et al. (2014a).

A subset of the phylogenetic tree was obtained comprising only
the species for which we had morphological data (Figure 4). Flying
ability and the geographic distribution of each species were also
mapped on this tree. The majority of available species (38) in the
analysis were classified as flying and of the flightless ones (14 spe-
cies) many were in the Rallus group although Fulica, Gallicrex, and
Porphyrio each have one flightless species.

When the ability to fly was compared with the habitat of the dif-

ferent species, a clear relationship is observed between the flightless
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FIGURE 1 Scatter plot matrix of 10 traits (corrected by body length) from 75 rail species (those for which the body length is available),
49 flying and 26 flightless. The upper part of the diagonal shows the coefficient of determination () for flightless (black) and flying (red)
species. Two traits are considered highly correlated when the coefficient is close to one. The lower part of the diagonal shows the scatter
plots for each pair of traits and the diagonal shows the distribution of the values for each group

trait and island habitat (Figure 4). Indeed, all 14 flightless species
represented in the phylogenetic tree live on islands, although islands
differ in terms of the habitat they provide. For instance, Gallirallus
modestus is endemic to the small Chatham Islands, while other species
including Porphyrio hochstetteri and Dryolimna cuiveri inhabit the larger
continental islands, New Zealand, and Madagascar, respectively.

The phylogenetic tree of 52 species was used to quantify the
phylogenetic signal of each morphological trait using Blomberg's K

(Table 3). All ten traits tested showed K value lower than 1 suggesting

phylogenetic relatives resemble each other less than expected under
Brownian motion evolution along the candidate tree (Blomberg
et al., 2003). These K values imply the evolution of the morphological
traits is uncorrelated with phylogeny. Data from the principal com-
ponent analysis and phylogenetical analysis for 52 species were then
combined to produce a phylomorphospace graph (Figure 5), which
suggests that the clustering observed in the morphospace (PCA re-
sult, Figure 2) was not correlated with the phylogenetic tree as mul-

tiple branches extend between the flighted and the flightless group.
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FIGURE 2 Principal component analysis (PCA) plot showing the two first dimension of the multivariate variation among 52 species of
rails in terms of morphological traits. Vectors indicate the direction and strength of each trait contribution to the overall distribution. Black
dots represent flightless species and red triangles are flighted species. 95% confidence ellipses are displayed (red for flying rails, black for
flightless rails), a larger ellipse is associated with a high group variance

TABLE 1 Variance explained by each of X )
the first three dimensions in the principal Dimension
. Dimension 1 Dimension 2 3
component analysis
Variance 4.177 2.338 2.217
Percentage of variances explained  41.767 23.381 22.166
Cumulative percentage 41.767 65.148 87.314
Variance test
Statistic 1.26 7.16 1.084
Significance 0.56 0.010* 0.803

Note: The variance test implies a null hypothesis that the two groups (flying and flightless) have the
same variance. An F test is used when the distribution is normal (Dimensions 1 and 3) and Levene's
test when the distribution is not normal (Dimension 2).
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TABLE 2 Variance explained by each variable in the principal component analysis
Dimension 1 Dimension 2 Dimension 3

Trait Coord. Contrib. cos2 Coord. Contrib. cos2 Coord. Contrib. cos2
Wing length 0.352 2.974 0.124 0.5 10.673 0.25 0.631 17.952 0.398
Body mass -0.488 57 0.238 -0.466 9.27 0.217 0.642 18.616 0.413
Cranial length 0.936 20.989 0.877 0.031 0.04 0.001 -0.282 3.598 0.08
Cranial depth 0.939 21.104 0.881 0.078 0.258 0.006 -0.253 2.89 0.064
Cranial width 0.922 20.357 0.85 0.036 0.056 0.001 -0.212 2.036 0.045
Sternum length 0.052 0.064 0.003 0.623 16.607 0.388 0.684 21.13 0.468
Sternum depth 0.124 0.369 0.015 0.913 35.637 0.833 0.258 3.002 0.067
Pelvis width 0.728 12.699 0.53 -0.464 9.199 0.215 0.341 5.249 0.116
Femur length 0.751 13.516 0.565 -0.209 1.866 0.044 0.362 5916 0.131
Femur width 0.305 2.227 0.093 -0.619 16.396 0.383 0.659 19.611 0.435

Note: Coord. = Coordinate indicates (from O to 1) the correlation between the variable and the principal component; Contrib. = Contribution is a

percentage of how much each trait explains the variance and cos2 (= Coord. * Coord.) is used to estimate the quality of the representation.

TABLE 3 Logistic regression performed on a subset of the 52 species dataset showing the relationship between 10 morphological traits

and the ability to fly

Number of species Logistic regression Phylo. signal
Trait Flying Flightless Coefficient Statistic Significance Blomberg's K
Wing length 38 14 27.696 3.194 0.001*** 0.322
Body Mass (log) 38 11 -1.369 -1.581 0.114 0.493
Cranial length 33 9 -21.834 -0.870 0.384 0.348
Cranial depth 33 9 -16.101 -0.392 0.695 0.384
Cranial width 33 9 -33.426 -0.958 0.338 0.388
Sternum length 35 10 126.575 2.958 0.003** 0.279
Sternum depth 35 10 530.465 2.383 0.017* 0.290
Pelvis width 35 10 -179.97 -2.469 0.013* 0.310
Femur length 35 10 -17.808 -1.123 0.261 0.279
Femur width 35 10 -255.919 -2.589 0.009** 0.276

Note: Asterisks show significance of p-values; * p <.05, ** p < .01, *** p < .001. A p-value under .05 for the normality test (Shapiro-Wilk) indicates

the null hypothesis that the sample is normally distributed is rejected. Blomberg's K measures the phylogenetic signal, if it is <1 the variable is

phylogenetically independent.

4 | DISCUSSION
4.1 | Morphological differences between flighted
and flightless rails

Trait correlation analysis showed multiple trend differences between
flighted and flightless groups. Such differences were also observed
in principal component analysis with clear group clustering, confirm-
ing the existence of a strong link between the flight ability and phe-
notypic evolution in rails (Livezey, 2003). This phenomenon has now
been observed in several bird families (Baker, Haddrath, McPherson,
& Cloutier, 2014; Diamond, 1991; Gussekloo & Cubo, 2013).

Results from logistic regression suggest that the transition from
flighted to flightless involves a reduction of the sternum depth and

length together with a shortening of the wing length. Flightless rails

also exhibit wider pelves and femora which is consistent with the in-
formal description of flightless birds as species with bigger feet, legs,
and leg muscles to support a heavier body (Roots, 2006). The pattern
revealed by logistic regression was also from PCA graph (Figure 2)
where the distinction between groups is mostly present on the
second dimension (covering 23.4% of the variance). The variables
mostly influencing the variance within that component are, by order
of importance, sternum depth, sternum length, femur width, wing
length, body mass, and pelvis width. This is consistent with the infer-
ence that, in rails, the transition to flightlessness usually involves an
increase in body size, body mass, pelvis, and cranium size as well as a
reduction in lengths of wings and sternum size (Livezey, 2003). The
fact that body mass seems to be associated with the ability to fly in
the PCA but is not statistically significant in the logistic regression is

probably due to the high variance of that trait. Some flightless rails
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FIGURE 3 Comparison of ratio values for flighted (red) and flightless (black) groups. Ratios were created by dividing the trait values from
the upper part of the body (sternum depth and wing length) by the trait values from the lower part of the body (pelvis width and femur
length) and body mass. Body length divided by body mass, wing length divided by body mass, sternum depth divided by sternum length and
sternum depth divided by body mass are shown as well. p-values below .05 indicate a significant group difference (T-test)

exhibit relatively high body mass (McNab, 1994; Roots, 2006) but
other are much smaller. In New Zealand, for example, the flightless
takahe Porphyrio hochsteterri (2.7 kg) is about 450 times heavier than
Gallirallus modestus (60 g) rails living in the New Zealand.

We found no correlation between cranial traits and the ability to
fly using logistic regression as well as PCA confirming our expecta-
tion that these characters are not directly linked to flight or walking
efficiency. The contrary inference of Livezey (2003) likely reflects
skull size being confounded with body size and not corrected for
as in our analysis, although we note that at an ordinal level, skull
size and the ability to fly appear to be linked (Cubo & Arthur, 2001;
Gussekloo & Cubo, 2013). Femur length also does not significantly
correlate with flight while femur width does, which expresses the link
between femur cross-sectional area and body mass (Trewick, 1996).

We found three putatively flightless rails had morphological
traits that appear closer to the flying rails (the three black dots that
fell within the 95% confidence ellipse of the flying rails in Figure 2).

There is limited information on the ecology of Aramidopsis plateni,

Megacrex inepta, and Gallirallus insignis (Figure 2) and Gallirallus
insignis has been described as both almost flightless (del Hoyo
et al., 2015) and not flightless (Gilliard, 1967). Given that uncertainty,
the lack of information and the principal component analysis could
indicate that they have been assigned to the wrong group. They
might also be considered as part of an intermediate group including
the “almost flightless.” Such a group would also include Eulabeornis
castaneoventris (the only “flying” species that falls outside the confi-
dence ellipse and closer to the flightless group in Figure 2) and is de-
scribed as a weak flyer (Taylor, 1998). We found that dividing the rail
data into three categories (flying, flightless and almost flightless), or
removing Aramidopsis plateni, Megacrex inepta, and Gallirallus insignis
did not significantly change the result (data not shown).

As in some other bird families (Cubo & Arthur, 2001), flighted
rails develop their forelimbs more than their hindlimbs as they always
exhibit a larger ratio when traits associated with flight (wing length,
sternum depth, and length) are divided by traits associated with walk-

ing (pelvis width and femur length; Figure 3). This makes sense as we
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FIGURE 4 Flying ability and distribution (island or continent) mapped on the 52 species Maximum likelihood phylogenetic tree of rails
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FIGURE 5 Phylomorphospace. Projection of the 52 species
Maximum likelihood phylogenetic tree of rails within the two first
principal component of a PCA performed on 10 morphological
traits. Black dots indicate flightless species and red dots indicate
flying species. Black lines indicate phylogenetic relationships
between species

can easily imagine that selective pressures on flightless rails involved
the development of powerful hindlimbs to move on the ground rather
than the preservation of wings and pectoral muscles of which they
have no use (or at least not as much use as their flighted ancestors).

A clear difference is observed between groups in the sternum
depth/sternum length ratio (Figure 3). Indeed, flighted rails have a
deeper and longer sternum allowing the insertion of powerful pecto-
ral muscles involved in flight. The flightless rails possess a shallower
sternum relative to its length. This is not surprising; indeed, sternum
reduction is observed in many flightless birds as this bone is associ-
ated with flight muscles (Lambertz & Perry, 2015). The interesting part
about this ratio difference is that two measurements of the same bone
can give an indication regarding the flying ability of a species (Bickley
& Logan, 2014). This might be useful in a context of paleontological re-
search where it is not possible to directly assess pectoral muscle mass
and has been used in the past to investigate the ability to fly of ancient
species based on fossils (Howard, 1964; Trewick, 1997b).

The transition to flightlessness in rails and other bird families ap-
pears to show similar trends that indicate a convergent evolution on a
much broader phylogenetic scale. Examination of shape differences in
volantisland bird populations onislands suggests a tendency to change
shape in a way that converges subtly on the flightless form (Wright &
Steadman, 2012). They highlighted an energy allocation from the fore-
limbs to the hindlimbs in most of the islands birds (Wright et al., 2016)
associated with smaller flight muscles (Wright & Steadman, 2012). In
developmental terms, this might be achieved via a neotenic condition
mostly manifested as a reduction of the pectoral apparatus and the
wings (Olson, 1973). Other traits affected by the loss of flight proba-

bly reflect ecological release, such as the tendency for flightless birds
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to exhibit larger pelves and skulls (Cubo & Arthur, 2001; Gussekloo
& Cubo, 2013). Penguins and many flightless ducks do not, however,
strictly follow the same morphology trends as their pectoral muscles
are not significantly reduced compared with flying birds because of
adaptation for aquatic “flying” (McNab, 1994). The basal rate of me-
tabolism is associated with the activity of organisms, and as a con-
sequence, it has been observed that some flightless birds exhibit a
lower rate than related flying species. This can be explained by the rel-
ative energy costs of aerial and terrestrial locomotion, and it has been
shown that the basal metabolic rate increases with the importance of

muscles involved in flight (pectoral mass; McNab, 2002).

4.2 | Phylogeny and evolution

Flightlessness has evolved multiple times in rails (Figures 4 and 5)
and as most of the flightless species are endemic to islands, it follows
that they all had flighted ancestors who dispersed to these islands
(Garcia-R et al., 2014a, 2014b; Kirchman, 2009). Therefore, the loss
of flight probably occurred (at least) as many times as there are flight-
less species in the phylogenetic tree (Figure 4). This biased proportion
(especially from the Rallus clade) might be the result of the sampling
(we may have more data on flightless birds than on flighted ones) or
the consequence of the extinction of most of the flighted ancestors,
but it is possible that a few flying ancestors colonized many differ-
ent islands resulting in a phylogenetic cluster of several flightless is-
land endemic species and only a few flighted ones (Diamond, 1991).
It is also possible that flighted lineages do not speciate so readily as
the flightless one because they are not as geographically subdivided
(Trewick, 1997; Garcia-R, Gonzalez-Orozco, & Trewick, 2019).

The large number of flightless rails within the Rallus clade might
potentially introduce a bias in the morphological analysis. Indeed,
the phenotypic trends observed in flightless species could reflect
the overall body shape of the Rallus clade rather than convergent
evolution within flightless rails but the phylogenetic signal test
showed this is not the case.

The phylomorphospace (Figure 5) shows the flying-flightless
pairs of closely related species can be morphologically very distant.
This phenomenon emphasizes that morphology of rails (or at least
the morphological characters selected in this analysis) is more af-
fected by the ability to fly than by the phylogeny. This is confirmed
by the phylogenetic signal analysis (Table 3). Indeed, none of the
morphological trait involved in this study show a significant signal
(Blomberg's K was always <1). This result is in concordance with
Olson (1973) who described the flightless condition as a rapid evo-
lution that involves little genetic modification, and is without major
phylogenetic significance.

Flight involves strict physical constraints in term of body size,
shape, and weight (Hone, Dyke, Haden, & Benton, 2008; Vizcaino
& Farina, 1999), which implies that most flighted birds in this analy-
sis have similar shape (though size may differ). Flightless rails on the
other hand show wider overall (among species) variation (Figure 2) ap-

parently linked to the fact that most of the flightless species live on
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islands. Flightless populations on islands have limited exchange (gene
flow) so their evolution can be intensely constrained by local selective
pressure leading to rapid morphogenesis in response to the environ-
mental conditions (Garcia-R, 2019). For example, closely related spe-
cies of Gallirallus on the Chatham Islands share reduction in sternum
size but show very different responses in body size and relative beak
length (Trewick, 1997b). The variation within the flightless group also
indicates that the loss of flight results in changes that are not in a sin-
gle direction. Freed from the constraint of flight, a number of different
viable ecological opportunities for trait evolution may emerge leading
to the impression of relaxed or nonconstraining evolution. Without
the physiological demands of flying, a population can evolve as a func-
tion of the ecological opportunities available to them resulting in a
wider range of phenotypic outcomes among species (Trewick, 1997b).
At the species level, directional evolution is still involved, but when all
flightless species are considered, the range of ecological outcomes re-
sults in a wide variance of phenotypes and thus appears overall as re-
laxed selection. In other words, during the transition to flightlessness
morphological traits can diverge in many different ways as there are
more viable options as a result of less strict morphological constraints.

In conclusion, this study confirms the convergent evolution of
multiple morphological traits in flightless rails. Flightless rails ex-
hibit short wings and small sterna as well as wide pelves and fem-
ora whereas flying rails have long wings, deep sterna, and smaller
femora and pelves. In the rails, we found no evidence that cranial
traits are correlated with the ability to fly (c.f. Livezey, 2003), and
this likely reflects the correlation between cranium size and overall
size of the birds which we corrected for. Using independent molec-
ular phylogenetic data, we show that traits of flightless rails are not
subject to phylogenetic constraint but rather reflect a morphological
convergent adaptation to the loss of flight.
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TABLE A3 NCBI access numbers used to investigate the maximum likelihood phylogeny

Species name 16S Ccol FGB-7 RAG-1 cyt-b
Amaurolimnas concolor JQ173980.1

Amaurornis akool FJ661094.1 JQ342141.1
Amaurornis flavirostra KC613979.1 KC614036.1 KC613861.1 KC613913.1 KC614062.1
Amaurornis moluccana KC613981.1 KC614038.1 KC613915.1 KC614064.1
Amaurornis phoenicurus KC613982.1 JQ342118.1 KC613863.1 KC613916.1 KC614065.1
Anurolimnas fasciatus KC614006.1 KC614046.1 KC613884.1 KC613942.1 KC614090.1
Anurolimnas viridis KC614010.1 JQ174052.1 KC613888.1 KC613947.1 KC614094.1
Aramides axillaris KC613978.1 JN801494.1 KC613860.1 KC613912.1 KC614061.1
Aramides cajanea KC613983.1 JN801496.1 KC613864.1 KC613917.1 KC614066.1
Aramides mangle KC613980.1 KC614037.1 KC613862.1 KC613914.1 KC614063.1
Aramides ypecaha KC613984.1 FJ027148.1 DQ881942.1 AY756084.1 KC614067.1
Aramidopsis plateni JQ347988.1
Aramus guarauna DQ485854.1 FJ027151.1 AY695250.1 DQ881798.1 DQ485899.1
Canirallus beankaensis HQ403671.1
Canirallus kioloides kioloides HQ403670.1
Coturnicops exquisitus NC_012143.1

Coturnicops noveboracensis KC613985.1 DQ433553.1 AY695239.1 KC613918.1 KC614068.1
Crex crex KC613986.1 GU571355.1 KC613865.1 KC613919.1 KC614069.1
Diaphorapteryx hawkinsi KC614124.1
Dryolimnas cuvieri KC613987.1 KC614039.1 KC613866.1 KC613920.1 KC614070.1
Eulabeornis castaneoventris KC613988.1 KC614058.1 KC613867.1 KC613921.1 KC614071.1
Fulica alai KC613989.1 JF498857.1 KC613868.1 KC613922.1 KC614072.1
Fulica americana DQ434598.1 AY695244.1 KC613923.1 DQ485910.1
Fulica ardesiaca KC613990.1 FJ027587.1 KC613869.1 KC613924.1 KC614073.1
Fulica armillata KC613995.1 FJ027588.1 KC613874.1 KC613929.1 KC614078.1
Fulica atra KC613991.1 GU571406.1 KC613870.1 KC613925.1 KC614074.1
Fulica cornuta FJ027592.1 KC614075.1
Fulica cristata KC613992.1 KC614040.1 KC613871.1 KC613926.1

Fulica gigantea FJ027593.1

Fulica leucoptera KC613993.1 KC614060.1 KC613872.1 KC613927.1 KC614076.1
Fulica rufifrons KC613994.1 FJ027594.1 KC613873.1 KC613928.1 KC614077.1
Gallicrex cinerea KC613997.1 JQ342129.1 KC613877.1 KC613932.1 KC614080.1
Gallinula angulata KC613996.1 KC614041.1 KC613875.1 KC613930.1 KC614079.1
Gallinula chloropus FJ027609.1 AY695245.1 KC613931.1 DQ485911.1
Gallinula galeata sandvicensis JF498859.1

Gallinula melanops KC613998.1 FJ027612.1 KC613878.1 KC613933.1 KC614081.1
Gallinula mortierii KC613999.1 KC614042.1 KC613934.1 KC614082.1
Gallinula tenebrosa KC614002.1 JQ174909.1 KC613880.1 KC613938.1 KC614086.1
Gallinula ventralis KC614003.1 KC613881.1 KC613939.1 KC614087.1
Gallirallus australis KC614035.1 KC613911.1 KC613977.1 KC614123.1
Gallirallus calayanensis KC614128.1
Gallirallus dieffenbachii KC614127.1
Gallirallus insignis JQ347978.1
Gallirallus lafresnayanus KC614130.1
Gallirallus modestus KC614125.1

(Continues)
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TABLE A3 (Continued)

Species name

Gallirallus okinawae
Gallirallus owstoni
Gallirallus philippensis
Gallirallus rovianae
Gallirallus striatus

Gallirallus sylvestris

Gallirallus torquatus torquatus

Gallirallus wakensis
Habroptila wallacii
Heliornis fulica
Himantornis haematopus
Laterallus albigularis
Laterallus exilis
Laterallus jamaicensis
Laterallus melanophaius
Lewinia mirifica

Lewinia muelleri
Lewinia pectoralis
Megacrex inepta
Neocrex erythrops
Nesoclopeus woodfordi
Pardirallus maculatus
Pardirallus nigricans
Pardirallus sanguinolentus
Porphyrio alleni
Porphyrio hochstetteri
Porphyrio martinica
Porphyrio porphyrio
Porzana albicollis
Porzana carolina
Porzana flaviventer
Porzana fluminea
Porzana fusca

Porzana parva

Porzana paykullii
Porzana porzana
Porzana pusilla

Porzana tabuensis
Porzana spiloptera
Psophia crepitans
Rallina eurizonoides sepiaria
Rallina fasciata

Rallina tricolor

Rallus aquaticus

Rallus caerulescens

GASPARET AL.
16S Col FGB-7 RAG-1 cyt-b
NC_012140.1 NC012140
KC614000.1 KC614043.1 KC613935.1
AY695241.1 KC613936.1 DQ485907.1
JQ348011.1
KC614001.1 JQ342122.1 KC613879.1 KC613937.1 KC614085.1
KC614034.1 KC614057.1 KC613910.1 KC613976.1 KC614122.1
JQ347980.1
JQ348014.1
JQ347984.1
DQ485857.1 JQ175018.1 AY695246.1 DQ485902.1
KC614126.1
JQ175222.1 AY082411.1 DQ881813.1
KC614004.1 JQ175223.1 KC613883.1 KC613941.1 KC614089.1
KC614009.1 DQ432997.1 KC613885.1 KC613943.1 KC614091.1
DQ485859.1 AY695238.1 KC613944.1 DQ485906.1
KC614005.1 KC614045.1 KC613882.1 KC613940.1 KC614088.1
KC614007.1 KC614047.1 KC613886.1 KC613945.1 KC614092.1
KC614008.1 KC614048.1 KC613887.1 KC613946.1 KC614093.1
JQ347987.1
KC614011.1 KC614050.1 KC613889.1 KC613948.1 KC614095.1
KC614012.1 KC613891.1 KC613949.1 KC614096.1
JQ175674.1 KC613965.1 KC614114.1
KC614020.1 KC614054.1 KC613898.1 KC613957.1 KC614104.1
KC614025.1 JQ175676.1 KC613904.1 KC613963.1 KC614113.1
KC614015.1 KC614052.1 KC613893.1 KC613952.1 KC614100.1
NC_010092.1 NC_010092.1 KC613909.1 KC613974.1 NC010092
KC614019.1 AY666523.1 KC613897.1 KC613956.1 KC614103.1
DQ485858.1 JQ175970.1 AY695240.1 KC613975.1 DQ485905.1
KC614018.1 JQ175972.2 KC613896.1 KC613955.1 KC614102.1
DQ485862.1 DQ433143.1 KC613899.1 KC613958.1 DQ485909.1
JQ175973.1
KC614016.1 KC614053.1 KC613894.1 KC613953.1 KC614107.1
KC614017.1 JQ342114.1 KC613895.1 KC613954.1 KC614101.1
KC614022.1 KC613901.1 KC613960.1 KC614106.1
KC614013.1 JQ342128.1 KC613892.1 KC613950.1 KC614097.1
KC614023.1 GQ482558.1 KC613902.1 KC613961.1
KC614021.1 JQ342132.1 KC613900.1 KC613959.1 KC614105.1
KC614026.1 KC613964.1
JN801952.1
DQ485855.1 JQ176018.1 AY695248.1 DQ485900.1
NC_012142.1 NC_012142.1 NC012142
KC614030.1 KC613969.1 KC614118.1
KC614032.1 KC614056.1 KC613907.1 KC613972.1 KC614120.1
KC614027.1 GU097233.1 EF552781.1 KC613966.1 KC614115.1
KC614028.1 KC614055.1 KC613905.1 KC613967.1 KC614116.1

(Continues)
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TABLE A3 (Continued)

Species name 16S col FGB-7 RAG-1 cyt-b

Rallus elegans KC614029.1 AY666315.1 KC613906.1 KC613968.1 KC614117.1
Rallus limicola KC614031.1 GU097263.1 AY695242.1 KC613970.1 KC614119.1
Rallus longirostris DQ485861.1 DQ433164.1 AY695243.1 KC613971.1 DQ485908.1
Sarothrura rufa KC614033.1 KC613908.1 KC613973.1 KC614121.1

Grus americana KP966312.1 DQ433674.1 AY695254
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FIGURE A1 Maximum likelihood phylogeny based on a 5-gene (COI, cyt-b, 16S, FGB, RAG-1) concatenated analysis, bootstrap supports
are indicated in each branch. Colours are indicating the taxon according to Garcia-R et al. (2014a), Dark grey: Fulica; Blue: Porphyrio; Green:
Rallina; Red: Porzana; Purple: Laterallus; Orange: Gallicrex; Brown: Aramides; Pink: Rallus
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FIGURE A2 Principal component analysis (PCA) plot showing the two first dimension of the multivariate variation among 90 species of
rails in terms of morphological traits. Vectors indicate the direction and strength of each trait contribution to the overall distribution. Black
dots represent flightless species and red triangles are flighted species



