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Heroin dependency has become a global problem and has caused significant clinical
and socioeconomic burdens along with devastating medical consequences. Chronic
drug exposure alters the expression and functional activity of 5-hydroxytryptamine
(serotonin) 2A receptors (5-HT2ARs) in the brain. Furthermore, pharmacological
blockade of 5-HT2ARs reduces cue-induced cocaine craving behaviors. In this study,
we explored the influence of 5-HT2ARs on heroin-withdrawal behaviors in mice. Black
C57BL/6J mice were given gradually increasing (10–50 mg/kg over 4.5 days) doses
of heroin to induce heroin dependency, after which naloxone was given to precipitate
withdrawal symptoms. MDL100907, a selective and potent 5-HT2AR antagonist,
attenuated naloxone-precipitated withdrawal symptoms in these mice. In addition,
5-HT2AR protein levels increased significantly in the medial prefrontal cortex (mPFC),
while phosphorylation of extracellular signal-regulated kinase (p-ERK) decreased in
the mPFC after heroin exposure. In conclusion, these results suggest that 5-HT2ARs
might be involved in the development of opioid dependency and that pharmacological
blocking of 5-HT2ARs might be a new therapeutic strategy for heroin dependency.
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INTRODUCTION

Diacetylmorphine (heroin) is one of the most addictive drugs. Heroin use disorders have become
a global problem and have caused significant clinical and socioeconomic burdens along with
devastating medical consequences. As a morphine derivative, heroin has a high-addictive potency.
Once it enters the brain, heroin is rapidly hydrolyzed to 6-acetylmorphine and morphine by
serum cholinesterase, which then binds with opioid receptors to activate dopaminergic neurons
(Inturrisi et al., 1983; Johnson and North, 1992). Heroin derivatives have a high affinity for
opioid receptors in the brain. The opioid receptor superfamily consists of δ (delta), κ (kappa),
and µ (mu) opioid receptors (DOR, KOR, and MOR, respectively) (Granier et al., 2012). MOR
is hyperactivated after drug binding and modulates neurotransmitter efflux to reinforce addictive
behaviors (Kreek et al., 2012).

Heroin addiction is increasing, especially in adolescents and young adults (Kuehn, 2013; Dart
et al., 2015; Griesler et al., 2019; Kelley-Quon et al., 2019). Rehabilitation following heroin addiction
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takes a long time, and antidrug treatment can cause serious side
effects in patients. Furthermore, deaths related to heroin overdose
have been increasing at an alarming rate in the United States
and Canada (Jalal et al., 2018; Banerjee et al., 2019; Dong
et al., 2019; Jones et al., 2020). Heroin use can also cause long-
term health complications, such as viral infections (Reardon,
2019), chronic obstructive pulmonary disease (Grischott et al.,
2019; Tashkin, 2019; Nightingale et al., 2020), and cerebellar
dysfunctions (Moreno-Rius, 2019).

Heroin disrupts the physiological neurotransmitter signaling
cascades, especially those involving 5-hydroxytryptamine
(5-HT) neurotransmitters. The 5-HT receptors modulate
drug-addictive behaviors. For example, activation of 5-HT 2C
receptors (5-HT2CRs) inhibits behavioral sensitization and
drug dependency in heroin-treated mice (Wu et al., 2015;
Zhang et al., 2016). 5-Hydroxytryptamine (serotonin) 2A
receptors (5-HT2ARs) also participate in opiate addiction
in rodents and humans. Recently, Odagaki et al. (2021a,b)
reported that long-term exposure to heroin leads to adaptive
changes in 5-HT2ARs in the human brain. 5-HT2ARs activate
phospholipase C through Gαq/11, which contributes to inositol
1,4,5-triphosphate and 1,2-diacylglycerol accumulation,
intracellular Ca2+ release, and protein kinase C activation
(Odagaki et al., 2021a,b).

5-Hydroxytryptamine (serotonin) 2A receptors regulate
neuropsychological functions (Pogorelov et al., 2017; Mora et al.,
2018; Odabas-Geldiay et al., 2019) and have been shown to play a
role in a number of neurological disorders, including Alzheimer’s
disease (Ballard et al., 2018), Parkinson’s disease (Cummings
et al., 2014; Ohno et al., 2015), obsessive–compulsive disorder
(El Mansari and Blier, 2006; Steeves and Fox, 2008; Simpson
et al., 2011; Sinopoli et al., 2017), schizophrenia (Girgis et al.,
2020), autism spectrum disorder (Chen et al., 2013), depression
(Underwood et al., 2018), anxiety (Weisstaub et al., 2006),
insomnia (Teegarden et al., 2008), and obesity (Morris, 2017).
The 5-HT2AR antagonist volinanserin or MDL100907 (Aventis
Pharmaceuticals) has been used to treat neuropsychological
dysfunctions in drug-addicted patients (Cunningham et al.,
2013), and a synergism between the 5-HT2AR and 5-HT2CR
affects the severity of addictive behaviors (Cunningham et al.,
2013; Perez-Aguilar et al., 2014; Prabhakaran et al., 2015;
Felsing et al., 2018). 5-HT2ARs are ubiquitously expressed in
all brain regions, with the highest receptor densities in the
frontal and motor cortices (Price et al., 2019). The dorsomedial
prefrontal cortex (PFC), specifically the prelimbic cortical region,
plays a pivotal role in drug addiction reinforcement behaviors
in rodents (Gourley and Taylor, 2016). Overexpression of 5-
HT2ARs has been associated with chronic dependency on
opioids, worsening withdrawal symptoms, and relapse behavior
after heroin exposure. These effects may have been mediated
by downregulation of ERK/mitogen-activated protein kinase
signaling in the PFC (Pang et al., 2016).

In this study, we aimed to investigate the impacts of 5-
HT2AR antagonists on heroin-withdrawal symptoms in mice.
We showed that the selective 5-HT2AR antagonist, MDL100907
(volinanserin), significantly inhibits heroin-induced abnormal
motor activities and withdrawal behavior in male mice.

MATERIALS AND METHODS

Animals
Male C57BL/6J adult mice, aged 8–12 weeks old [license # SCXY
(Su) 2011-0003] and weighing 20 ± 2 g, were purchased from
Cavion (Cavion Experimental Animal Co., Changzhou, China).
Mice were housed in groups of four in 29 cm × 18 cm × 12 cm
polycarbonate cages with ad libitum access to water and food
under a controlled temperature (23 ± 1◦C) and 12-h light/dark
cycle (dark phase 7:00 p.m. to 7:00 a.m.). Only male mice were
used in this study to avoid the effects of the female estrous cycle
on behavioral parameters. All animal procedures followed the
National Institutes of Health guidelines for the care and use of
research rodents, and the Institutional Animal Care and Use
Committee reviewed and approved the study protocol.

Chemicals and Reagents
Heroin was provided by the Anhui provincial public security
department (Hefei, China). MDL100907 (Griesler et al.,
2019) was purchased from Sigma-Aldrich (Sigma-Aldrich,
United States) and was dissolved in dimethyl sulfoxide (DMSO)
to prepare different doses (i.e., 0.01, 0.03, 0.1, and 0.3 mg/kg) for
intraperitoneal (IP) injection. The final concentrations of DMSO
of these four doses were 0.6, 0.2, 0.06, and 0.02%, respectively.

Naloxone and saline were purchased from The First Affiliated
Hospital of Anhui University of Science and Technology
(Huainan, China). The time points of MDL100907 treatment
were determined based on a previously published report (Wu
et al., 2015), and doses were optimized in our laboratory.
Naloxone (5 mg/kg) was administered by IP injection. To
minimize background interference of heroin on naloxone
binding to various opioid receptors and spontaneous withdrawal
precipitation, naloxone was injected 2 h after heroin was
administered (Wu et al., 2015). Naloxone was dissolved in 0.9%
saline solution and administered at a dose of 5 mg/kg. Saline
solution was used as a placebo.

For immunoblotting, we used anti-5-HT2AR (ab16028,
Abcam, United States) and anti-phospho-ERK1/2 (Cell Signaling
Technology, United States) primary antibodies and a horseradish
peroxidase (HRP)-conjugated anti-rabbit IgG secondary
antibody (SA00001-2, Proteintech, United States). Protein was
quantified using a bicinchoninic acid (BCA) assay kit provided
by the Beyotime Institute of Biotechnology (Haimen, China).

Basal Locomotor Activity Recording With
an Open-Field Test
The open-field test was conducted as described elsewhere (Pang
et al., 2016). Briefly, mice were placed in the center of a white
open field with dimensions of 30 cm × 30 cm × 37.5 cm. The
movement and activities of the mice were tracked by a video
camera equipped with EthoVision-XT-5.1 behavioral tracking
software (Noldus Information Technology, Netherlands). The
behavioral parameters tested in this study were distance traveled
and duration of immobility at a certain coordinate.

Naïve mice were randomly distributed into three groups
(n = 8–18 per group), which received either placebo (saline),
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M100907 (0.03 mg/kg), or naloxone (5 mg/kg) at designated time
points. Behaviors were monitored for 60 min to evaluate drug-
induced behavioral changes. The Noldus PhenoTyper system
could accurately calculate the horizontal distance traveled, but
not fine behaviors. For example, the system could not distinguish
between the head and tail when detecting the direction of
movement. Behaviors were monitored with video monitoring
(e.g., distance traveled) and manual scores (e.g., jumping).

Induction of Heroin Withdrawal
Heroin was injected subcutaneously twice daily at gradually
increasing doses (5 mg/kg each time) from 10 to 50 mg/kg
by day 5. On day 5, mice were injected with saline or
MDL100907 at 8:00 a.m. Thirty minutes later, mice were
injected with 50 mg/kg of heroin or placebo. After 2 h,
naloxone was administered to control withdrawal symptoms,
including jumping (el-Kadi and Sharif, 1995). The naloxone-
precipitated heroin-withdrawal mouse model is illustrated in
Figure 1. Behavioral parameters such as total distance traveled
and spontaneous immobility were monitored by video recording.
Heroin-withdrawal behaviors after naloxone administration were
monitored for 30 min. Withdrawal behaviors included wet dog
shakes, body grooming, penile grooming, head shakes, paw
licking, jumping (completely in the air), extended posture,
rearing, and burrowing (escape digging).

Western Blot
Mice were euthanized immediately after day 5 of the experiment,
and PFC tissue was collected on ice and stored at −80◦C.
PFC tissues were homogenized and lysed in ice-cold 1× RIPA
buffer for protein extraction, followed by centrifugation (4◦C,
10,000 × g, 10 min). The supernatant containing total protein
was transferred to a new Eppendorf tube, and the protein
concentration was determined using a BCA protein detection kit.
The protein samples were resolved on a 10% SDS-polyacrylamide
gel by electrophoresis and transferred to a polyvinylidene fluoride
membrane. The membranes were blocked with non-fat-skimmed
milk (5% w/v) and washed with Tris-buffered saline with 0.1%
v/v Tween-20, then probed with primary antibody (1:100)
overnight at 4◦C, followed by the HRP-conjugated secondary
antibody at 1:10,000 dilution for 1.5 h. Protein bands were
displayed with enhanced chemiluminescence substrates (Thermo
Fisher Scientific Inc.) and captured using a ChemiDocTM XRS+
imaging system (BioRad Co., United States). The density of
the protein bands was quantified (gray mean value) using
ImageJ software (NIH). Density measurements for 5-HT2AR
were normalized to the internal control β-actin (Zhang et al.,
2016). There were three independent trials for each group.

Statistical Analysis
Statistical differences in total distance traveled and duration
of immobility were analyzed using two-way repeated-measures
ANOVA. All data are expressed as mean ± SEM. One-way
ANOVA and Student’s t-test were used for statistical analysis. If
statistical significance was found (p < 0.05), a post hoc Dunnett’s
test or Bonferroni multiple comparison was conducted.

RESULTS

MDL100907 Overdosing Impairs
Locomotor Activity in Mice
To observe the effects of MDL100907 on locomotor activity,
we first compared the effects of MDL100907 on the distance
traveled and immobility duration. MDL100907 treatments at
0.1 and 0.3 mg/kg doses, but not at 0.01 and 0.03 mg/kg
doses, significantly reduced locomotor activity compared with
controls [F(4,49) = 5.457, p = 0.0010; Figure 2A]. MDL100907
treatment had a significant effect not only on the distance traveled
[F(4,36) = 6.238, p < 0.001] and also on the 5-min time bin
[F(11,99) = 18.895, p< 0.0001]; however, there was no significant
effect on the treatment× time bin interaction [F(44,396) = 1.344,
p = 0.077; Figure 2B].

Next, we measured the immobility duration for 1 h
[F(4,49) = 4.667, p = 0.0029, one-way ANOVA post hoc
Dunnett’s multiple comparisons; Figure 2C]. A two-way
repeated-measures ANOVA on immobility, measured in every
5 min, showed no statistically significant effect on immobility
duration [F(4,36) = 0.356, p = 0.838; Figure 2D]; however, the
duration of MDL100907 treatment had significant effects not
only on immobility duration [F(44,396) = 3.480, p < 0.0001]
but also on the time × treatment interaction [F(4,36) = 0.356,
p < 0.0001]. Injection of 0.3 mg/kg MDL100907 did not affect
locomotor activity, so 0.03 mg/kg MDL100907 was administered
subcutaneously to heroin-treated mice. We also tested whether
MDL100907 affected activity/immobility in the absence of
naloxone and found no difference between MDL100907 alone
and control (data not shown).

MDL100907 Relieves Naloxone-Induced
Precipitated Withdrawal Symptoms in
Heroin-Dependent Mice
Figure 3 shows the frequency of jumping (Figure 3A), rearing
(Figure 3B), wet dog shakes (Figure 3C), body grooming
(Figure 3D), paw licking (Figure 3E), and extended posture
(Figure 3F) was counted for 30 min. Mice showed physical
hyperactivities after heroin withdrawal, such as heavily increased
rearing and jumping, compared with mice treated with saline
and naloxone alone. After heroin withdrawal, MDL100907
significantly suppressed rearing and jumping (p < 0.05) but had
no effect on the frequency of wet dog shakes, body grooming, and
stretched out posture (Figure 3).

MDL100907 Negatively Modulates
Distance Moved and Mobility in
Naloxone-Precipitated Withdrawal
Symptoms
Heroin dependency was successfully induced after 4.5 days
of gradually increasing doses. MDL100907 (0.03 mg/kg)
significantly restricted the distance traveled per hour compared
with saline treatment [F(2,37) = 30.646, p < 0.0001; Figure 4A;
movement track, Figure 4C]. MDL100907 treatment
also significantly increased the duration of immobility
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FIGURE 1 | Experimental outline of the animal study. Induction of heroin dependency by administering increasing doses of heroin is shown in the graph. The
MDL100907 treatment schedule is also shown.

FIGURE 2 | Effects of MDL100907 on locomotor activity. (A) Five groups of naïve mice received one of five MDL100907 doses each (i.e., 0, 0.01, 0.03, 0.1, and
0.3 mg/kg). Distance covered in 60 min. (B) Distance covered in a 5-min bin period. (C) Percentage of immobility. (D) Immobility in a 5-min bin period. Data are
expressed as mean ± SEM; n = 8–18 for each group *p < 0.05.
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FIGURE 3 | Effects of MDL100907 on naloxone-induced withdrawal symptoms. (A) Jumping. (B) Rearing counting. (C) Wet dog shakes. (D) Body grooming.
(E) Paw licking. (F) Extended posture. All behaviors were monitored for 30 min. Data are expressed as mean ± SEM; n = 8–18 for each group **p < 0.01,
***p < 0.001.

[F(2,37) = 65.70, p < 0.01; Figure 4B] after 30 min, but
not after 1 h in naloxone-precipitated heroin-withdrawn mice
compared with saline treatment. MDL100907 treatment also
reduced the distance moved and increased the duration of
immobility (p < 0.05) compared with saline treatment.

Heroin Treatment Upregulates
5-Hydroxytryptamine (Serotonin) 2A
Receptor Expression and Downregulates
ERK Phosphorylation in the Medial
Prefrontal Cortex
Brain tissue was collected from acute heroin-dependent mice
2.5 h after the last heroin administration, and the levels of
5-HT2AR, ERK, and phosphorylation of extracellular signal-
regulated kinase (p-ERK) in the medial prefrontal cortex (mPFC)
were quantified by Western blotting. Heroin exposure correlated
positively with 5-HT2AR expression [t(6) = 2.570, p < 0.05].
The p-ERK/ERK ratio in mPFC tissue [t(6) = 2.88, p < 0.05]
was lower in heroin-treated mice than in saline-treated mice
(Figures 5A,B).

DISCUSSION

People who have experienced heroin dependence are vulnerable
to relapses even years into abstinence (Stewart et al., 1984; Lucey
et al., 2019). Impulsive reactions to stimuli without regard for the

negative consequences can contribute to relapse (Volkow et al.,
2019) and are regulated by 5-HT neurotransmission (Anastasio
et al., 2015; Fink et al., 2015). This study explored the influence
of 5-HT2ARs on withdrawal symptoms in heroin-treated mice.
We report that the 5-HT2AR antagonist MDL100907 attenuates
naloxone-precipitated withdrawal symptoms. These findings
suggest that 5-HT2ARs regulate behaviors related to heroin
dependence and that heroin dependence might be treated by
pharmacological activation of 5-HT2ARs.

We found that the 5-HT2AR antagonist MDL100907 alleviates
naloxone-induced precipitated withdrawal symptoms in heroin-
exposed mice. Lower doses of MDL100907 did not affect baseline
motor activity, whereas higher doses inhibited heroin-withdrawal
symptoms. In line with these findings, another study showed
that higher doses of MDL100907 reduce nicotine-withdrawal
symptoms in rats (Malin et al., 2019). Previous studies have
demonstrated that naloxone-precipitated heroin withdrawal is
characterized by jumping, whereas others have suggested that
these behaviors are not specific to heroin withdrawal and may be
caused by a floor effect (Pang et al., 2016).

The heroin-withdrawal symptoms might be caused by
increased long-lasting responses of neurons innervating the
nucleus accumbens, dopaminergic neurons in the ventral
tegmental area (VTA), and glutamatergic neurons in the
PFC and basolateral amygdala (Russo and Nestler, 2013).
This suggests that heroin derivatives activate MOR, thereby
inducing locomotor hyperactivity and increasing dopaminergic
neurotransmission. The VTA-nucleus accumbens circuit is
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FIGURE 4 | MDL100907 suppresses opioid-withdrawal symptoms. Mice were treated with increasing doses of heroin (10–50 mg/kg) for 4.5 days to develop heroin
dependency. (A,B) MDL100907 significantly reduced the distance traveled and significantly increased immobility. Plot tracking of the open-field test is shown.
(C) MDL100907 reduced hyperactive walking activity in heroin-exposed mice treated with naloxone, but not in heroin-exposed mice treated with saline. Data are
expressed as mean ± SEM; n(C) = 8–18; *p < 0.05; **p < 0.01; ***p < 0.001 vs. saline.

FIGURE 5 | Acute heroin exposure is associated with increased 5-HT2AR expression and decreased p-ERK expression in the PFC. Mice were injected with
increasing concentrations of heroin for 5 days to develop heroin dependency, and PFC tissue was collected 2.5 h after the last shot of heroin. (A,B) Acute heroin
treatment increased 5-HT2AR protein levels and decreased the p-ERK/ERK ratio in PFC tissue. Data are expressed as mean ± SEM; n = 4 per group; *p < 0.05 vs.
saline group.

critical for reward recognition and includes the mPFC, amygdala,
hippocampus, and other regions regulated by dopaminergic
neurons. Previous studies have revealed that dopaminergic
neurons in the nucleus accumbens can secret glutamate
and γ-aminobutyric acid (GABA), which may contribute to
dependence on opioids (Hnasko et al., 2012; Tritsch et al., 2012).
5-HT2ARs are widely distributed in intermediate inhibitory
neurons, major VTA neurons, dorsomedial PFC neurons, and
BLA neurons (Kreek et al., 2012). The 5-HT2AR is expressed in
GABA-ergic neurons in the midbrain, substantia nigra, and VTA,
but not in dopaminergic neurons (Kuehn, 2013). Furthermore,
the 5-HT2AR antagonist MDL100907 reduces the firing rate of

dopaminergic neurons in the mesolimbic system (Lucey et al.,
2019). These results suggest that MDL100907-mediated blocking
of 5-HT2ARs may inhibit dopamine neurotransmission, which
may inhibit heroin-withdrawal symptoms in mice. Neuronal
excitation is crucial to heroin withdrawal and may be blocked
by MDL100907 treatment. Further experiments are warranted to
delineate the underlying mechanisms.

Immunoblot analysis revealed that 5-HT2AR expression was
upregulated in PFC tissue from heroin-dependent mice. The
PFC is a key brain region associated with opioid addictive
behavior, so the increased 5-HT2AR expression we observed
suggests a crucial link to neural adaptation upon heroin
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exposure. However, the functional significance of 5-HT2AR
overexpression in heroin addiction remains elusive. Elucidating
the subcellular distribution and receptor signal transduction of
5-HT2AR will help understand the regulatory mechanisms of
heroin dependence. Interestingly, we observed reduced ERK
phosphorylation in PFC tissue from heroin-dependent mice,
although 5-HT2AR activation upregulates p-ERK1/2 expression.
Heroin triggers multiple cellular signaling cascades and, together
with its metabolites, can have diverse effects in different brain
regions, neural networks, and cell types. This variability might
explain the inconsistency between the heroin-mediated increase
in 5-HT2AR expression and reduced p-ERK accumulation
we observed. It was recently reported that morphine also
downregulates p-ERK/ERK. This effect was induced by the D1R–
ERK–CREB pathway in the mPFC, and the D1R antagonist
SCH-23390 reversed morphine-induced attention dysfunction
and morphine-withdrawal symptoms in mice (Yin et al., 2021).

The 5-HT2AR-mediated heroin withdrawal may involve
dopamine neurotransmission. 5-HT2ARs control dopamine
outflow to augment dopamine synthesis and excitation (Schmidt
et al., 1992; Lucas and Spampinato, 2000; Porras et al., 2002;
Alex and Pehek, 2007). However, selective blockade of 5-HT2ARs
by SR46349B did not affect the cocaine-induced increase in
dopamine outflow in the nucleus accumbens and striatum
(Auclair et al., 2004). Furthermore, MDL100907 did not affect
basal and cocaine-augmented dopamine outflow into the mPFC
(Bonaccorso et al., 2002; Fletcher et al., 2002; Li et al., 2005;
Berg et al., 2008), whereas coadministration of MDL100907
and the 5-HT2CR antagonist lorcaserin suppressed cocaine-
seeking behavior (Anastasio et al., 2020). 5-HT receptors control
ascending dopamine pathway activity and the neurochemical and
behavioral responses to cocaine (Alex and Pehek, 2007; Berg
et al., 2008; Filip et al., 2012; Devroye et al., 2013; Howell and
Cunningham, 2015; Sholler et al., 2019). However, their impact
on cocaine-mediated increases in dopamine production in the
mPFC remains unclear. Dopaminergic signaling also contributes
to opioid addiction by modulating the hypothalamic–pituitary–
adrenal (HPA) axis. The relationship between cocaine use, the

HPA axis, and opioid use is well-established (Nava et al., 2006;
Picetti et al., 2013; Walter et al., 2013), and it will be interesting
to elucidate the role of the HPA axis on heroin dependence
in a future study.

Taken together, our data have shown that naloxone-induced
heroin-withdrawal symptoms can be attenuated by MDL100907.
Acute heroin addiction increased 5-HT2AR expression in the
PFC, suggesting that 5-HT2AR might be an efficient therapeutic
target for treating heroin use disorders.
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