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Abstract: With the Industry 4.0 paradigm comes the convergence of the Internet Technologies
and Operational Technologies, and concepts, such as Industrial Internet of Things (IIoT),
cloud manufacturing, Cyber-Physical Systems (CPS), and so on. These concepts bring industries
into the big data era and allow for them to have access to potentially useful information in order
to optimise the Overall Equipment Effectiveness (OEE); however, most European industries still
rely on the Computer-Integrated Manufacturing (CIM) model, where the production systems run
as independent systems (i.e., without any communication with the upper levels). Those production
systems are controlled by a Programmable Logic Controller, in which a static and rigid program
is implemented. This program is static and rigid in a sense that the programmed routines cannot
evolve over the time unless a human modifies it. However, to go further in terms of flexibility, we are
convinced that it requires moving away from the aforementioned old-fashioned and rigid automation
to a ML-based automation, i.e., where the control itself is based on the decisions that were taken by
ML algorithms. In order to verify this, we applied a time series classification method on a scale model
of a factory using real industrial controllers, and widened the variety of parts the production line has
to treat. This study shows that satisfactory results can be obtained only at the expense of the human
expertise (i.e., in the industrial process and in the ML process).
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1. Introduction

Over the last few years, the manufacturing sector has been facing a new industrial revolution.
This fourth industrial revolution—Industry 4.0—originates from Germany, and was initially a
proposal for developing a new concept of German economic policy in 2011 [1]. Enabled by different
technologies and concepts, such as the Internet-of-Things (IoT), data-mining, and Machine Learning
(ML) algorithms, new decision-making processes, Cyber-Physical Systems (CPS), Operational and
Information Technologies convergence (OT/IT) [2], the main features of the Industry 4.0 are the
following [3–7]:

• Customisation/Individualisation of the products: the production needs to adapt to the customer’s
requirements that tend to be increasingly precise and individual. This also allows for the
development of innovative business models.

• Flexibility: the production chain needs to automatically adapt itself to the evolving requirements
(e.g., the range of products it should produce or the speed of the conveyer), to enable
productivity gains.
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• Product traceability: one needs to be able to identify all of the processes through which raw
material, parts, and products have been modified/realised/assembled.

• Optimisation of the production process: thanks to the IoT devices and the information gathered
and analysed by machine learning algorithms, it is possible to have a precise overview of
the production process and, thus, optimise resources and, for example, predict forthcoming
maintenance actions.

Meeting these expectations requires that European manufacturing companies rely on more
advanced ICT bases and integrate IoT (or IIoT) at a larger scale, as it is considered to be a key enabler of
Industry 4.0 [1]. IoT—which describes the network of physical objects embedding sensing capabilities
and software components in order to exchange data over the internet—is, in fact, an overarching term
that applies to all of the sectors that can be digitised using physical sensors. IoT thus encompasses
many of the current and future technologies and concepts [8], such as smart cities where different
devices (e.g., sensors, cameras, etc.) are installed in a city in order to monitor the vehicular traffic,
measure and report the environmental pollution, provide information on the weather, guide the
car drivers into parking lots with the most space available, and so on [9]. Another important area
of IoT applications is smart grids. Smart grids are electrical power grids that are smarter than
traditional power grids thanks to IoT technologies. These smart grids self-heal, distribute electricity
on demand, are monitored and controlled in real-time, and they rely on several small power
producers, which makes the grids more efficient than traditional grids [10–12]. IoT is also used in
healthcare, for example, to monitor patients’ health conditions [13], by collecting different information,
such as electrocardiogram (ECG), blood pressure, etc. It allows for reducing the risk of errors and,
thus, improving the efficiency and lowering the costs of healthcare services [14]. Industry 4.0/Smart
manufacturing falls in the list of sectors that are covered by IoT, and, since it heavily relies on
IoT technologies as enablers. IoT technologies allow for new applications and improvements in
the manufacturing world, such as IoT-based cloud manufacturing, cyber-physical manufacturing,
energy efficiency management, supply chain, and logistics traceability improvements, as reported
in [15].

Unfortunately, most European industries—especially companies having decades of
existence—do not have up-to-date ICT and automation infrastructures. Indeed, current manufacturing
systems still rely on the Computer-Integrated Manufacturing (CIM) model, where the production
systems run as independent systems (i.e., without any communication with the upper levels).
The brain of such production systems is the programmable logic controller (PLC), which is an
industrial computer monitoring its inputs (sensors) and outputs (actuators) in a cyclic manner.
It makes decisions by itself based on the internal program logic. Therefore, this program is static and
rigid in a sense that the programmed routines cannot evolve over the time unless a human modifies
the PLC program. It makes difficult or almost impossible, for instance, to widen the range of products
manufactured on a same line without having to stop it and load another program each time that we
change the range of products. It would be the same difficulty for all major functional or environmental
changes, e.g., a variation of the production speed or a move of the production system to a place where
the lighting environment is different would require a long manual configuration phase. So far, this is
achieved by blue-collar workers (i.e., the operators) that monitor, operate, and maintain, in operational
condition, the production lines.

Working together with an automotive parts manufacturer—Cebi Luxembourg S.A.—through an
R&D partnership, our main objective is to improve the overall efficiency of the production systems
while shortening the “Measure Decision Act” loop. Thanks to a lot of sensor data (also known as
time-series (TS)) being collected, ML algorithms can ingest them for monitoring the factory’s overall
performance in real time, as well as understand and predict technical issues. However, in order to
further improve the flexibility, we are convinced that it requires moving away from the aforementioned
old-fashioned and rigid automation to a ML-based automation, i.e., where the control itself is based
on the decisions that were taken by ML algorithms. We propose exploring whether and to what
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extent such a ML-based automation approach can replace a manual and static setting of a production
line configuration (i.e., where all of the parameters have been manually set for the limited range
of products).

Therefore, the contributions are threefold: (i) we concisely review time-series classification
methods and their applications in the industry, (ii) we apply a selected time-series classification
method from the literature to a real use-case developed on a scale model of a factory (FischerTechnik
factory simulation) relying on a real ICT infrastructure (detailed in the next section), as it is not
possible to stop a production line for deploying such a scenario without beforehand demonstrating the
feasibility, and (iii) we discussed the implications and limitations of using such an approach from a
technical point of view in the industry, to serve as knowledge based on how to evolve towards such an
approach in real-settings.

The rest of this paper is organised, as follows: Section 2 explains the problem, Section 3 gives
a review on time-series classification methods and their implementation in the industry, Section 4
presents our case study and experimental setup. Experiments have been conducted in order to
improve the flexibility of production lines and the results are presented in Section 5. Section 6 discusses
our results and methods. Additionally, finally, Section 7 concludes the paper and presents ideas
for the future.

2. Problem Statement

Our main goal is to improve the flexibility of the production lines, i.e., the ability of the line to
automatically adapt itself to evolving requirements (a larger variety of parts to produce, for example).
However, European manufacturing companies usually rely on the CIM model. Consequently,
each production system has its own logic that is implemented in a PLC. PLC programs are developed
in a rigid manner, and they are not meant to evolve in order to adapt to a changing environment.
Any modification to the code requires human intervention. This old-fashioned and rigid automation
model is a hurdle to the improvement of the production lines’ flexibility. As an example, Figure 1
is an excerpt from a PLC program of a real production line (the whole program contains over
6000 instructions, each line is an instruction). Modifying this program requires having a perfect
understanding of the process and the program, since the sequence of instructions is important and
it should not be randomly modified (it could impact the process). Each modification implies a large
testing process on the production line.

Figure 1. Ladder program from a traditional controller.
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Consequently, to tackle the limitations of static programs, we propose exploring to what extent
these static PLC programs could be replaced by a state-of-the-art ML-based method. To do so, we first
need a safe development environment, in which we are able to experiment and test without damaging
anything or modifying the processes in the factory. Indeed, the industrial partner cannot afford the
downtime that it would require to test this solution; he needs to understand the benefits of using such
a method and evaluating the Return On Investment (ROI), and finally, we can also propose a more
innovative architecture using new generation PLCs in a development environment. Another key factor
in the choice of our development environment is its use in scientific papers. Finally, we need to find
a use case that complies with several properties: (i) it should be representative, i.e., common in the
industry, such as an anomaly detection process, a sorting process, or more generally a classification
process, (ii) it should be minimalist and canonical, i.e., based on one variable, if it works with one
variable and a small amount of data (which is a limit case for ML), it will most likely work with
more variables.

The FischerTechnik 24 V factory simulation (FischerTechnik Factory simulation website, https:
//www.fischertechnik.de/en/service/elearning/simulating/fabrik-simulation-24v) has been chosen.
This platform has been used in the literature for different objectives, such as CPS security research
hackathons [16], in order to develop a new low-cost, but powerful, controller [17], or to develop a
multi-agent control system [18], and the automation architecture (controllers, sensors, and actuators)
is representative of a real production line, since it relies on real industrial controllers to control the
different stations that compose the platform (our architecture is detailed in Section 4). The four stations
are: (i) the automated warehouse where parts are stored, (ii) the multi-processing station (simulating an
oven and a saw), (iii) the vacuum gripper robot that is used to move the parts between the warehouse
and the multi-processing station, and (iv) the sorting line with the colour sensor that is used to sort the
parts according to their colour.

On this platform, we focused on the fourth station, namely the sorting line. This choice is
justified by the fact this station is the one that best fits our case by using a colour sensor returning
numeric values, on which a decision is taken under temporal constraints. Thus, this case is more
interesting, while the other stations rely on position sensors or limit switches, which return binary
values. As a matter of fact, it is composed of three sensors: an input sensor, a colour sensor, and an
output sensor, and three actuators to store the part in the right stock according to its colour. Based on
those inputs/outputs, the program logic implemented in the controller is as follows: the value of
the colour sensor is collected every 10 ms from the moment the part is detected by the input sensor,
until the moment the part is detected by the output sensor. By doing so, we are able to create time
series, such as the ones depicted in Figure 2, where the sizes range from 350 to 500 observations per TS
due to the fact that parts are going from a conveyer belt to another, and this could take more or less
time. The blue TS is from a blue part, the red TS is from a red part, and the grey TS is from a white part
(the platform comes with blue, white, and red parts).

This is a traditional time series classification (TSC) case. The next section gives a background on
TSC methods and their application in industry.

https://www.fischertechnik.de/en/service/elearning/simulating/fabrik-simulation-24v
https://www.fischertechnik.de/en/service/elearning/simulating/fabrik-simulation-24v
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Figure 2. Time series of the three colours & thresholds.

3. Background & Related Work

3.1. Time Series Classification

An univariate time series (TS) is an ordered sequence of values that were taken by the
same variable, recorded at fixed sampling rate. Time series are increasingly generated and
analysed in different application domains, such as finance (e.g., stock markets’ fluctuations),
health monitoring applications (e.g., electrocardiograms), meteorology (e.g., weather forecasting),
and industry (e.g., sensor values) [19–22]. The multiplication of application areas is driven by,
among other things, the increasing use of sensors and IoT devices in several domains, as denoted
in the previous subsection (e.g., 61.8% of the UCR datasets are sensor data or simulated data) and
the fact that increasing researchers and practitioners are using time series to model non-temporal
observations [21] (e.g., 38.2% of the UCR datasets are data from images).

The objective of time series classification (TSC) is to assign a class label to a TS that is based on a
set of predefined classes. Basically, a set of labelled TS is learned by an algorithm, and the algorithm
applies what it learned to label each non-labelled TS of a testing set. The TS classifiers can be divided
into three categories:

• Whole series similarity-based methods [23]: these methods measure similarity or dissimilarity
(distance) between two entire TS and usually use a 1-NN classifier in order to evaluate the
distance. The most common methods are 1-NN Euclidian distance (ED) and 1-NN Dynamic Time
Warping (DTW [24]) [25]. Several other algorithms have also been proposed, such as Weighted
DTW (WDTW), Time warp edit (TWE), or Complexity invariant distance (CID), as denoted in the
review that was written by A. Bagnall et al. [23].

• Feature-based/Symbolic representation-based methods: these methods usually compute features
from the TS and then compare the features that were computed from the training TS to
the features computed from the test TS. These methods can be subdivided into two types:
shapelets-based methods and Bag-Of-Patterns (BOP)-based methods. Shapelets, as introduced
by L. Ye & E. Keogh [26], are subsequences of TS that are the most representative of a class.
Subsequently, J. Lines et al. proposed a Shapelet Transform (ST) [27] in order to improve the
classification accuracy by extracting the the best k shapelets for each class and avoid overfitting.
The result of this transform can be used as an input of traditional classifiers. Several other
shapelets-based methods exist, such as Fast Shapelets (FS) or Learning Shapelets (LS).

On the other hand, Bag-Of-Patterns (BOP) is a histogram-based similarity measure, which is
similar to Bag-Of-Words for text data [28]. BOP uses a sliding window to extract subsequences
of the TS of a fixed length, and then each subsequence is converted into a Symbolic Aggregate
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approXimation [29] (SAX) string. The most accurate classifier for combining with BOP-SAX is
1-NN using Euclidian distance [30]. P. Senin & S. Malinchik proposed the Symbolic Aggregate
approXimation-Vector Space Model (SAX-VSM), which uses a different feature weighting system
from BOP-SAX [30]. P. Schafer introduced the Bag-of-SFA-Symbols (BOSS) model [31], which uses
the Symbolic Fourier Approximation (SFA) [32] instead of SAX. P. Schafer & U. Leser then
presented the Word ExtrAction for the time Series cLassification (WEASEL) [22] method, which is
a BOP-based method that uses a specific method in order to derive features, so as to be fast enough
to satisfy the requirements of sensor-driven application and still give accurate classification results.
WEASEL will be further explained in the next section. Note that Bag-Of-Patterns-based methods
have a linear complexity.

• Ensemble classifiers: these methods use a set of classifiers and aggregate the results while using
different methods to return a classification result. Ensemble methods are the most accurate
methods, yet they are computationally very expensive, since each classifier inside the ensemble
has to be run. J. Lines & A. Bagnall proposed the Elastic Ensemble [33] (EE), which is an
ensemble including elastic measures, such as DTW, variants of DTW, and ED. The same authors
presented the Collective of Transformation-Based Ensemble (COTE) [34], which is an ensemble of
35 classifiers. The authors then proposed HIVE-COTE in 2016 [35], which is an improvement of
COTE while using a hierarchical probabilistic voting structure.

The next subsection presents the review on the application of such TSC in the industry.

3.2. Time Series Classification in Industry

With the Industry 4.0 paradigm comes the convergence of the Internet Technologies and
Operational Technologies, and concepts, such as Industrial Internet of Things (IIoT) (which is the
IoT applied in an industrial environment), cloud manufacturing, and so on. These concepts and
the ever-growing number of deployed sensors [22] are pushing industries into the big data age [36].
To exploit the full potential of this increasing quantity of data, practitioners are more and more
interested in deploying ML-based methods which will help them to analyse the data and extract
useful information related to the processes, the equipment, the production and so forth. However,
this is not limited to manufacturing and it can be extended to other fields, such as smart-grid [37,38],
smart-cities [9], transportation [39], health, sport, etc.

There are plenty of papers in the literature whose authors are working on implementing time
series classification in industry on different use cases. Table 1 references those papers and summarises
the approach used, whether it is a traditional ML-based or deep learning (DL)-based approach, the kind
of data they use, and the area of application. We focused on papers on manufacturing and application
domains that could have to deal with the same problems, and detailed what they do in the field
(e.g., anomaly detection, health management, and so on).

To wrap-up this part of the related work, the trend seems to be the following: the papers
using univariate TS are more focused on classification, monitoring, and anomaly detection, generally
descriptive analysis and use ML-based methods. More complex problems, including prediction,
often use ML-based approaches and multivariate TS or fusion data. Finally, prognostics and health
management problems tend to use deep learning-based methods and multivariate TS. Deep learning
methods are becoming more common for time series classification, but these methods are used as a
black box. In our case, provided that we want to preserve the expert knowledge and, when considering
our application, we will focus our interest on ML-based methods for univariate time series classification
and, more precisely, the WEASEL method.

3.3. WEASEL

In order to use time series classification methods in our case study, we needed a method that is
able to deal with TS with variable lengths, which are sometimes noisy, because they are issued by an
inaccurate sensor (in our case, but it could also be due to the dust or luminosity in a real industrial
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environment); additionally, the classification time should be fast enough to still be able to sort out the
parts in the right stock.

WEASEL has been proposed for addressing the challenges that are associated with sensor-driven
applications [22]; namely, this method is robust to noise, able to scale to the number and the length of
TS, able to classify TS with different sizes and different offsets, and does not need to know a priori the
structure of the characteristic pattern. According to this description, this method a priori fulfills our
requirements for such a case study. That is the primary reason why we select and apply this method
in this paper.

In addition, WEASEL is a great trade-off between good accuracy and fast training and prediction
time. WEASEL was the second most accurate method after the COTE ensemble, but, when it comes to
training time and prediction time, the few classifiers that are faster than WEASEL are less accurate,
as demonstrated by the authors by comparing their method against the best core classifiers on all the
UCR datasets [22]. This feature (prediction time) is important in our case, and it constitutes a second
reason to select the WEASEL method.

WEASEL uses normalised sliding windows of different sizes in order to decompose the TS,
and then it approximates each window while using the Fourier transform. Subsequently, the statistical
ANOVA F-test is applied to keep the Fourier coefficients that allow for differentiating the TS from
different classes. Those kept coefficients are then discretised into words while using information gain
binning. A Bag-Of-Pattern is built from these words and encodes unigrams, bigrams, and the windows.
The Chi-Squared test is applied to the Bag-Of-Pattern to reduce the feature space and only keep the
most discriminative words. Finally, the classification is done by logistic regression.
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Table 1. Implementation of time series classification (TSC) on industrial cases.

Paper
Approach

Method
TS Type

Domain Application
Trad. DL Uni. Multi.

[40] X LSTM autoencoder + Deep FeedForward Neural Net. X Process planning Quality defects detection

[41] X Multi-Layer Perceptron X Transportation Driver identification

[42] X Decision trees, SVM, kNN, Random Forests X Smart buildings Energy quality classification

[43] X ED, FR, DTW, MDTW + similarity forests X Telecom. Churn detection

[44] X Multi-Layer Perceptron X Gaming industry Bot detection

[45] X wDTW + 1-NN X Sport Pitcher’s performance analysis

[46] X Deep Neural Net. X Manufacturing Lithium-ion cell selection

[47] X MASS + kNN X Agriculture Chicken welfare assessment

[48] X Their method (Clustering + similarity tree) X Manufacturing Self-learning + classification

[49] X Deep Belief Net. for feature leaning + LSTM X Health Sleep patterns classification

[50] X Random Forests X Electrical industry Short-term voltage stability assessment

[51] X Principal Component Analysis + Bayesian Neural Net. X Climatology Atmospheric new particle formation prediction

[52] X Statistical feature extraction + Bayesian classifiers X Manufacturing Robot execution failures classification

[53] X Convolutional Neural Net. X Manufacturing Tool wear prediction

[54] X Convolutional Neural Net. X Transportation/safety Drivers’ emotions/behaviour classification

[55] X Long-term recurrent convolutional LSTM X Pattern recognition and forecasting

[56] X Convolutional Neural Net. X Cosmology Supernovae classification

[57] X X
Random Forests (baseline), LSTM-RNN, MS ResNet,
TempCNN X Satellite imagery Vegetation modeling and crop type identification

[37] X Their method (clustering) X X Manufacturing/Power grid Anomaly detection

[58] X Wavelet decomposition + SVM X Manufacturing Machining condition monitoring

[59] X LSTM X Manufacturing/Prognostics Remaining useful life prediction

[60] X Convolution recurrent Neural Net. (CNN + LSTM) X Manufacturing/Prognostics Bearings health indicator construction

[61] X kNN X Manufacturing/Prognostics Remaining useful life prediction

[62] X Random Forests, AdaBoost, CART, RR, SVR, RVFL X Additive manufacturing Surface roughness prediction
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To the best of our knowledge, only a few works have been done while using WEASEL.
M. Middlehurst et al. [63] evaluated WEASEL to find out whether it could be a good replacement for
BOSS in the HIVE-COTE ensemble. The authors compared the WEASEL, BOSS, and BOSS variants;
it turns out that WEASEL is the most accurate method, yet it is the slowest to build on average.
W. Sousa Lima et al. applied BOSS, BOSS-Vector Space (BOSS-VS), SAX-VSM, and WEASEL on human
activity data sets from three databases and compared them regarding the accuracy, the processing time,
and the memory consumption [64]. Even if WEASEL has never been implemented in an industrial
context, it seems to be promising for our use-case, and it is selected for discussing an innovative and
flexible automation based on traditional ML. Note that the method is not compared with other ML/TSC
methods in this paper, but only with the most effective and efficient one at the time of the study. For a
comparative study, we redirect to the one that has been conducted in [22], which demonstrates that
WEASEL outperforms a baseline of ML algorithm for TS classification. In this paper, building on the
best existing algorithm that is found in the literature, the goal is to study to what extent it can be
applied successfully, the limits in using it, and the adaptations (here preprocessing) that are required
to optimise it to a typical Industry 4.0 problem. We believe that this would be a natural and intuitive
choice to take the “best” algorithm in any real-world setting.

The originality of this work is in the fact that we design a more flexible automation architecture,
integrating a TSC method from the literature, which we evaluate by conducting live tests.
By conducting live tests, we are able to demonstrate the applicability of such a method in an industrial
production process, in order to show that this method allows a more flexible production and to
highlight the limits and adaptations that are required to implement such a method.

4. On the Use of ML in the Automation Architecture

European manufacturing companies usually rely on the CIM model, where each production
system has it own logic implemented in a PLC, as mentioned in Section 2. Such programs are often
developed in a cyclic manner; i.e., by successively reading sensors’ inputs, processing them, and finally
updating outputs (actuators). There is no (or very few) intelligence, which makes them rigid. To make
them a bit more flexible, one way would be to develop functions that would be triggered by API calls
to create the current logic. This would also enable introducing external ML-based programs while
keeping industrial PLCs in the automation architecture. To go even further, those PLCs could be
replaced by industrial (micro) computers having more resources for using more advanced/intelligent
functionalities. In that sense, we designed the architecture of our FischerTechnik factory simulation,
so as to demonstrate this possible evolution.

It consists of three controllers/PLCs that possess their own sets of inputs/sensors and
outputs/actuators. Each PLC implements its own program logic by using the programming languages
that are related to the hardware. For instance, a Function Block Diagram and/or Sequential Flow
Chart is used on the Crouzet em4 (Crouzet website, https://automation.crouzet.com/em4-nano-plc/)
for controlling the warehouse. Note that this PLC implements several functions that are triggered
by a central controller while using the Modbus/TCP protocol. For controlling the robot, we used a
Controllino Maxi PLC (Controllino website, https://www.controllino.biz/product/controllino-maxi/)
(based on arduino) and, for the multi-processing station and the sorting line, we used two Wago
EtherCAT slaves with an EtherCAT master that was implemented on a Raspberry PI3. Those latter
use C-based programs, and they have been chosen to show the evolution in terms of automation
architecture. First, we defined a manual and static setting of a production line configuration for the
sorting line. This represents the type of static programs implemented in old-fashioned controllers.
The next section will provide more details.

Let us remind that our objective is to advance from a static setting of the program (such as shown
in Algorithm 1, where the variable ts is a vector of n integer values vj and thi are integer thresholds
(i = 1, 2, 3, 4, 5, 6)). Accordingly, instead, the idea is to have a dedicated agent that is capable of
predicting/classifying a time-series according to a trained model (that can evolve easily over the time).

https://automation.crouzet.com/em4-nano-plc/
https://www.controllino.biz/product/controllino-maxi/
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In that architecture, the controller can implement the program logic that is defined in Algorithm 2,
where ts is a vector of n integer values vj and where line 3 is an API call to this dedicated ML-based
agent. Note that this agent can run directly on the same device or another (in a distributed architecture).

Algorithm 1 Static program.

1: ts← [v1,v2,. . .,vn]
2: minTs←min(ts)
3: if th1 < minTs < th2 then
4: colour ← blue
5: else if th3 < minTs < th4 then
6: colour ← white
7: else if th5 < minTs < th6 then
8: colour ← red
9: end if

10: sort(colour)

Algorithm 2 Flexible program using ML prediction.

1: ts← [v1,v2,. . .,vn]
2: colour ← getPrediction(ts)
3: sort(colour)

In our testbed, this agent uses WEASEL and its “official” Java implementation v.3. It was
implemented on a HTTP server that was hosted by a MacBook Pro with a 2.8 GHz Intel Core i7
processor. When the values are collected and the TS is generated, it is sent to the server by an HTTP
client (as part of the main program logic) on the Raspberry PI3 (depicted as the prediction request
in Figure 3), then the server executes WEASEL on the TS and sends its class prediction (depicted as
prediction response in Figure 3) and, based on the class, the controller sends the command to the
actuators to push the part in the right stock (depicted as sorting order in Figure 3). Thereby, the colour
verification and the sorting are done “on-the-fly”.

sensor

actuator
. . .

ML server

network

Process Controller
Process Slave

prediction request
prediction response

sorting order

Figure 3. Scenario architecture.

Before being able to use WEASEL@running for classifying new parts (and, therefore, sorting
them out), the use of ML requires collecting time series as datasets for training and evaluating our
models (cf. Figure 4). Although the data collection, the training, and the evaluation processes can be
automated, a human intervention is still needed to label our data (i.e., assigning the right class/colour
at each time series). In the same way, and according to the accuracy of our model, misclassifications of
the test TS can be re-labelled for re-training the model and improving it.
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This pipeline has been evaluated on our testbed. The next section provides the results
and discussions.

section 5.2

Conclusion section (Future work)

Manufacturer
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{
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{ Anomaly
Detection

misclassifed

Labelling

Figure 4. semi-automated (with Machine Learning) integration process.

5. Models Evaluation

Figure 5 presents the methodology defined for conducting our experiments and evaluations.
Additionally, all of our experiments are conducted by logging each TS and the corresponding class
that is predicted by WEASEL on the controller, in order to save the testing data sets for offline replays,
for example. In addition, parts have always been following a predetermined sequence, so as to know
the ground truth and to be able to evaluate the results.

We evaluate the results while using the classification accuracy indicator, which is computed using
Equation (1).

Accuracy =
number o f correctly classi f ied instances

total number o f instances
(1)

Note that we do not use the other metrics, such as precision, recall, and F1-measure, since we have
balanced datasets, which means that the classes inside of the datasets contain the same proportion of
samples (e.g., in the three-colour test datasets, 33.3% of the parts are blue, another 33.3% of the parts are
red and the last 33.3% are white, and the costs of misclassifications are the same whether they are false
positives (i.e., for the blue class, an actual white or red part classified as a blue part) or false negatives
(i.e., an actual blue part classified as a red or white part). In this specific case, the classification accuracy
metric itself is meaningful and sufficient, while it may not be the case when the datasets are imbalanced
and, when, for example, false negatives are more important than false positives, such as in the study of
the propagation of a virus.

The study has been driven following three research questions (RQ), namely, RQ1: can WEASEL
(off-the-shelf) be as accurate as manually set thresholds on verifying and sorting the three original
colours? RQ2: Is WEASEL able to handle evolutions? RQ3: Is one single generic model accurate
enough or is a model for each set of colours mandatory?
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2.1. . . 2”4,
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RQ3. Analyse
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Figure 5. Methodology for models preparation, creation, and evaluation: the blue boxes correspond to
the activities, the white ones to the input/output, the grey ones to the different phases, and the pink
ones to the analyses for answering the research questions.

5.1. Preparation

Before evaluating both our static program and our models, the first imperative is to collect data.
For each six colours we had (three originals—blue, white, red—and the three others we 3D printed—orange,
green, purple—), 100 time series (TS) have been collected; this makes a total of 600 TS where the sizes
range from 350 to 500 samples each. The labelling is done manually with classes between one and six.
The first 100 TS are blue; therefore, the class assigned is one, the second 100 TS are white, so the class
assigned is two, so on and so forth. This step corresponds to the first activity, denoted A1 in Figure 5.

Following the different steps of the program logic integration (Fetch TS, Analyse them,
Build program, & Integrate it), thresholds have been defined. The definition of the threshold has been
done based on the minimal value range, as depicted in Figure 2, except the 100 TS for each colour
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were used to determine the range. With these defined thresholds, the program logic that is shown
in Algorithm 1 has been built. This type of logic is what is implemented in old static controllers.
These steps correspond to activities 2 and 3, denoted A2 and A3 in Figure 5.

The next important step is to create the ML models. In order to represent the evolution of
the production in terms of variety of product, we chose to create models trained on three colours,
four colours, five colours, and six colours. In order to train such models, training datasets are created
by fetching the labelled TS (A4 to A7 in Figure 5). Therefore, a total of four training datasets was
obtained. The first one contains 100 TS per colour and three colours, so it is basically composed of
300 TS. The second one is the same as the 300 TS training set, in which we added the 100 TS of the
fourthxs colour, so it is composed of 400 TS. The third one is the same as the 400 TS training set,
in which we added the 100 TS of the fifth colour. Finally, the fourth one is the same as the 500 TS
training set, in which we added the 100 TS of the sixth colour. For each set of colours, three types
of models are generated, namely out-of-the box models (with default parameters) denoted ModelX,
models without preprocessing denoted ModelX’ and models with our preprocessing method denoted
ModelX”. Assuming that WEASEL (out of the box) could be not effective enough in our case where the
major differences between the TS reside in their amplitude (as shown in Figure 6) due to its intrinsic
z-normalisation method, we investigate it with this normalisation disabled. As the TS amplitudes
are relatively close between classes, we propose a preprocessing method, so as to separate them.
This makes a total of 12 models that will be evaluated and compared:

• Four out-of-the-box models (cf. activity A8 in Figure 5): in order to observe how effective the
out-of-the-box configuration is, four models were trained. As mentioned before, WEASEL natively
uses the z-normalisation as a preprocessing method. This method ensures that the output vectors
(TS) have a mean around 0 and standard deviation close to 1. That means that the output TS on
which the models are trained will have the same range of amplitudes. Model1 is a model that is
trained with default parameters on the three-colour 300 TS data set. Model1 took 17.0 s to train.
Model2 is trained on the four-colour 400 TS data set and took 64.9 s to train. Following this pattern,
Model3 is trained on the five-colour 500 TS data set and took 92.2 s to train, and Model4 is trained
on the six-colour 600 TS data set and took 112.6 s to train, still with default parameters.

• Four no-preprocessing models (cf. A9 in Figure 5): In order to verify whether the z-normalisation
method is effective enough in a case where the major differences between the TS reside in their
amplitude, four models were trained the same way, except the default z-normalisation applied in
WEASEL has been disabled. This means that the models are trained on raw data. By doing so,
the amplitude of the TS will become an important feature. Accordingly, Model1’ is trained (without
z-normalisation) on the same dataset as model Model1 (3 × 100 TS, three colours), Model2’ on the
same dataset as Model2 (4 × 100 TS, four colours), Model3’ on the same as Model3 (5 × 100 TS,
five colours) and Model4’ on the same as Model4 (6 × 100 TS, 6 colours). The elapsed times in the
training process for Model1’, Model2’, Model3’, and Model4’ are, respectively, 15.7 s, 24.5 s, 71.7 s
and 96.0 s.

• Four models with our preprocessing (cf. activity A10 in Figure 5): For the purpose of
concluding on the importance of a suitable preprocessing method, four models were trained
with our preprocessing method. Let us first present the preprocessing method that we propose.
This method is for ensuring the same reference for the TS inside of the same class. Because the
means of the TS inside of the same class are the same, but they are different between each class,
we chose the mean as the reference for the TS. Our preprocessing is as follows: (i) for each
TS, we compute the mean value of the whole series, and subtract this mean value from each
original element of the time series; (ii) for each modified element, we compute its absolute value,
and replace the element by this absolute value (this reduces the brutal changes in the TS caused
e.g., by the inaccuracy of the sensor measurement or any environmental change). Using this
method, we not only ensure that TS from the same class have the same reference (their means),
but we preserve the amplitude difference in the pattern and we also deliberately shift TS from
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different classes (as depicted in Figure 7 between y = 0 and y = 200, as opposed to y = 1600 in
Figure 6), and the reference is also becoming a characteristic. We implemented this method in
WEASEL’s code and trained the following models. Model1” is trained on the same training set
as Model1 and Model1’ (3 × 100 TS, three colours), Model2” on the same training set as Model2
and Model2’ (4 × 100 TS, four colours), Model3” on the same training set as Model3’ and Model3
(5 × 100 TS, five colours), and Model4” on the same training set as Model4’ and Model4 (6× 100 TS,
six colours). The elapsed times in the training process for Model1”, Model2”, Model3”, and Model4”
are, respectively, 17.6 s, 31.0 s, 157.6 s, and 243.4 s.
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Figure 6. 6 colours TS with no preprocessing.
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Figure 7. 6 colours TS after preprocessing.
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5.2. Experimentation-Evaluation

For evaluating the models and static program, testing data sets are needed. However, as already
stated, the classification has to be done online, so we conducted an online evaluation of some of the
models, and stored the testing data sets in order to compare the accuracies of different models on
the same test sets. Overall, we gathered four series of four test sets, such as that depicted in Figure 5
(cf. A11). Each series of four test sets is composed by TS of different colours, i.e., the first series
(TestSet1.1 to TestSet1.4) is composed of TS of three colours, the second series (TestSet2.1 to TestSet2.4)
contains TS of four colours, the third series (TestSet3.1 to TestSet3.4) contains five colours, and the
fourth series (TestSet4.1 to TestSet4.4) contains six colours. Each test set, regardless of the number of
colours, is made of 150 TS, with balanced classes.

The first actual experiments (to answer RQ1) are the evaluation of the static program, Model1,
Model1’, and Model1” (cf. A12 and A13 in Figure 5) on TestSet1.1 to TestSet1.4. The accuracies are
detailed in Table 2. By looking at those results, we can see that the static program is efficient and the
native z-normalisation is not the best normalisation for a case where TS from different classes have the
same patterns, but different amplitudes, since the z-normalisation normalises the TS, such that they
have the same amplitude. Model1 still gives satisfying results in this case.

Table 2. Classification accuracies of the static program and the models on three colours.

Test Set 1.1 1.2 1.3 1.4

Static Program 100% 100% 100% 100%

Model1 99.3% 100% 99.3% 96.7%

Model1’ 100% 100% 100% 100%

Model1” 100% 100% 100% 100%

The next experiment is the evaluation of Model2, Model2’, and Model2” (cf. A14 in Figure 5) on
TestSet2.1 to TestSet2.4 (4 colours). The accuracies are presented in Table 3. Here, we can clearly see that
the z-normalisation (Model2) is not optimal and our preprocessing (Model2”) gives satisfying results.

Table 3. Classification accuracies of the models on four colours.

Test Set 2.1 2.2 2.3 2.4

Model2 93.3% 86.7% 86.7% 81.3%

Model2’ 100% 100% 100% 100%

Model2” 98.7% 96.7% 97.3% 99.3%

The next experiment is the evaluation of Model3, Model3’, and Model3” (cf. A15 in Figure 5)
on TestSet3.1 to TestSet3.4 (5 colours). The accuracies are presented in Table 4. With these results, we can
see that neither the z-normalisation (Model3) nor no normalisation (Model3’) are optimal. This is due to
the fact that some TS of different classes have the same amplitude, e.g., blue and green TS, as shown in
Figure 8. However, our preprocessing method, since it adds an offset between TS of different classes,
allows for WEASEL to classify TS with a better accuracy.

Table 4. Classification accuracies of the models on five colours.

Test Set 3.1 3.2 3.3 3.4

Model3 64.7% 60.7% 66.7% 80.7%

Model3’ 46% 40% 40% 44%

Model3” 98% 98.7% 98% 99.3%
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Figure 8. Blue and green time series.

However, updating the training set with misclassified TS from previous tests and retraining the
model allows to increase the accuracy. With Model3’, we took the misclassified TS from TestSet3.1,
we corrected the label, and then added them to the training set, so the set contains 581 TS. Subsequently,
we replayed the test on TestSet3.2 with the updated Model3’, and we reiterated that the retraining
process (the full process is shown in Figure 4—green box). Model 3’ is now trained on 587 TS, and the
accuracies are shown in Table 5.

Table 5. Classification accuracies of Model3’ after the retraining process.

Test Set 3.1 3.2 3.3 3.4

Model3’ 46% 40% 40% 44%

Model3’ updated once (581 TS) / 96% nn nn

Model3’ updated twice (587 TS) / / 97.3% 100%

/ means test not done since TS used to retrain the model. nn means not needed.

The next activity (A16 in Figure 5) is the evaluation Model4, Model4’, and Model4” on TestSet4.1
to TestSet4.4 (6 colours). The accuracies are presented in Table 6. In this scenario, we can see that
the models with or without z-normalisation (i.e., Model 4 and 4’) give very low accuracies and a
large deviation between the test sets can be observed. By contrast, Model 4” accuracies are close to
satisfactory results, and there is room for improvement with retraining.

Table 6. Classification accuracies of the models on six colours.

Test Set 4.1 4.2 4.3 4.4

Model4 52.7% 22.6% 35.3% 74%

Model4’ 24.7% 31.3% 20% 33.3%

Model4” 94.7% 79.3% 79.3% 100%

Model4” has therefore been retrained using exactly the same process as previously. We relabelled
the misclassified TS from the test on TestSet4.1, added them to the training set which now contains
608 TS and retrained Model4”. Then we ran a test on TestSet4.2 with the updated Model4”, and took the
misclassified TS from this test, relabelled them and updated the training set a second time. Model4” has
been retrained on the updated training set containing 621 TS, and we conducted tests on TestSet4.3
and TestSet4.4. The accuracies are shown in Table 7. We can see that retraining the model increases the
accuracy on the test with TestSet4.3, but slightly decreases it on the test with TestSet4.4.
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Table 7. The classification accuracies of Model4” after the retraining process.

Test Set 4.1 4.2 4.3 4.4

Model4’ 94.7% 79.3% 79.3% 100%
Model4” updated once (608 TS) / 91.3% nn nn
Model4” updated twice (621 TS) / / 95.3% 98.7%

/ means test not done since TS used to retrain the model. nn means not needed.

The final experiment (A17 in Figure 5) consists of the evaluation of Model4” (since it is the one
with the best results) on all of the test sets, except the ones with six colours, since it has already been
done. This experiment aims at verifying whether it is possible to train only one “complete” model
accurate enough to correctly classify parts, even if some sort of parts are missing, e.g., the model
is trained to classify products x, y, and z, but z is out of stock for some time, is it possible to keep
the xyz model or is a xy model needed? Detailed accuracies are given in Table 8. All of the results
are satisfactory.

Table 8. Classification accuracy of Model4” on three, four, and five colours.

Test Set 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4

Model4” 100% 100% 100% 100% 98.7% 96.7% 98% 99.3% 97.3% 98% 97.3% 100%

5.3. Answering RQs

Based on the results that are presented in the previous subsection, RQs can now be answered.
First, RQ1 is the following: can WEASEL (off-the-shelf) be as accurate as manually set thresholds

on verifying and sorting the three original colours? The off-the-shelf WEASEL models we tried are
not as accurate as the static program on classifying the original three colours; however, they still
give satisfying results. On the other hand, WEASEL models without z-normalisation or with our
preprocessing method are as accurate as the static program.

Second, RQ2 is the following: is WEASEL able to handle evolutions? WEASEL is able to handle
evolutions in terms of number of different colours/parts. However, out-of-the-box models may not be
the most accurate when adding more parts, and the preprocessing method used has a strong impact
on the results. Finding the most suitable preprocessing method (as we did) is needed in order to obtain
the best accuracy possible. The results can still be improved by updating the training set and retraining
the model.

Finally, RQ3 is the following: is one single generic model accurate enough or is a model for
each set of colours mandatory? According to these results, it is possible to use a single model that
can accurately classify parts, even if some of the colours are included in the training set, but not in
the testing set. In this case, that means that we do not need to generate a model per range of parts,
which means that there is no reconfiguration to be done if the line needs to produce/sort/verify
a sub part of the entire range that it can produce/sort/verify. Note that this may only be true for
unidimensional feature spaces, high dimensional feature spaces cases may behave differently.

6. Discussion

In the previous sections, we demonstrated that a specific TSC method, namely WEASEL, which is
integrated into an automation architecture, is able to enhance the flexibility of the production lines.
Indeed, we showed that: (i) the TSC method can be as accurate as a static program, so the effectiveness
of the classification is not decreased; (ii) the TSC method is able to handle changes in terms of number
of different colours/parts with some adaptations to the preprocessing method used before training
the model; and, (iii) a single model trained on all of the parts can only classify a sub-part of the
total variety of products. Of course, some kind of expertise is required in order to successfully apply
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such a method, especially with the preprocessing method, and there are limits and threats to validity,
which are discussed in this section.

First, we chose to train the models with the maximum number of TS that we had for each colour.
It might not be the most efficient method, since, for example, for the three colours model (blue, white,
red), WEASEL without normalisation only needs 10 TS of each colour to reach 100% average accuracy
on the four experiments. However, for the four and five colours experiments, the model trained on
100 TS of each colour is the most accurate.

Additionally, we could observe the colour sensor limitations, when considering that the range
of values that it can return is quite narrow (0–2000 mV), it may not be possible to add more colours,
because the TS corresponding to these colours will overlap (see when there is only one TS of each colour
for the six colours in Figure 6). Note that, nonetheless, it also occurs in our experiments, in particular
with blue and green colours. That is the reason why (i) it is really difficult to manage in a static program
(where thresholds need to be defined) and (ii) the ML-based program was experimented.

Furthermore, we observed that a single model generated with all the data (six colours) is
accurate, even when classifying only three, four, or five colours. This allows efficiency gains, since the
same model can be used at all time, there is no need to change the model if some parts are not
produced/sorted/verified for some time. However, as the classification is done on-the-fly, it may be
important to look at the impact of the model size on the prediction time. If the model size increases,
the prediction time to the point where the classification result is given so late that the controller cannot
send the instruction to the actuator to push the part before the part is in the front of the right stock,
then it is better to use a smaller model if the variety of parts is reduced (even temporarily).

Note that, even though an experimental evaluation of the prediction time has not been detailed
in this paper, online tests allowed for us to witness that all of the parts have been sorted on time,
which means that the prediction time is suitable.

Finally, regarding the preprocessing methods we investigated, we could observe that the
z-normalisation is not suitable in our case, since the amplitudes of the TS need to be retained for the
TSC method to correctly classify them. We also observed that training the models on raw data is
not suitable either. When applying our proposed preprocessing method, we witness that the models’
training time increases exponentially with the number of TS in the training set, while it increases
linearly with the other two methods. However, our preprocessing method allows for accurately
classifying the parts. Note that the training time is not as important as the prediction time in this case
study, which was not impacted by the preprocessing method.

Additionally, we are aware that the degradations we could observe under these conditions
while using the WEASEL method could have been different with another TSC method.
However, the adaptations that we propose in terms of data preprocessing before training models could
be suitable for other methods.

Overall, using ML-based methods instead of static programs presents numerous advantages
and plays an important role in the improvement of the flexibility of production lines. Some of these
advantages are the following:

• ML-based methods allow for distinguishing patterns in time series, even when a human and,
thus, a static program cannot distinguish them

• They allow for changing the variety of parts to be produced without having to change the program
and, consequently, without having to stop the production line (provided that the model has been
trained on data for all parts, obviously)

• They allow for processing a large amount of data

However, we could notice that these methods are not flawless. Indeed, they also have
some drawbacks:

• The methods require expertise to tune them; they are not accurate enough out of the box
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• Decisions can be made too late if the method is not fast enough, since they are made on a
remote agent (request and response transmission time, and remote code execution time have to
be considered)

• Some of the methods require several days to build a model (e.g., DTW-based methods on a
lot of data)

7. Conclusions

In order to improve flexibility in today’s static industries and help the manufacturers to optimise
the Overall Equipment Effectiveness, we proposed using a ML-based method instead of static programs
and demonstrated the feasibility of applying such a method in the industrial context based on a scale
model of a factory. This method gives promising results and allows for increasing the range of coloured
parts to be sorted on the same sorting line when it would be impossible to manually set thresholds
to distinguish two colours. Indeed, we extended the use of WEASEL in order to apply it on time
series with almost the same patterns and only the amplitude differing, but this requires some expertise
and comes at the cost of a reduced robustness against environmental changes. In order to tackle this
robustness reduction problem, we proposed modifying the preprocessing method used in WEASEL.
Finally, we showed that, in our case, the production line could be even more flexible and uses only one
model whether it is to produce/verify/sort the complete variety of parts or only a sub part.

The way that we implemented the WEASEL method might not be the best, even when disabling
the z-normalisation method, because it has a negative impact on the robustness, and we had to propose
another preprocessing method in order to mitigate the impact. Additionally, we faced a few issues on
such a simple canonical case; issues might be larger and more complex when applying such a method
on real manufacturing processes.

For future research, we will consider the automation of the retraining process, as our use case
is based on the colour verification and sorting of coloured parts, we know, a priori, the sequence of
parts that have to be sorted. We will also take a closer look at prediction times, especially when we use
a complete model for classifying a sub part of the whole variety of parts. Moreover, we will explore
whether the ML-based method is also able to handle changes in the production speed. Finally, we will
add some security mechanisms, so as to build a trusted complete framework, as described in Figure 4.
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