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Abstract: As a major polysaccharide component of the extracellular matrix, hyaluronan plays essential
roles in the organization of tissue architecture and the regulation of cellular functions, such as cell
proliferation and migration, through interactions with cell-surface receptors and binding molecules.
Metabolic pathways for biosynthesis and degradation tightly control the turnover rate, concentration,
and molecular size of hyaluronan in tissues. Despite the relatively simple chemical composition of
this polysaccharide, its wide range of molecular weights mediate diverse functions that depend on
molecular size and tissue concentration. Genetic engineering and pharmacological approaches have
demonstrated close associations between hyaluronan metabolism and functions in many physiological
and pathological events, including morphogenesis, wound healing, and inflammation. Moreover,
emerging evidence has suggested that the accumulation of hyaluronan extracellular matrix and
fragments due to the altered expression of hyaluronan synthases and hyaluronidases potentiates
cancer development and progression by remodeling the tumor microenvironment. In addition to
the well-known functions exerted by extracellular hyaluronan, recent metabolomic approaches have
also revealed that its synthesis can regulate cellular functions via the reprogramming of cellular
metabolism. This review highlights the current advances in knowledge on the biosynthesis and
catabolism of hyaluronan and describes the diverse functions associated with hyaluronan metabolism.

Keywords: hyaluronan; metabolism; biosynthesis; degradation; extracellular matrix; cancer

1. Introduction

Hyaluronan (HA) comprises a major component of the extracellular matrix (ECM) in vertebrate
connective tissues and is abundant in the cartilage, skin, brain, vitreous body, umbilical cord,
and synovial fluid. Since HA was first discovered in bovine vitreous as a novel glycosaminoglycan [1],
its structure, physical properties, physiological activity, and metabolism have been studied for
almost a century. The HA polysaccharide is a non-sulfated linear glycosaminoglycan composed
of repeating disaccharide units of [3)-β-d-N-acetylglucosamine (GlcNAc)-β(1,4)-d-glucuronic acid
(GlcA)-β(1] (Figure 1a) [2]. The concentration and size distribution of HA vary with tissue type,
age, and disease severity [3,4]. With a broad molecular weight range, HA has multiple physical and
physiological properties that depend on its molecular weight and concentration, both of which are
regulated by the balance between HA biosynthesis and degradation [5]. In vertebrates, the dynamic
metabolism of HA is tightly controlled by three synthases and several hyaluronidases [5]. The three
isoforms of HA synthases (HAS1, HAS2, and HAS3), each with different characteristics and regulatory
systems, control HA biosynthesis at multiple stages [6]. Among the HYAL family members of
hyaluronidases, HYAL1 and HYAL2 are widely expressed in mammalian tissues and are thought
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to be major contributors to HA catabolism [7]. More recently, cell migration inducing protein
(CEMIP)/KIAA1199 and transmembrane protein 2 (TMEM2) have been identified as novel molecules
involved in extracellular HA degradation [8,9].

Biomolecules 2020, 10, x 2 of 20 

contributors to HA catabolism [7]. More recently, cell migration inducing protein (CEMIP)/KIAA1199 
and transmembrane protein 2 (TMEM2) have been identified as novel molecules involved in 
extracellular HA degradation [8,9]. 

 
Figure 1. (a) Molecular structure of a HA disaccharide unit. HA is a negatively charged 
polysaccharide composed of repeating disaccharide units of glucuronic acid (GlcA; blue) and N-
acetylglucosamine (GlcNAc). (b) Secondary structure of a HA tetrasaccharide with water. Hydrogen 
bonds are represented by red dashed lines. (c) Predicted structure of mammalian HAS. HAS enzymes 
contain multiple membrane-spanning regions at both the amino and carboxyl terminus and catalytic 
sites at the central part of the molecule. (d) Schematic illustration of HA synthesis and secretion. HAS 
enzymes catalyze the alternative addition of UDP-GlcA and UDP-GlcNAc to the nascent HA chain 
and extrude it through the plasma membrane. 
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Figure 1. (a) Molecular structure of a HA disaccharide unit. HA is a negatively charged polysaccharide
composed of repeating disaccharide units of glucuronic acid (GlcA; blue) and N-acetylglucosamine
(GlcNAc). (b) Secondary structure of a HA tetrasaccharide with water. Hydrogen bonds are represented
by red dashed lines. (c) Predicted structure of mammalian HAS. HAS enzymes contain multiple
membrane-spanning regions at both the amino and carboxyl terminus and catalytic sites at the central
part of the molecule. (d) Schematic illustration of HA synthesis and secretion. HAS enzymes catalyze
the alternative addition of UDP-GlcA and UDP-GlcNAc to the nascent HA chain and extrude it through
the plasma membrane.

HA is a biopolymer with excellent water retention ability and can form a meshwork structure.
As high molecular weight (HMW) HA is stabilized by intermolecular and intramolecular interactions
with hydrogen and hydrophobic bonds in an aqueous solution, highly concentrated solutions exhibit
considerable viscoelasticity (Figure 1b) [10]. Due to its low diffusivity, HMW HA forms a pericellular
ECM around its producing cells. The composition and function of the HA ECM are multiply regulated
by association states and combinations with specific binding molecules [11–13]. HA not only functions
as a structural framework, but also activates intracellular signal transduction by interacting with cell
surface receptors for the regulation of such dynamic cell behaviors as cell proliferation, adhesion
and migration, all of which are suggested to be involved in morphogenesis and wound healing [14].
The HA receptor CD44 participates in many physiological and pathological processes by interacting
with HA and activating key signaling cascades [15] (Figure 2). Such interactions initiate the expression
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of genes related to cell growth and survival and induce cytoskeletal rearrangement and membrane
ruffling, leading to active cell migration. On the other hand, HA fragments degraded by the action
of hyaluronidases diffuse throughout tissues and bind to HA receptors on peripheral cells to act as
intercellular signals [14]. Thus, HA has a variety of functions that cannot be easily imagined from its
simple structure. These functions are controlled by modulating concentration, sugar chain length,
turnover rate, and other features of HA as well as by HA association states with binding molecules.
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Figure 2. HA signaling cascades. HA ECM activates intracellular signaling cascades via receptors such
as CD44 and upregulates several genes related to cell proliferation and survival. The interaction of
HA with its receptor also induces actin cytoskeleton rearrangement, leading to active cell migration.
Gab1; Grb2-associated-binding protein 1, GEF; guanine nucleotide exchange factor, Grb2; growth factor
receptor-bound protein 2, HSP90; heat shock protein 90, MAPK; mitogen-activated protein kinase,
PI3K; phosphoinositide 3-kinase, RTK; receptor tyrosine kinase.

Abnormalities in HA metabolism have been associated with inflammatory disease severity and
cancer aggressiveness [16]. In rapidly progressing malignancies, HA biosynthesis and degradation are
significantly enhanced as compared with normal tissues, which may increase HA matrix formation
and the production of HMW HA and its fragments [17]. Thus, cancer cells are exposed to a unique
microenvironment where both HA matrix and fragments co-exist. With its excellent water retention,
HMW HA forms a pericellular ECM favorable for cancer cell proliferation and migration. On the
other hand, the fragments generated by HA degradation promote the growth of endothelial cells and
thereby induce angiogenesis [18]. Furthermore, HA fragments possess significant immunomodulatory
activity, resulting in diminished tumor immune surveillance [19]. Therefore, tumor microenvironment
(TME) remodeling by the excessive production and degradation of HA contributes to the survival
and malignant progression of cancer cells. Recent metabolomic approaches have also clarified that
HA regulates cellular functions via the reprogramming of cellular metabolism coupled with its
production [20,21]. We earlier discovered that HA synthesis promoted cancer stem cell (CSC)-like
properties through the metabolic reprogramming of glycolysis and the hexosamine biosynthetic
pathway (HBP) [20]. The above findings strongly suggest that HA not only has canonical functions as
an ECM component, but also acts as a key regulator of cellular metabolism. In this review, we first
describe the current advances in knowledge on HA metabolism. We subsequently discuss the close
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associations between HA metabolism and functions, referring to recent discoveries in metabolic
reprogramming coupled with HA production.

2. HA Biosynthesis

HA is a non-sulfated glycosaminoglycan in which GlcNAc and GlcA are linked together by
alternating β-1,3 and β-1,4 linkages (Figure 1a). The biosynthesis of HA greatly differs from
that of other glycosaminoglycans [2]. Since the cloning of genes encoding HA synthases from
Streptococci and mammalian cells, our understanding of the HA biosynthetic mechanism has
progressed considerably [5,22,23]. In vertebrates, three HAS family members whose amino acid
sequences are conserved across species have been identified. Primary structure analysis has revealed
that all HAS enzymes contain multiple clusters of hydrophobic amino acids at both the amino and
carboxyl terminus, indicating that they are inserted into the lipid bilayer (Figure 1c). The central part
of the HAS molecule is composed of relatively hydrophilic amino acids and possesses the catalytic
sites necessary for transferring the UDP-GlcNAc and UDP-GlcA substrates (Figure 1d).

Biochemical analyses have revealed that each HAS isoform differs in terms of activity, product
elongation rate, and stability [6]. The length of HA synthesized in vitro and in vivo by each
enzyme varies as well. The reason for plural HAS isoforms is presumed to be that multiple
enzymes possessing different enzymatic properties are functionally complementary to each other.
In fact, HA biosynthesis is regulated at several stages by regulating the expression of the three
HAS isoforms. Among the mammalian HAS isoforms, the activity and turnover of HAS2 have
been demonstrated to be posttranslationally controlled by phosphorylation, O-GlcNAcylation,
ubiquitination, and dimerization [24–27]. Moreover, the natural antisense transcript HAS2 antisense
RNA 1 regulates the stabilization of HAS2 mRNA [28]. HA synthesis is therefore strictly and multiply
regulated by one or a combination of the above regulatory mechanisms.

HA synthesis is influenced by the cellular availability of UDP-GlcNAc and UDP-GlcA nucleotide
sugar donors (Figure 3). For example, HA synthesis inhibitor 4-methylumbelliferone (4-MU;
7-hydroxy-4-methylcoumarin) inhibits HA synthesis by depleting cytoplasmic UDP-GlcA [29].
Similarly, depletion of cellular UDP-GlcNAc by mannose treatment reduces HA synthesis in
epidermal keratinocytes [30]. UDP-GlcA is a key metabolite in glycosaminoglycan biosynthesis
and is synthesized from glucose-6-phosphate, an intermediate metabolite of glycolysis, through
the synthesis of glucose-1-phosphate and UDP-glucose. UDP-GlcNAc is synthesized via the HBP,
a branch of the main glycolytic pathway and is utilized as a donor substrate for protein glycosylation
and O-GlcNAcylation. HA synthesis consumes large quantities of its donor substrates, thereby
linking HA synthesis to glucose metabolism. As described later, recent mass spectrometry profiling
has revealed that HA overproduction accelerated the flux of glucose carbon through the HBP (i.e.,
HBP flux) and shifted cellular metabolism towards glycolysis in breast cancer cells [20]. Moreover,
HAS2 overexpression shifted the metabolic profile in chondrocytes from glycolysis to mitochondrial
respiration [21] and the inhibition of HA synthesis by 4-MU treatment shifted glucose flux to glycolysis
in brown adipose tissue (BAT) [31]. These contradictory consequences of metabolic shifts might
be due to the context of different cell lines. In any case, they provide supportive evidence for a
novel mechanism by which the consumption of nucleotide sugar donors by HA biosynthesis affects
glucose metabolism.
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Figure 3. Biosynthetic pathways of UDP-GlcA and UDP-GlcNAc. UDP-GlcA is synthesized
from glucose-6-phosphate. Glucose-6-phosphate is converted to glucose-1-phosphate and
UDP-glucose. Finally, UDP-GlcA is synthesized from UDP-glucose by UDP-glucose
dehydrogenase (UGDH). UDP-GlcNAc is synthesized via the hexosamine biosynthetic pathway.
Glutamine: fructose-6-phosphate amidotransferase (GFAT) utilizes glutamine as an amine
donor to generate glucosamine-6-phosphate. In the next step, acetyl-CoA is transferred to
glucosamine-6-phosphate by glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1). The resulting
N-acetylglucosamine-6-phosphate is then converted to N-acetylglucosamine-1-phosphate by
phosphoglucomutase 3 (PGM3). In the final step, uridine-5‘-triphosphate (UTP) is transferred to
N-acetylglucosamine-1-phosphate by UDP-GlcNAc pyrophosphorylase (UAP1) to form the end
product, UDP-GlcNAc. PPi; pyrophosphate.

3. HA Catabolism

HA is normally depolymerized by specific endoglycosidases called hyaluronidases or is
non-specifically degraded by oxidative damage due to reactive oxygen species (ROS). Mammalian
hyaluronidases hydrolyze the β-1,4-glycosidic bond between the GlcNAc and GlcA of HA. In humans,
six HYAL family members have been identified and share approximately 40% identity [32]. The HYAL1,
HYAL2, and HYAL3 genes are clustered on human chromosome 3p21.3, while the HYAL4, PH-20/sperm
adhesion molecule 1 (SPAM1), and HYALP1 genes are located on chromosome 7p31.3 [7]. Considering
their relatively high sequence homology, these two clusters may have been generated by gene
duplication. HYAL1 and HYAL2 are major mammalian hyaluronidases and are broadly expressed in
somatic tissues. HYAL3 is also weakly expressed in a wide range of somatic cells. However, it exhibits
no detectable in vitro activity [33], and Hyal3 null mice do not accumulate HA [34]. The enzymes
encoded by the latter cluster have somewhat different roles from those encoded by the former. HYAL4
has recently been reidentified as a chondroitin sulfate (CS)-specific hydrolase and does not act on
HA [35]. PH-20/SPAM1 is a glycosylphosphatidylinositol (GPI)-anchored hyaluronidase in the testes
that plays essential roles in fertilization [36]. PH-20 is expressed at the anterior sperm head surface
and promotes sperm penetration through the cumulus cells that surround the oocyte embedded in the
HA-rich ECM. HYALP1 is an active enzyme in mice but is an expressed pseudogene in humans [7].
Recently, two novel molecules involved in extracellular HA degradation have been identified in
mammals. First, CEMIP, alternatively called KIAA1199 or hyaluronan binding protein involved in
hyaluronan depolymerization (HYBID), is a 150 kDa protein with an N-terminal secretion signal
peptide [8]. CEMIP does not display homology with other HYAL family proteins. CEMIP-mediated
HA depolymerization is considered to occur via the clathrin-coated pit pathway (Figure 4). Second,
TMEM2 is a type II transmembrane protein with sequence similarities to CEMIP [9]. TMEM2 cleaves
HMW HA into approximately 5 × 103 Da fragments in a Ca2+-dependent manner under neutral pH.
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(top), HMW HA is tethered to the cell surface by CD44 and GPI-anchored HYAL2 into caveolin-rich
lipid rafts and then cleaved into approximately 2 × 104 Da fragments. The HA fragments are
subsequently delivered to endo-lysosome compartments and degraded into smaller oligosaccharides
by HYAL1 and monosaccharides by exoglycosidases. In the proposed model of CEMIP-mediated HA
degradation (bottom), HMW HA is endocytosed into clathrin-coated vesicles and cleaved into lower
molecular weight HA fragments by the action of CEMIP, which is localized in the peripheral vesicles
of the cell. The fragmented HA is then depolymerized in endo-lysosome compartments or released
extracellularly without intracytoplasmic accumulation. TMEM2 is expressed on the cell surface in a
type II transmembrane topology and degrades HMW HA into approximately 5 × 103 Da fragments.

In the proposed model of HA catabolism, the GPI-anchored cell surface hyaluronidase HYAL2
cleaves HMW HA into approximately 2 × 104 Da fragments at the cell surface with the HA receptor
CD44 (Figure 4). The partially fragmented HA is internalized by binding to the HA receptors [37,38]
and is then further degraded by HYAL1 and exoglycosidases in the lysosomal system. However,
HYAL2 favors an acidic pH for its hyaluronidase activities [39], which are weaker than those of other
HYALs [40,41]. As mentioned above, the recently identified CEMIP and TMEM2 contribute to the
digestion of extracellular HMW HA into smaller fragments. Thus, fragmented HA (approximately 2
× 104 Da) is likely produced by mechanisms involving HYAL2, CEMIP, and TMEM2, and in part by
ROS-mediated non-specific degradation. As the fragmented HA in the ECM is usually internalized by
cells through receptors, HA receptors have roles not only in intracellular signaling, but also in HA
clearance. Injected HA was found to be sequestered into rabbit and rat livers in tracer experiments
in the early 1980s [42,43]. Later, a protein receptor called HA receptor for endocytosis (HARE) was
identified from liver sinusoidal endothelial cells [44]. HARE is a 175 kDa polypeptide generated by
the proteolytic cleavage of a larger 300 kDa full-length receptor named stabilin 2, which has a link
module as an HA-binding domain. HARE acts as a mediator for the rapid endocytosis of HA via
clathrin-coated pit pathways [45,46].
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4. Close Associations between HA Metabolism and Functions

4.1. HA Properties

The physico-chemical properties of HA are the unique features distinguishing this polysaccharide
from other glycosaminoglycans. HA has remarkable hydration capacity and can swell to many times
its original volume upon water absorption. HA in an aqueous solution forms a double helical structure
stabilized by intermolecular hydrogen bonds between the acetamide of GlcNAc and the carboxyl group
of GlcA and through interactions between hydrophobic patches (Figure 1b) [47]. In highly concentrated
HA solutions, the molecules form a meshwork structure and exhibit elasticity by self-association
between each other as well as by steric interactions [48]. When a continuous force is applied in a certain
direction, a part of the meshwork structure aligns and exhibits viscosity while partially maintaining
intermolecular interactions. Due to these physical properties, HA functions as a three-dimensional
meshwork having remarkable viscoelasticity [49]. HA often organizes as a matrix meshwork structure
through the electrostatic and hydrophobic interactions with its binding molecules. Within the organized
structure of the HA meshwork, proteins and other macromolecules are partially excluded from the
matrix region or their diffusion rates decrease due to the molecular sieving effect of the meshwork
structure [50]. HA exists as a polyanion in which the carboxyl group of the GlcA residue is ionized
at physiological pH [51]. In such a state, the tissue distributions of positively charged nutrients and
electrolytes are affected by weak interactions with negatively charged HA. The HA receptor CD44
selectively recognizes HA of varying lengths and initiates signaling responses upon binding HA
fragments of a specific size range [52]. Toll-like receptor (TLR) 2 and 4 preferentially recognize small
HA fragments [53,54]. Because different sized HA molecules exhibit a wide variety of conformations,
size-specific receptor recognition can be attributed to the multitude of HA conformations [55].

The properties of HA are strongly influenced by its sugar chain length and concentration. As such,
changes in HA metabolism greatly affect tissue morphogenesis and homeostasis by dynamically
modulating the functions of HA as a viscoelastic fluid, molecular sieve, space filler, cellular scaffold,
hydrophilic reservoir or signaling molecule. Genetic engineering and pharmacological approaches to
artificially alter HA metabolism have provided new insights into HA functions in morphogenesis and
diseases. The close associations between HA metabolism and several functions are exemplified below.

4.2. Importance of HA Metabolism in Morphogenesis and Wound Healing

Due to its physico-chemical properties, HA either alone or through interactions with associated
molecules, acts as a scaffold for assembling a pericellular matrix, offers a favorable microenvironment
for cell proliferation and migration, transmits signals, and generates mechanical forces by tissue
swelling during morphogenesis and wound healing [56].

4.2.1. Cardiovascular Development

Crucial roles of HA synthesis and degradation in cardiovascular development have been
demonstrated in genetically engineered mice. Has2 null mouse embryos exhibited clear growth
retardation by roughly E9.0 along with cardiovascular defects [57,58]. Interestingly, the embryos also
failed to undergo endothelial-to-mesenchymal transition in atrioventricular canal cushions. Via several
lines of evidence, it was suggested that HA regulated atrioventricular canal differentiation through
activation of the ErbB-Ras signaling pathway. On the other hand, Hyal2 knockout mice displayed
high preweaning lethality, with surviving animals exhibiting atrial enlargement, cor triatriatum,
and valve thickening [59,60]. In the knockout mice, HA accumulated in the ECM of valves and the
interstitial ECM of atrial cardiomyocytes, which disorganized the ECM and expanded the spongiosa
layer. HA accumulation by the absence of Hyal2 also promoted endothelial-to-mesenchymal transition
and mesenchymal cell proliferation, resulting in excess mesenchymal cells and causing such heart
structure abnormalities as thickened valves and atrial masses [61].
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4.2.2. Skeletal Development

HA has pivotal functions in skeletal development as a major component of the ECM. Matsumoto
et al. specifically deleted the Has2 gene in developing limbs using conditional Has2 knockout
mice and demonstrated a key role of HA in the growth of limb skeletal elements, digit patterning,
chondrocyte maturation, and joint formation [62]. In the Has2 mutant limbs, the skeletal elements
were severely shortened and the proximal phalanges were duplicated. Furthermore, the growth
plates of skeletal elements were severely disorganized and the number of hypertrophic chondrocytes
was strikingly reduced in the mutants. The growth plate and hypertrophic chondrocyte aberrations
were coincident with a decrease in aggrecan deposition in the ECM. This was further confirmed by
showing that Has2 knockout chondrocytes were unable to construct a pericellular HA matrix using the
CRISPR/Cas9 gene editing approach [63]. Similar cartilage defects were observed in hyaluronidase
knockout mice; Hyal2 knockout mice exhibited localized congenital defects in frontonasal and vertebral
bone formation [41]. Cemip knockout mice also developed long bones that were shorter than
those of wild type animals [64]. Such studies confirm that HA metabolic regulation is essential in
skeletal development.

4.2.3. Intestinal Development

The gut is an organ that develops with stereotypical left-right asymmetry. Sivakumar et al.
demonstrated that covalent binding of HA and inter-α-trypsin inhibitor (IαI) mediated by tumor
necrosis factor-stimulated gene-6 (TSG-6) promoted the accumulation of HA ECM on the right side
of the dorsal mesentery (DM) [65]. Due to the large hydrodynamic volume of HA, HA matrix
accumulation was considered to drive leftward gut tilting by expanding the right side of the DM. To test
for the requirement of HA synthesis and accumulation in DM expansion, embryos were treated with
resin beads soaked in 4-methylumbelliferone-β-D-xyloside (MU-Xyl), an inhibitor of HA synthesis,
or electroporated with the Hyal2 gene to selectively degrade extracellular HA. Both MU-Xyl-treated
and Hyal2-electroporated embryos had significantly reduced levels of HA in the right DM with
a corresponding marked reduction in ECM expansion, suggesting that HA-mediated hydration
contributed to the expansion of DM on the right side.

4.2.4. Wound Healing

Wound healing is a multi-step process that involves scab formation, inflammation, granulation
tissue formation, and scar formation. HMW HA accumulates at the wound site in the early stages of
wound repair and becomes progressively fragmented throughout stage progression [66]. The space
generated by the HA ECM facilitates the infiltration of inflammatory cells and fibroblasts to the wound
site. Fibroblasts are known as a major source of hyaluronidases. At the later stages of wound repair,
the generated HA fragments stimulate blood vessel formation owing to their pro-angiogenic activity.
Mack et al. investigated the role of HA in wound repair and found that wound closure was significantly
accelerated in Has1/Has3 double-knockout mice over wild-type animals [67]. The Has1/3 null skin
showed a decrease in epidermal HA at the wound edge, a noteworthy increase in neutrophil efflux
from cutaneous blood vessels, and an earlier onset of myofibroblast differentiation. Interestingly,
they observed an increase in dermal Has2 expression in the Has1/3 null skin after wounding. Thus,
the faster wound closure in Has1/3 null mice might have been due to compensatory upregulation of
the Has2 gene. Similarly, topical application of testicular hyaluronidase accelerated wound closure in
full-thickness excisional wounds in rats [68]. Buhren et al. also observed that hyaluronidase treatment
promoted wound closure with a significant upregulation of HAS gene expression in an in vitro model
using normal human dermal fibroblasts [69]. The above findings indicate that hyaluronidase exerts
multiple effects on HA metabolism and functions in dermal fibroblasts by affecting HAS gene expression
as well as by depolymerizing HMW HA.
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4.3. Altered HA Metabolism in Inflammatory Diseases

HA deposition and degradation play essential roles in regulating inflammatory responses.
Expression of the genes related to HA biosynthesis and degradation are upregulated in response to
inflammatory cytokines, resulting in increased HA turnover during inflammatory responses. Fragments
generated by the hyaluronidase-catalyzed digestion of HMW HA function as pro-inflammatory
damage-associated molecular patterns and stimulate inflammation via TLR2 and/or TLR4 in immune
cells. However, a recent study demonstrated that endotoxin-free HA fragments failed to stimulate
macrophages or dendritic cells to produce inflammatory cytokines and questioned whether HA
fragments directly promoted inflammation [70]. The formation of HA cable-like structures has been
implicated in the pathogenesis of several inflammatory diseases [71]. These structures, whose formation
and stability are mediated by the heavy chains of IαI and versican, promote leukocyte adhesion and
accumulation by interacting with cell surface CD44 [72–74].

4.3.1. Synovial Fluid and Arthritis

Synovial fluid functions as a lubricant in the cavity of synovial joints. HMW HA has been
regarded as a primary lubricant molecule in synovial fluid due to its viscoelastic properties [75].
The concentration and molecular weight distribution of HA in synovial fluid vary with adult age and
disease severity. Under inflammation, the degradation of synovial fluid HMW HA is accompanied by
a loss of lubricating properties. Band et al. demonstrated that the molecular size of HA in the synovial
fluid of inflamed joints was lower than in normal synovial fluid, suggesting that low molecular weight
(LMW) HA arose from the depolymerization of HMW HA [76]. Osteoarthritis (OA) is a degenerative
whole joint disease that has traditionally been classified as a non-inflammatory arthritis. However, it is
now known that systemic inflammation is strongly implicated in OA pathogenesis. Shinozawa et al.
revealed significantly higher CEMIP expression in the OA synovium [77]. The expression of CEMIP in
OA synovial fibroblasts was strongly correlated with the distribution of LMW HA of less than 106 Da
in synovial fluid. Meanwhile, rheumatoid arthritis (RA) is a systemic autoimmune disease that causes
chronic joint inflammation. Yoshida et al. investigated the expression patterns of HAS and HYAL
genes in OA and RA synovium samples and found HYAL2 gene expression to be significantly higher
in both types of arthritic synovia than in controls. Regarding HAS gene profiles, HAS3 gene expression
in the RA synovium was higher than in the control synovium, with no obvious differences observed for
the OA synovium [78]. To investigate whether the inhibition of HA synthesis exerted any inhibitory
effects on arthritic inflammation, Yoshioka et al. used 4-MU in a mouse model of collagen-induced
arthritis and found that the treatment dramatically decreased arthritis severity [79]. Furthermore,
they observed that the triple knockdown of Has1, Has2, and Has3 in rheumatoid synovial fibroblasts
exerted inhibitory effects on the expression of matrix metalloproteases, which played a critical role in
cartilage destruction in RA joints. The above studies collectively demonstrate the significance of HA
metabolism on the arthritic processes.

4.3.2. Atherosclerosis

Atherosclerosis is a disease of chronic inflammation that is characterized by arterial narrowing
and subsequent vascular compromise. Inflammatory and immune cells recruited to atherosclerotic
lesions play critical roles in atherosclerosis initiation and progression. As a prominent component of
atherosclerotic plaque ECM, HA stimulates the proliferation and migration of vascular smooth muscle
cells (SMC) [80,81]. Activated vascular SMC manufacture large amounts of HA to form cable-like
structures, which are necessary for inflammatory cell recruitment [71]. To investigate the pathological
significance of HA accumulation in arterial walls, Chai et al. created transgenic mice overexpressing
Has2 in SMCs and found that apolipoprotein E (ApoE) deficient mice with increased HA levels in vessel
walls displayed accelerated atherosclerosis [82]. Moreover, a recent study using Has3/ApoE double
deficient mice clearly demonstrated that Has3-mediated HA synthesis was critical in the development
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of atherosclerosis [83]. Absence of the Has3 gene reduced plaque inflammation as evidenced by fewer
monocytes/macrophages and neutrophils in early atherosclerotic lesions [83]. Nieuwdorp et al. also
reported that the perturbation of HA metabolism might be associated with the increased prevalence of
atherosclerosis in type 1 diabetes patients [84]. Such studies implicate changes in HA metabolism as
potential mechanisms involved in accelerated atherogenesis.

4.3.3. Obesity and Metabolic Disorder

Obesity is a metabolic disorder characterized by excessive fat accumulation and chronic low-grade
inflammation. A recent pharmacological study demonstrated that the inhibition of HA synthesis by
4-MU improved glucose metabolism and reduced body weight gain by activating BAT in mice on
diabetogenic diet [31]. Possessing a great capacity for glucose and triglyceride uptake, BAT is an
important tissue that maintains optimal thermogenesis and contributes to total body energy expenditure.
Grandoch et al. investigated whether decreased HA synthesis interfered with glucose metabolism
and adipose tissue function, and found that 4-MU treatment increased glycolysis, respiration and
mitochondrial uncoupling protein 1 expression in BAT [31]. They also detected reduced adipose tissue
mass coinciding with reduced inflammation following 4-MU treatment. Mice with double-knockout of
Has2 and Has3, the most abundant HAS isoforms in BAT, partially mimicked the metabolic phenotypes
of 4-MU-treated mice, suggesting that the inhibition of HA synthesis improved glucose metabolism by
shifting glucose flux to glycolysis, possibly supporting mitochondrial respiration in BAT.

4.4. HA Metabolism and Cancer

Increased HA levels are closely associated with poor prognosis and survival in malignant
cancers [85–89]. HAS expression in both the tumor and stroma of breast cancer has also been shown
to relate to tumor aggressiveness and poor prognosis [90]. Emerging evidence has demonstrated a
central role of HA in many aspects of tumor development and progression, such as cell proliferation,
migration, invasion, angiogenesis, immune escape, and cancer stemness [16]. Elevated HA production
by the forced expression of HAS isoforms enhanced tumor growth and metastasis in xenograft cancer
models [91–93]. On the other hand, the knockdown of HAS2 in breast cancer cells suppressed their
invasive capacity, which was rescued by HAS2 overexpression [94]. Contradictory observations have
also been made in clinical and experimental studies. Reduced levels of tumor HA were associated
with poor survival in squamous cell carcinoma patients [95]. Bharadwaj et al. demonstrated that the
forced expression of HAS3 in prostate tumor cells suppressed tumorigenesis by retarding intrinsic
growth [96]. This slow growth in cultures was restored either by exogenous addition of hyaluronidase
or stable HYAL1 expression. The above findings underscore the importance of both HA biosynthesis
and degradation for tumor cell growth.

LMW HA accumulation is associated with tumor aggressiveness in that it triggers the expression
of specific cytokines and proteases required for TME remodeling [32,97,98]. Hyaluronidase-mediated
HA degradation is the primary source of tumor-derived LMW HA. High levels of hyaluronidase
activity were observed in human brain metastases [99] and metastatic breast cancer [100].
The expression of HYAL1 and HYAL2 was also elevated in melanoma [101], bladder cancer [102,103],
and prostate cancer [104]. Moreover, CEMIP is overexpressed in many types of cancers with poor
prognoses [105–109]. The knockdown of CEMIP or TMEM2 in breast cancer cells reduced cell motility
and metastasis [110–112]. Meanwhile, decreased expression of HYAL1 and HYAL2 was associated with
an unfavorable prognosis in ovarian [113], endometrial [114], and pancreatic cancers [115]. Indeed,
the roles of HYAL1 and HYAL2 in cancer progression may vary depending on the cancer type.

Cancer cells are considered to remodel the TME to a unique set of conditions in which both HMW
and LMW HA coexist by significantly enhancing the machinery involved in HA biosynthesis and
degradation. HMW HA provides pericellular ECM that favors cancer cell proliferation and migration
in addition to the intratumoral recruitment of such stromal cells as tumor-associated fibroblasts
and macrophages. On the other hand, tumor-derived HA fragments promote angiogenic and
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immunosuppressive actions, either directly or through macrophage activation, and play an important
role in cancer progression [18]. During tumor progression, the formation of new blood vessels
supports the demand of oxygen and nutrients for tumor growth and ensuing metastatic processes.
Tumor-associated macrophages (TAMs) are the major stromal cells in the TME [116] and secrete a panel
of pro-angiogenic growth factors and cytokines including vascular endothelial growth factor, fibroblast
growth factor-2, placental growth factor, and platelet-derived growth factor. Once macrophages
infiltrate and immobilize into the tumor, they become polarized towards pro-angiogenic and pro-tumor
M2-like phenotypes in response to TME components. Macrophages can be classified into two subtypes,
M1 and M2, based on their surface marker expression and functional states [19]. M1 macrophages
induce adaptive immune responses against cancer cells, while M2 macrophages mainly secrete the
immunosuppressive cytokines interleukin-10 and transforming growth factor-β, and contribute to
immunosuppression [117]. Several reports have suggested that tumor-derived HA fragments serve as
a signal for macrophage polarization towards the M2 subtype [118,119], thereby contributing to tumor
angiogenesis and the escape of cancer cells from immunosurveillance.

5. Metabolic Reprogramming Coupled with HA Production

Metabolic reprogramming has emerged as a critical determinant of malignant cells [120,121].
In order to sustain the demand of growth, proliferation, migration, and metastasis, cancer cells
shift their metabolic phenotype by elevating glycolysis [122], inhibiting mitochondrial oxidative
phosphorylation [123], and enhancing macromolecule biosynthesis [124] (Figure 5). The Warburg
effect, or aerobic glycolysis, is a persistent cancer metabolism that adapts to rapid fluctuations in energy
demand [122]. Upon the metabolic shift towards aerobic glycolysis, the high utilization of glucose by
cancer cells results in the accumulation of an acidic product, lactate, in the TME (Figure 5). An acidic TME
contributes to tumor progression by modulating cell migration, neovascularization, and tumor immune
escape [121,125]. Metabolic switching is influenced by both cell-intrinsic and cell-extrinsic factors in the
TME, one of which is the presence of ECM molecules such as HA [17]. We previously showed that HA
overproduction in cancer cells activated the aerobic glycolysis pathway to influence growth, survival,
and stemness [20]. Due to the upregulation of lactate dehydrogenase (LDH), HA-overproducing
cancer cells secreted a large amount of lactate, resulting in an acidic TME. A xenograft model using
Has3-overexpressing cancer cells also demonstrated HA accumulation in tumors to correlate with
hypoxia and low tumor pH [126]. Proton-coupled monocarboxylate transporters (MCTs) are critical
for lactate export across the plasma membrane [127]. Interestingly, the function of MCTs on lactate
export in cancer may be modulated by HA signaling. HA-CD44 interactions promoted the localization
of EMMPRIN (CD147), MCT1, and MCT4 in the plasma membrane to efflux lactate. Competitive
inhibition of this signaling by HA oligosaccharides decreased the plasma membrane expression of
CD44, MCT1, and MCT4 and reduced lactate efflux, thus confirming the role of HA and CD44 in
lactate export [128]. Similarly, CD44v3-10 was found to co-express with EMMPRIN, multiple drug
resistance 1 (MDR1), MCT1, and MCT4 in prostate cancer cells and associate with drug resistance and
tumor progression [129]. The above observations suggest that HA may be involved in an acidic TME
formation by modulating both glycolytic activation and lactate transport.

Since the excess synthesis of HA in cancer cells consumes large quantities of the UDP-GlcNAc
and UDP-GlcA nucleotide sugar precursors, cancer cells need to accelerate the metabolic flux of
nucleotide sugar synthesis to constantly maintain their cellular levels. Studies have shown that cancer
cells adapt to active nucleotide sugar consumption by accelerating glucose uptake and HBP flux.
Upregulation of glutamine: fructose-6-phosphate amidotransferase (GFAT), the rate limiting enzyme
of HBP, and UDP-GlcNAc pyrophosphorylase 1 (UAP1), the final enzyme in the HBP, was observed in
human breast and prostate cancers, respectively [130,131]. In breast cancer, elevated GFAT expression
was in parallel with an increase in UDP-GlcNAc content and was strongly correlated with tumor HA
levels [131]. This was supported by our recent finding that GFAT and HAS2 were co-expressed in
malignant breast cancer cells [132]. We furthermore identified a metabolomic signature characteristic
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of HA-overproducing breast cancer cells [20]. Even though up to 2–5% of glucose enters the HBP
under normal conditions, a massive flow of glucose metabolites to the HBP has been observed in
HA-overproducing cancer cells. These observations suggest the existence of a positive feedback loop
between the HBP and HA production. Moreover, metabolomic analyses detected significant amounts
of glycolytic metabolites in HA-overproducing breast cancer cells [20]. Pharmacological inhibition
and gene silencing of GFAT have revealed HA-driven glycolytic enhancement to be regulated by
hypoxia-inducible factor (HIF-1) signaling under the control of HBP flux. HIF-1, a hetero dimer
composed of α and β subunits, functions as a central transcription factor that regulates the gene
expression of many glycolytic enzymes [133]. Of note, the stability of the HIF-1α subunit seems
to be promoted by a mechanism involving enhanced HBP flux and O-GlcNAcylation. Ferrer et al.
provided direct evidence that the HBP modulated metabolic reprogramming in cancer cells by
regulating HIF-1α stabilization via O-GlcNAcylation [134]. Thus, increased HBP flux and subsequent
O-GlcNAcylation may be responsible for HA-driven glycolytic enhancement. Unlike differentiated
cancer cells, CSCs preferentially rely on glycolytic pathways. Compared with non-CSCs, enhanced
glucose consumption, lactate production, and ATP levels were observed in CSCs [135–137]. We recently
discovered that HA production promoted CSC-like properties, such as mammosphere formation and
tumorigenic abilities, via the metabolic reprogramming of glycolysis and the HBP [20]. Given these
findings, HA-induced metabolic reprogramming may be a central event in CSC regulation.
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HBP flux subsequently activates HIF-1 signaling, which is responsible for glycolytic enhancement.
HIF-1 regulates the expression of key glycolytic enzymes such as pyruvate kinase (PK),
6-phosphofructo-1-kinase (PFK-1), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 and 3
(PFKFB2/3), pyruvate dehydrogenase kinase 1 (PDK1), and LDH [133]. As a consequence of the
Warburg effect, the lactate is exported to the extracellular space via MCT1 and MCT4 and generates
an acidic tumor microenvironment. HA-CD44 interactions promote the localization of EMMPRIN
(CD147), MCT1, and MCT4 in the plasma membrane to efflux lactate. HA forms a HA-rich TME
to facilitate monocyte/macrophage infiltration and cancer progression. OGA; O-GlcNAcase, OGT;
O-GlcNAc transferase, OXPHOS; oxidative phosphorylation, PDH; pyruvate dehydrogenase.

6. Conclusions

This review summarizes the current evidence on the close relationship between HA metabolism and
functions. Genetic engineering and pharmacological approaches to artificially alter HA metabolism have
provided new insights into the functions of HA in tissue morphogenesis and homeostasis. Furthermore,
recent metabolomic approaches have demonstrated novel HA roles for modulating cellular behaviors
via the reprogramming of cellular metabolism coupled to HA production. In some events during
morphogenesis and in certain diseases including cancer, HA biosynthesis and degradation are
significantly enhanced, and its turnover rate may be accelerated in such states. Therefore, the balance
between HA synthesis and degradation not only regulates cellular functions by controlling the
concentration and molecular size of extracellular HA, but may also modulate intracellular metabolism
by controlling HA turnover. A more complete understanding of the relationship between HA
metabolism and functions will assist in the elucidation of the multifaceted roles of HA and possibly
contribute to overcoming various diseases suspectedly caused by abnormal HA metabolism.
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