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Abstract

Complex phenotypes emerge from the interactions of thousands of macro-

molecules that are organized in multimolecular complexes and interacting

functional modules. In turn, modules form functional networks in health and

disease. Omics approaches collect data on changes for all genes and proteins

and statistical analysis attempts to uncover the functional modules that perform

the functions that characterize higher levels of biological organization. Systems

biology attempts to transcend the study of individual genes/proteins and to

integrate them into higher order information. Cancer cells exhibit defective

genetic and epigenetic networks formed by altered complexes and network

modules arising in different parts of tumor tissues that sustain autonomous cell

behavior which ultimately lead tumor growth. We suggest that an understand-

ing of tumor behavior must address not only molecular but also, and more

importantly, tumor cell heterogeneity, by considering cancer tissue genetic and

epigenetic networks, by characterizing changes in the types, composition, and

interactions of complexes and networks in the different parts of tumor tissues,

and by identifying critical hubs that connect them in time and space.

Introduction

The decoding of the three billion nucleotides that comprise

the human genome opened the possibility to isolate and

characterize every encoded molecule under different condi-

tions in health and disease [1–3]. Ultimately, the hope is

that this will allow us to devise preventive or therapeutic

approaches for disease [4, 5]. Predicting higher functions

from the structural and biochemical features of isolated sin-

gle molecules is difficult [6]. Proteins and other gene prod-

ucts are seldom found in isolation and are primarily

organized in multimolecular complexes (see Box 1 for defi-

nitions of systems, complexes, networks, and modules) that

execute unique and distinct functions that can be isolated

and examined experimentally. Some can be transcription

factors/cofactors interacting with chromatin during target

gene transcription, others are cytoplasmic ensembles of kin-

ases/substrates arranged linearly and branched to other

pathways from the membrane to the nucleus and back, par-

ticipating in interacting signaling networks that ultimately

integrate information that is manifest as functional mod-

ules, yet others form extracellular structures that aid in cell–
cell contact and tissue organization. Complex intracellular

or intercellular behaviors, such as DNA replication, chro-

mosome segregation, cell growth and division, motility, and

migration, arise from the interactions of those functional

modules [7, 8] in different tissue parts that are interlinked

via hubs (important molecules making multiple connec-

tions) in the form of networks [9]. Biomolecular module

networks consist of biomolecules (or nodes) connected by

links (edges or interactions) and can be of different types

depending on composition, signal integration, and time.
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For example, there are protein–protein interaction networks

having physical interactions as nodes [10], gene interaction

networks [11], gene expression networks [12] (although, it

should be stressed that not all coexpressed genes are neces-

sarily coregulated or reverse) [13, 14], transcription factor/

cofactor-DNA regulatory networks [15, 16], signaling net-

works [17, 18], and networks that describe how metabolism

and growth are linked [19]. Just as biological complexity at

different levels, such as the ecosystem level, can be described

by the complexity of interactions within subsystems under

study and can globally be described by the connectivity L

(see Box 2 and discussion in the next section) [20], tumor

tissues also can be analyzed in terms of the different subsys-

tems comprising the tumor, such as the different cell types,

the modules, and the networks in each one that allow their

viability as a tissue.

Modular Organization of Tumor
Tissue Complexity

Although no standard definition exists, a module can be

defined as any subcellular unit (composed of complexes

and their nested networks) having a distinct and unique

task that remains robust, that is, remains constant and

independent of perturbations or of individual biochemical

parameters of any single molecule in the complexes that

affect it (see Box 2). Modules consist of groups of bio-

molecules (genes, proteins, or gene products in general)

that are found (often by different statistical approaches)

to regulate as a unit a biological property or phenotype.

These biomolecules can be hubs in networks and when

they are linked together physically or functionally to per-

form a cellular function they then constitute a module.

The machineries that condense chromosomes in pro-

phase and assemble them in metaphase, the DNA-repair

or synthesizing enzymes, just to name a few, can be con-

sidered modules with distinct and separable functions.

Modules also can be defined experimentally as groups of

entities such as genes, proteins, or small RNAs that

behave coherently, for example, during expression, and

that contain gene products that affect similar or related

functions. Additionally, there can be extended modules

depending on how the components are organized [21].

Other types of modules arise from interacting networks

that are largely composed of complexes that also interact

either simultaneously or in temporal sequence with multi-

ple inputs/outputs manifested as complex functions, such

as cell motility, division, etc. These are signaling modules

and can have component complexes (or their important

nodes) that interact both genetically and physically.

In tumor cells, modules like those previously described,

are different (see last section for examples from oncogene

Box 1. Defining systems biology.

“Systems biology defines and analyzes the interrela-

tionships of all of the elements in a functioning sys-

tem in order to understand how the system works”.

In biology, systems approaches aim to:

1. Analyze the thousands of genes/proteins and other
molecules comprising the system simultaneously,
under different conditions (global analysis vs. local,
i.e., one gene/protein),

2. Analyze several levels of complexity: molecules,
complexes, modules, networks, cells, etc.,

3. Dissect networks: protein–protein interactions,
signaling, metabolic and gene regulatory networks,

4. Computationally model/simulate processes, and
5. Determine temporal, environment, and genetic/

epigenetic changes affect functions.

Definitions

1. System: Any collection of biological entities (genes,
proteins, miRNAs, etc.) that are under study.
Systems can contain molecules that can participate
in different complexes/networks or modules.

2. Complexes: Groups of many proteins (and other bio-
molecules) whose interactions are cotemporal and
cospatial. Complexes form molecular machines with
distinct biochemical functions and their composi-
tions and interactions can change genetically/epige-
netically, thus determining network and module
functions.

3. Network: Networks are systems of interacting bio-
molecules (collections of genes, gene products, etc.)
with distinct functional outcomes. Networks can
consist of single proteins or collections of complexes
forming a grid. Interactions can be physical, func-
tional, etc. Network organization is described in
terms of links and nodes (see Box 2).

4. Modules: Collections of genes/proteins or interacting
complexes that participate in determining specific
cellular functions through network formation. They
can arise from different networks or nodal proteins
engaged in functional interactions.

A molecular network is imprinted as a graph and

could be considered as an ensemble of nodes (repre-

senting biomolecules) and part of them are con-

nected with links, edges (representing interactions

and relations of the biomolecules). In each cell, there

are different kinds of molecular networks such as

protein–protein physical interaction networks, protein

–protein genetic interaction networks, regulatory

networks, expression networks, signal transduction

pathways, and metabolic networks (better character-

ized than the rest). All these are cross-linked and

combined together constitute the cellular network

[108].
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literature) and largely control tumor survival and spread.

Thus, complex behaviors such as invasion, which are

controlled by several different types of modules, are evi-

dently regulated differently when, for example, they are

executed by lymphocytes or metastatic cells as in normal

cells the process is terminated after some time, whereas in

tumor tissues there is continued execution. We suggest

that the modular organization of signaling networks are

differently organized in the two cell types (Fig. 1). It

remains largely speculative how different cells execute

complex final functions (proliferation, invasion, etc.)

using the same primary genome sequence. There are, as

we shall see, tantalizing clues both in the molecular and

the more recent genomics/proteomics literature, which

suggest that oncogene/tumor suppressor proteins and

their complexes (with largely uncharacterized partners)

are critical hubs in signaling networks as they control

multiple pathways (and presumably their interlinked net-

works and modules) that affect tumor properties.

Systems biology dissects complexes, functional mod-

ules, and their networks at several levels (see Box 1); it

seeks to define the composition of complexes and to find

out critical nodes, that is, molecule(s) with the most

connections/interactions within and between modules,

Box 2. Description of networks.

Biological networks can have different forms, are

connected by edges (usually molecular interactions,

e.g., transcription factor–DNA, protein–protein, etc.)
into nodes (proteins or genes), and are characterized

by the degree and degree distribution defined below

[9]:

Degree: The connectivity k for each node: it can

be kin or kout (see below).

Degree distribution P(k): The probability that a

node (protein) has k links.

Power law distribution: P(k) ~ k�c, where c is the

degree exponent. It describes the “scale-free” organi-

zation of biological networks, which refers to the

fact that most nodes (either single proteins or multi-

molecular complexes) in a network make few con-

nections and only a few nodes (clusters) make

multiple connections. The former feature may be

responsible for robustness [52] in biological net-

works [106, 107], whereas the latter may render

tumors vulnerable to drug targeting.

Clusters: Proteins (nodes) within a network with

more interactions among themselves (cluster).

Described by density of connections Q = 2m/(n

[n – 1]) (see [22] for details). This description is

identical to that of ecosystem networks, which is

governed by the same equation (see below).

A

B

C

D

E

F

G

Example: Cluster with nodes A-H
For protein (node) A, kin = 2, kou = 4

H

Ecosystem complexity: Defined by connectivity C(C):

C = 2L/(N[N – 1]). It describes the actual food links

divided by the number of all possible links. Notice

that this equation is identical to equation Q = 2m/

(n[n – 1]) proposed by Spirin and Mirny [22].

Tumor Tissue

Different Cell Types

Different 
Interacting 
Networks

Tumor survival and Autonomous Growth

Figure 1. Representation of heterogeneous functional tumor tissue

organization. Binary DNA information expressed as proteins/RNA is

organized as intracellular networks (protein complexes, regulatory

complexes, pathways, etc.) are identified with genomic/proteomic

methods and deconvoluted into functional modules. Each cell type

within tumors possesses different networks and modules that

perform specific tasks, such as, for example, chromosome

condensation, mitosis, motility, etc., and in a coordinated manner.

Interactions between intracellular or intercellular modules via

important hubs (protein nodes in different complexes or networks

that interact functionally or physically with multiple other nodes in

other complexes/modules) give rise to broad tumor interacting

signaling networks. Many oncogenes are hubs and most are

developmental genes. It is these tumor-wide interactions that endow

tumors with robustness and survivability. The model suggests that

identification of tumor-wide networks and the elucidation of

intracellular and intercellular hub interactions allow redundancy in

communication within the tumor mass and between tumor and

adjacent “normal” tissues and could be prime pharmacological

targets.

166 ª 2013 The Authors. Published by John Wiley & Sons Ltd.

Systems Biology in Cancer Research E. Koutsogiannouli et al.



especially those that control functional interactions with

other modules [22] uncover the laws that govern their

physical behavior and relate them, in a predictable man-

ner to overall cell biological behavior [1]. In cancer cells,

defining how nodal molecules such as oncogenes or

tumor suppressors or their products connect and thus

potentially regulate networks of gross cellular behaviors

through their control of numerous intra- and intercellular

signaling pathways is critical for understanding their sig-

naling networks. Some oncogene/tumor suppressor prod-

ucts (Myc, p53, or cell cycle inhibitors and kinases)

already fulfill the criteria of being important nodes; how-

ever, understanding how they influence different pathways

is limited by lack of (a) how they participate in different

complexes and networks and (b) how their levels/muta-

tion status affects complex composition and function

within and between different cell types in tumor tissues.

Reconstructing molecular mechanisms in cancer on the

basis of modules, networks, and complexes is a formida-

ble challenge both because of the enormous numbers of

components in interacting networks but also because of

inherent difficulties arising from methodological imper-

fections. For example, mRNA expression analysis with

microarrays does not account for regulation of gene

expression at the level of mRNA stability, processing, and

protein post-translational modification levels [23]. This is

particularly apparent in microarray applications in cancer

research due to complexities arising from molecular and

pathophysiological classifiers that are different [24].

Another issue is that data derived from global approaches

can be interpreted in multiple ways depending on the

experimental or theoretical model used, rendering rele-

vance and applicability to mammalian cells somewhat

questionable. An additional complication is due to the

different meaning of what constitutes a module. Thus, for

example, in the cancer microarray literature, a group of

genes found to be regulated in common under a set of

conditions is considered a module [25]. A second com-

mon definition of a biological module is that of Hartwell

et al. [21] who define it as a collection of many types of

molecules (proteins, RNAs, etc.) having discrete functions

that arise from their interactions.

We suggest a simple conceptual model which proposes

that molecules, time- and/or signal-dependent complexes

and networks that are formed within and between cells

within tumors and between tumors and other organs, are

organized hierarchically (nested networks) with feedback

and feedforward interactions dictated by genetics and

epigenetics (Fig. 1). The model suggests that in tumor

cells, genetic/epigenetic-driven multimolecular complexes

form altered networks [9] and modules [22] (as defined

by Hartwell and colleagues). In turn, networks and mod-

ules determine how larger assemblies of functional mod-

ules (provisionally termed ultramodules, such as cell cycle

progression, arrest or apoptosis, motility and invasion)

become aberrantly operative in cancer cell behavior

(Fig. 2). Changes in spatiotemporal complex composition

are critical because they largely determine how molecules

interact in altered modules and networks and how the

function of complexes are changed [26]. Finally, we pro-

vide support using examples from the cell cycle and Myc

oncogene literature as well as from derived networks

based on yeast and cancer cell genomic/proteomic data.

The model aims to (a) provide a simple conceptual pic-

ture of functional organization and (b) make oncogene/

tumor suppressor protein function (derived from experi-

mental pathways data) more accessible to network model-

ing by reconciling protein pathway data with theoretical

principles (e.g., node, edge, etc., vis-�a-vis oncogene/tumor

suppressor protein control of multiple pathways) and

help in finding drug targetable nodes.

Complexes, Signaling Networks, and
Functional modules

The current revolution in our concepts and practices in

analyzing complex biological functions has different con-

ceptual and experimental roots. Nonliving, organized

physical systems can exhibit emergent properties that can-

not be attributed to single molecules but rather to inter-

molecular interactions within the system [27]. Work in

bacteria has led to the realization that several systems,

such as the motility apparatus, are modular in organiza-

tion as their properties cannot be attributed to single

components and are characterized by robustness, that is,

an ability to resist changes in their function [28]. This

concept has taken root in cancer biology and efforts are

in progress to describe the reorganization of functional

networks in cancer cells using mRNA, miRNA, and pro-

tein expression data converted to useful models and inter-

preted in terms of networks [29, 30].

Recent advances in cancer cell genomic and proteomic

methods greatly facilitate genomic and epigenomic analy-

sis of functional cancer cell networks in terms of interact-

ing molecules in complexes and in their constituent

modules, especially in terms of the modular organization

of oncogene expression and its correlation with specific

cellular behavior [31, 32]. Genetic and epigenetic net-

works are altered in cancer cells and they are therefore

likely to reflect permanent changes in the types, numbers,

and interactions of complexes and modules at several lev-

els, including the cell cycle [33] signal transduction path-

ways, such as the Ras-MAPK pathway [34] and

chromatin remodeling in regulation of gene expression

[35–37], giving rise to autonomous function of several

modules associated with cell growth and invasion. While
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there is ample evidence in the molecular cancer literature

that cancer cells have different modular and network

design [38] of cellular behavior reflecting differences in

the types and composition of complexes (Fig. 2), it is

unknown (a) how this organization arises, (b) how the

levels of identified gene protein products change in their

respective complexes, and (c) factors which determine the

nodes that (proteins or other molecules) are important in

communications between altered complexes and modules.

An important aspect of biological networks is that they

can have several different forms depending on whether

they consist of some (tens) or many (hundreds to

thousands) of genes, proteins, or other biological entities

studied en masse. For example, simple phages contain

only a few genes and proteins whereas simple or higher

eukaryotes such as yeast, or mice and humans contain

hundreds to thousands. It was therefore necessary for

high-throughput data collection and analysis techniques

to be developed, starting from automated DNA sequence-

rs all the way to network-generating software (Table 1).

Data generation using cDNA or oligonucleotide micro-

arrays [39, 40] permits the simultaneous examination of

all genes expressed at any given time under various con-

ditions. For example, genome-wide expression analysis

has been applied to the study of the yeast Saccharomyces

cerevisiae cell cycle module [41]. Protein–protein interac-

tion maps have been generated for yeast using the two

hybrid method [42] covering about 80% of all proteins

and revealing important nodes, which when functionally

inactivated by mutagenesis were lethal. Central to analysis

of functional complexes, networks, and modules is the

concept of “system,” which is any collection of molecules

under study and is distinct from module or network. Sys-

tem molecules can participate in different networks or

modules. In analogy to the definition of a module, there

are at least two informal system definitions, the first due

Genetics Epigenetics

Molecules
Altered molecules

(oncogene products etc)

Mutations
Epimutations etc

Physiological
Complexes

Physiologically 
Regulated
Modules

-Cell growth
-histogenesis

Pathophysiological
complexes

Aberrant 
networks

Aberrantly regulated 
Modules

-Unchecked Cell 
proliferation, 

growth & 
histogenesis

Physiologically regulated 
cell behavior

TUMOR 

Binary DNA 
code:

Expression  
and

maintenance

Information
execution

A B

Physiological
Networks

Figure 2. Simplified scheme for conceptual differences of different levels of biological organization in normal and tumor cells. (A) Recapitulation

of different levels of organization and function in physiologically constrained cells. (B) In tumor cells, genetic (e.g., DNA mutations, chromosome

translocations, etc.) and epigenetic alterations (aberrant methylation of CpG islands, acetylation of histones, etc.) generate altered biomolecules

(activated oncogenic proteins, inactivated tumor suppressor proteins, or aberrantly regulated micro RNAs). Altered molecules form

pathophysiological complexes that differ in quantitative and qualitative aspects from equivalent complexes in normal cells in composition due to

over- or underexpression/inactivation of oncogene/tumor suppression genes, respectively, and are influenced by cell type and signals such as

deregulated expression of other oncogenes/tumor suppressor genes, cell–cell interactions, etc. These complexes form “aberrant” signaling and

other networks that regulate each other reciprocally and ultimately reorganize modules in novel ways that confer cells with autonomous growth

and spread. Oncogene/tumor suppressor proteins may be important hubs in clusters that make multiple (functional and/or physical) connections

with nodes in modules that, to a large extent, control tumor cell behavior. It is currently unclear how oncogene/tumor suppressor products and

associated proteins in their complexes are organized into networks. However, experimental evidence suggests that they may in fact be organized

as critical hubs in clusters between complexes, networks, and modules as (a) some are mutated in most cancers (e.g., Ras and Myc in ~30% and

p53 in ~50% of all cancers), (b) their overexpression/mutation affects multiple pathways (and systems/modules) required for cell growth and

proliferation, and (c) their effects depend on cell context. For example, their forced expression in normal cells causes growth arrest or apoptosis

whereas in transformed cells they favor tumorigenesis, suggesting that their multiprotein complexes differ between normal and tumor cell

populations.
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to experimentalists [43] and the second to theoreticians

[44, 45] (reviewed in [46]). From a practical point of

view although it is important not only to define the

components of any biological system and model their

interactions but also (a) to test if perturbing identified

nodes affect the function under study and (b) if the links

and function of any known biomolecules such as onco-

gene or tumor suppressor proteins can be reconciled with

what is known about them experimentally.

One approach to test if theoretically determined protein

interconnections in their networks and experimental data

agree has been applied by Spirin and Mirny [22]. Their the-

oretical method is similar to that used by ecologists to

quantitate ecological complexity in terms of food web net-

work interactions (see Box 2) [20]. These investigators

sought to establish functionally important nodes within

and between complexes using yeast protein–protein inter-

action data on two functional modules [47], the cell cycle

and the MAP kinase module. They identified sets of yeast

proteins (clusters) that have more connections among

themselves than with other proteins in the protein–protein
interaction networks under study. They defined the density

of a cluster as Q = 2m/(n[n – 1]), where n is the number

of proteins in the cluster and m the number of interactions.

Significantly, genes and proteins (identified as clusters)

found in the same complex or module had a consistent

biological function, suggesting that biologically meaningful

networks and modules arise from distinct protein com-

plexes identified by genomics and proteomics approaches.

This further suggests that analyzing the role of oncogene/

tumor suppressor proteins in their complexes and the net-

works and modules they form in tumor cells may also be

fruitful in identifying how oncoprotein-driven complexes

and modules are organized in tumor cell models in terms

of clusters or nodes. The theoretical results were further

confirmed by tandem affinity purification and mass spec-

trometry even though data exist for only 29 experimental

yeast complexes. An alternative approach, called multiple

parallel signature sequencing (MPSS) [47] was applied by

Hood’s group in detecting definitive gene differences in

early (androgen-sensitive) and late (castrate-resistant)

prostate cancer [38] and used to map the networks that are

different between the two states. Among significant genes/

pathways regulated differentially, they identified the insulin

signaling and the NFj-B pathways interconnected to the

c-Jun and IL-1 receptor pathways as well as at least 112

transcription factors that were differentially regulated in

late versus early stage disease. Nevertheless, it remains to be

seen how known oncogenes and tumor suppressor genes

(and their protein products) fit into the identified disease

and stage-specific patterns of signaling networks and

whether they are clustered nodes with significant regulatory

roles. Recently, Riera-Fernandez et al. [46, 49] developed

Markov–Shannon entropy models to evaluate connectivity

(Lij) quality for network nodes in complex networks with

an accuracy of nearly 76%. Notably, the models were pre-

dictive for different types of networks suggesting that it

may be applied to mixed networks of biological interest.

According to network theory, a system can be described

mathematically by its main components (nodes or hubs)

and their connections (links). In addition to the above

properties, many networks follow a power law distribution

and are scale free, their clusters or nodes being quantified by

the equations Q = 2m/(n[n – 1]) and P(k) ~ k�c, which

describe how networks are interconnected [9, 50] (for defi-

nitions and a description, see Box 2). Thus, it would be

informative to construct MYC or other oncogenic protein

networks in model systems using data from real tumors and

determine if the value of c, and by extension of P(k) for

oncogenic proteins such as MYC correlates with their exper-

imentally uncovered influence on multiple cell pathways

affecting proliferation and growth. Under this hypothesis,

the lower the value of c (within experimentally defined lim-

its), the more important the protein would be predicted in

networking and pathway control. In the case of protein

complexes, the nodes are individual proteins and the links

are their interactions, whereas for networks and their mod-

ules the nodes can be either individual proteins or groups of

highly connected proteins both within and between mod-

ules that can determine functional outcome (see Fig. 4 for a

Table 1. Selected techniques in systems biology.

Subject Technique

1. Genome-wide gene

expression

Microarrays: oligonucleotide/cDNA

chips microRNA expression

Genome-wide promoter analysis

(Regulomics)

2. Expressed proteins

(various conditions)

Antibody/cell extract chips

(Proteomics/Reverse proteomics)

3. Network

Direct protein–protein

interactions

Yeast 2-hybrid

In vivo/in vitro pull down

Protein–DNA interactions DNA footprinting

In vivo cross-linking/

immunoprecipitation (ChIP)

Gel shifts

Genetic protein–protein

interactions

Gene regulatory interactions Genome-wide promoter analysis

(Regulomics)

4. Comparative

genomics/proteomics

Various computational models and

techniques

Protein functional genomics DNA motif-finding programs

Reconstruction with Boolean or

Bayesian network methods

Some techniques utilized in global identification of all molecules

involved in a system under study and the construction of interacting

networks that can explain and predict phenotypes.
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schematic outline depicting experimentally determined con-

nections of the Myc, p53, and TGFb pathways). These path-

ways do not necessarily reveal the networks involved as they

include only a limited number of nodes. In this respect, it is

reasonable to suggest that oncogene products that are

known to participate into different complexes and to affect

several intracellular networks, such as MYC, RAS, or tumor

suppressor proteins such as p53 and pRB, may qualify as

important nodes with critical intracomplex and internodule

links. Other potentially important nodes, making critical

links may be inhibitors of the cell cycle, such as p21, which

are also frequently mutated and inactivated in many cancers

and for which we have some experimental information on

how their levels may change the function of known cyclin-

dependent kinase oncogenes (see last section for discus-

sion). Moreover, other protein partners in the complexes

and modules of these oncogene/tumor suppressor proteins

also can be important in network dynamics and function;

however, their role remains to be discovered. An example is

the adaptor protein p40 in the ING1/Sin3A chromatin

remodeling complex that controls growth and possibly

metastasis in human cancer cell lines [37]. Until now the

complexes formed by these proteins, their composition and

function in network and module formation during tumori-

genesis remain incompletely characterized.

The cell cycle, cell migration, cell division, and other

cellular phenotypes can be considered as supramodules,

consisting of smaller modules (e.g., chromosome segrega-

tion, kinase network signaling, DNA replication, etc.),

whose fate is under the control of several networks con-

sisting of protein and other complexes that are in turn

regulated by small molecules (e.g., nutrient availability)

and influenced by the relative levels and malfunction of

activated oncogenes or tumor suppressor genes and pro-

teins (see Figs. 3 and 4). Complexes and the networks they

participate in are controlled by genetic, epigenetic, and

spatiotemporal signals and are characterized by robustness

[51], a property that was also recognized in bacterial sys-

tems [28, 52]. In tumor cells, robustness is manifested in

their redundant heterogeneity, the presence of diverse

mutations in individual genes, in the ability to withstand

and evade attack by the immune system and resist chemo-

therapeutic attack, and is among the most significant in

contributing to growth and survival [53]. Another prop-

erty of complexes is that they can share components,

which can be members of different clusters. This property

is reflected in the functional heterogeneity exhibited by

oncogene proteins, such as MYC or RAS, to induce

growth arrest in some cells and transformation in others.

This property probably reflects their participation in sev-

eral different complexes and is manifested in their ability

to regulate many growth, survival, and invasion networks.

Several transcription factor/cofactor complexes, which also

include chromatin modification activities, share common

adaptor proteins that act as scaffold or complex adaptor

proteins [37]. Several oncogene and tumor suppressor gene

products such as MYC, MDM2, and pRB can participate in

interactions with multiple partners and are members of

different complexes and presumably can affect different

modules, also in response to cell cycle stage, DNA damage,

and other signals. Cyclin-dependent kinase (Cdk) inhibi-

tors (CdkI) such as p27 also modify the functions of the

cyclin/CDK complexes depending on their levels. Intrigu-

ingly, at low levels they seem to activate kinase activity

whereas at higher levels they inhibit it [26, 54]. The levels

of CDKI proteins can change due to mutations or to

functional inactivation by overexpressed oncogenes.

Complex Formation Driven by
Differences in the Levels of Key
Proteins and Implications for
Functional Network Formation

The supramodules of cell cycle progression and cell division

intrinsically are governed by the sequential activation/inac-

tivation of multiple serine-threonine kinases called cyclin-

dependent kinases (Cdks) in association with cyclins [55],
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?

Figure 3. Schematic depiction of a eukaryotic cell cycle module with

some critical regulators. Cyclin D1/Cdk4,6 complex formation and

function depend, among other factors, on the levels of the Cdk

inhibitor p27. Surprisingly, at relatively low levels, p27 aids in complex

formation and stabilization (corroborated by the fact that p27

haploinsufficiency is found in tumors) whereas at higher levels – as in

quiescent cells – it inhibits complex formation. It is unknown how

complex formation and function is affected and how the signaling

network that controls cell cycle progression is reorganized in terms of

the participation of critical hub proteins in the depicted complexes.

Thus, when INK genes are mutated, MDM2 and cyclin D1/Cdk4,6/p27

complex composition and function changes but it remains to be

determined how their signaling networks are reorganized.
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as well as other regulatory proteins in complexes that con-

trol specific stages called restriction points [56] (Fig. 3).

Cdk-cyclin/regulatory protein complexes in cell prolifera-

tion are critical because they have been found altered

(mutated and/or aberrantly expressed) in virtually all

human tumors. Although most of the canonical mamma-

lian Cdk-cyclin complexes have turned out to be dispens-

able for cell proliferation due to functional redundancy

[57, 58], cyclins and CDKs are found to be altered in a

majority of human cancers (e.g., cyclin D1 is over-

expressed in 25% of human mammary tumors), suggest-

ing that they participate in different networks that control

mammary tumor cell proliferation and growth. Mamma-

lian cell cycle progression is likely driven by networks and

complexes that are cell type specific, and novel functions

have been generated from studies using, for example,

defective cyclin D1-mediated complex formation [59].

Specifically, a mutant cyclin D1 having lysine instead of

glutamic acid at position 112 has equal affinity toward its

canonical Cdk4 and Cdk6 partners; however, although it

is kinase defective, mice develop a normally expanded

mammary epithelium (defective in cyclin D1 ablated mice

and refractory to mammary tumorigenesis), suggesting

that cyclin/Cdk4,6 complexes have additional functions or

that they form additional complexes with uncharacterized

functions. In support of this it is likely that cyclin D1/

Cdk4,6 complexes are different in the two cases due to

differences in p27 participation. It is currently unknown

how cyclin D1/Cdk4,6/p27 complexes change in response

to mutant cyclin D1 in target mammary cells. It is reason-

able to suggest that it forms different Cdk4,6/p27 com-

plexes whose network topology and function change as a

result of fluctuating inhibitor levels. Some support is pro-

vided by analysis of trimeric cyclin D1/Cdk4,6/p27 com-

plexes in cycling and quiescent cells. In quiescent cells,

p27 levels are relatively elevated; however, as Cdk levels

rise and their complexes accumulate, p27 is sequestered in

their complexes [60]. It turns out that relatively low levels

of p27 (and p21) are required for formation of these

complexes, and more surprisingly, p27 does not inhibit

kinase function [54]. Moreover, it is established in human

breast tumors that low levels of p27 and elevated levels of

cyclins D and E correlate with survival and have prognos-

tic value, [61, 62] conforming that p27 and cyclin E have

crucial roles in the tumor-specific networks.

Induction–Reversion of
Tumorigenesis in Animal Models by
Oncogene-Driven Cancer Network
Formation

Determining how functional networks are reorganized in

tumor cells using systems biology approaches is of

paramount importance in developing network-based
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therapeutics. The involvement of identified networks must

be experimentally confirmed using data from different

sources aiming at defining how they render cells

(a) immortalized, (b) defective in apoptosis, (c) able to

metastasize [63], and (d) their circuitry delineated and

critical nodes identified and tested for prevention and ther-

apy [64]. Proteomic approaches for defining oncogene/

tumor suppressor protein complexes in tumors are still

limited not only by technical issues but also, and perhaps

more importantly, by tumor heterogeneity, implying that

judicious choice of cellular or computational models will

have to reflect the enormous variety of tumors sampled

from patients. Effort will have to be invested in carefully

identifying the signaling networks they form and the

(supra)modules they regulate, such as the cell cycle, their

interactions at the genetic and epigenetic levels, and ulti-

mately the targeting of nodal proteins or protein com-

plexes that comprise the modules in different types of

tumors [65, 66].

The realization that heterogeneity-derived, mechanistic

complexity is the main problem to be solved in under-

standing and reversing tumorigenesis has been around for

many years but only now are we able to dissect it in

terms of experimentally compiled components (parts lists

according to Ideker et al. [1]) organized in multiple net-

works and leading to functional modules in tumor cells.

Thus, it was observed early on that reversing oncogenesis

in animal models required the introduction or removal of

perhaps hundreds to thousands of genes by separation of

specific chromosomes or by hybridization between nor-

mal and tumor cells [67–69], implying that different com-

plexes interacting in networks are formed and reformed

in these cells [70, 71]. These findings supported the

notion that, in the long term, for chemical or genetic–
epigenetic agents [72] to be therapeutically efficacious in

patients, they should lead to global (genomic/epigenomic)

reorganization of the multimolecular complexes and net-

works that control cancer cell behavior. Currently, cancer

network (and presumably module deregulation/reregulation)

formation and oncogenesis can be influenced in animal

models by at least two approaches: first, with regulatable

oncogene expression in animal models [73–75] and sec-

ond, epigenetically by exploiting intrinsic signaling path-

ways, as, for example, in some leukemias, such as acute

promyelocytic leukemia (APL), using the retinoid recep-

tor ligand retinoic acid [76].

Work on oncogene proteins combined with gene chip

microarray and proteomic analysis suggests that they pos-

sess properties that resemble those exhibited by nodes or

clusters in theoretical networks reverse-worked from

genomic and proteomic data analysis in yeast or, to a

more limited degree, from human tumor models. Specifi-

cally, several of the well-known oncogene products Myc

and Ras are known to (a) participate in many different

multiprotein complexes, (b) control several different func-

tional outcomes, such as proliferation, invasion, apopto-

sis, or growth arrest, and (c) induce different functional

outcomes on cells depending on the cell type (normal vs.

transformed, etc.), suggesting that this variety of func-

tional effects might be the result of forming different

complexes and therefore networks.

The c-MYC proto-oncogene, which is either amplified

or overexpressed, is estimated to be involved in 20% of

all human cancers and the c-Myc protein affects expres-

sion of nearly 15% of genes in genomes as disparate as

flies and humans. The c-Myc transcription factor regu-

lates gene expression by several transcriptional mecha-

nisms, for example, by forming complexes with histone

acetylases, DNA methyltrasferases, and basal transcription

complexes in the regulatory DNA regions of target genes

[77–80], and importantly, increased expression of the

protein correlates well with cell transformation. The regu-

lated genes belong to the cell cycle [81, 82], metabolism

[83, 84], cell adhesion [85, 86], and lately, to micro RNAs

(miRNAs) [87], a class of small, genome-encoded RNAs

(estimated to comprise approximately 2–4% of all human

genes) with significant regulatory functions in normal and

tumorigenesis-related gene expression. Like most proteins,

c-MYC is never found in isolation within normal or

tumor cells. It forms different complexes with a multitude

of other regulatory factors whose composition can be cell

cycle or mitogenic signal dependent. For example, c-MYC

directly interacts with the general transcription factor

TFIIB and assists in RNA polymerase III-dependent tran-

scriptional activation of tRNA and 5S ribosomal genes

[88]. Also, it interacts with INI1/hSNF5, a protein mem-

ber of the SWI2/SNF2 multiprotein complex that is

involved in transcriptional regulation through chromatin

remodeling activities and is required for c-MYC-mediated

transcription activation [89]. Although sequestration of

c-MYC into different complexes and/or cellular compart-

ments is probably one of many mechanisms to regulate

formation of different c-MYC complexes, its ability to

induce proliferation arrest or apoptosis in normal cells, or

its synergism in vitro [90] and in vivo [91] in tumorigene-

sis in the context of Ras signaling could involve forma-

tion of novel complexes or rearrangement of existing

ones, and Myc-driven networks that together lead to

autonomous proliferation, growth, and invasion.

In mouse models, c-MYC overexpression causes tumor

formation in different cell types and inactivation of

expression reverses tumorigenesis. However, reactivation

of c-MYC expression in the same animals reinitiates

tumor formation in some organs such as breast [92] and

pancreas, [93] whereas it induces terminal differentiation

or apoptosis without tumor regrowth in others [94, 95].
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Although the mechanisms are obscure, it is reasonable to

suggest that, depending on tumor organ origin and the

epigenetic profiles of the target cell types in the affected

organs, the c-Myc protein forms different complexes, and

therefore different networks, that reorganize modules that

control cell proliferation, survival, and invasion differently

in the different cell types and organs. Therefore, questions

regarding the composition of c-Myc complexes and how

they interconnect in network organization are critical in

delineating how this transcription factor controls so many

different tumor-associated phenotypes. Using data from

different c-MYC-affected cell types it might be possible to

generate expression, proteomic, and regulomic data that

could illuminate the differences in the networks operating

in different c-MYC-driven tumors in a manner similar to

that used in validating the MCF10A-modeled wound

response.

Ectopic c-MYC overexpression in normal fibroblasts

can accelerate cell cycle entry but also induces apoptosis

[96]. This response depends on an intact ARF/MDM2/

p53 tumor suppressor pathway, which monitors mito-

genic and DNA damage signals impacting onto cells

(Fig. 4) and whose module components are still largely

unknown. In these cells, c-MYC activates/stabilizes ARF

which subsequently inhibits MDM2 and stabilizes p53,

leading to apoptosis [97]. In contrast, in transformed

cells, in which the ARF/p53 pathway is not functional,

because of ARF mutations, apoptosis is evaded and

tumorigenesis is favored. Key questions regarding how

these proteins are networked in either case remains unan-

swered. For example, how does the presence of over-

expressed MYC protein affect complex composition and

function, especially in the context of other activated

oncogene proteins such as RAS? How does progression of

tumor formation abrogate TGFb-mediated growth arrest

and promote TGFb-mediated metastatic behavior? How is

SMAD2/3-mediated inhibition of MYC activity in its

complexes altered in tumors (see Fig. 4)? It is reasonable

to suggest that these functional outcomes are caused by

reorganization of interacting MYC, p53, TGFbRII/
SMAD2,3, and ARF complexes, which in turn generate

novel networks and ultimately deregulate functional mod-

ules. Therefore, assessing MYC, p53, TGFbRII, and ARF

networking by determining how they are interconnected

could potentially lead to novel findings, including identi-

fying promising targets (nodes) within their networks.

Ultimately although, for useful target identification within

c-MYC-regulated networks in human tumors and even-

tual clinical utility, it might be necessary to combine data

from many different sources, including patient survival

outcomes, histology, gene microarray, proteomic, and

network data. This analysis requires the use of data from

several different sources (higher data dimensionality

[98]), for example, in a manner similar to that used in

validating the model for wound response in the human

breast-derived, nontumorigenic MCF10A cell line [99].

Large-Scale Integrated Genomic
Analyses and Cancer Network
Heterogeneity

Large-scale integrated genomic studies by the Cancer

Genome Atlas Research Network have used mRNA, micro-

RNA, promoter methylation, DNA copy number varia-

tions, and DNA sequencing of exons of coding genes in

various tumors such as ovarian and breast cancer sam-

ples. Integrated genomic analyses have shed light on the

landscape of molecular alterations that characterize ovar-

ian cancer genomes and (not surprisingly) revealed that

the p53 gene is mutated in nearly all samples and that

there are at least four transcriptional ovarian subtypes

[100]. These subtypes also have three different miRNA

subtypes and four promoter methylation subtypes. This

suggests that the subtypes differ in the networks and sub-

networks formed by the products of expressed genes (pro-

teins, miRNAs, etc.). Although the number of mutations

and altered genes is statistically rather low, the fact that

tumor samples have different transcriptional signatures

indicates that tumor cells and tissues are extremely heter-

ogeneous, hence robust to general therapeutic approaches.

Another important point that stems from this compre-

hensive study is that whereas the RB1 and RI3K/RAS

pathways are functionally altered in 67% and 45% of

samples, respectively, the existence of different transcrip-

tional subtypes, three miRNA subtypes, and four epige-

netic subtypes strongly suggests that the products of these

genes, along with their functional partners, must differ in

different subtypes. It remains to be found how their net-

works differ and whether their network properties are

consistent with their predictive role. Analysis of breast

cancer samples by the same approaches has revealed a

similar picture, strengthening the argument that molecu-

lar heterogeneity is reflected in gene product and clinical

heterogeneity [101]. Interestingly, here too more than

10% of mutations in three genes (p53, PI3K, and GATA3)

are found in all subtypes. An important next step would

be to reconstruct p53, PI3K, or GATA3-centric networks

in the different subtypes and dissect their links to other

genes/gene products, particularly to hubs in order to

identify novel connections between altered pathways.

Complexity in tumor cell organization is reflected in

molecular heterogeneity as different networks (arising

from mutations that are different in different regions of a

tumor) are formed by a narrow range of the same

mutated genes in different cell types within tumors

and will be a challenge to personalized medicine and
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particularly to biomarker development. Work by Gerlinger

et al. [102] has demonstrated that during tumor growth

nearly two thirds of somatic mutations are absent or non-

detectable in every tumor region. Notably, several tumor

suppressor genes have undergone different mutational

events in different tumor regions and also different tumor

regions harbored different good and bad prognostic

expression signatures. Therefore, therapeutic and bio-

marker development challenges will be formidable. One

approach to address this state of affairs will be to identify

the wiring of hubs in different tumor cells and regions

and to devise hub-targeting methods aimed at preventing

heterogeneity from evolving in a Darwinian manner.

Hubs and bottleneck nodes in networks tend to be

important for the functioning of cells and their targeting

could prove valuable. Scaled network disruption has been

recently proposed by Camacho and Pienta [103] as an

approach emulating ecological species organization which

takes advantage of the nested organization of such net-

works. In ecological networks, disruption of a single spe-

cies (node) does not disrupt network organization and

the same can be said of tumors which can be viewed as

nested communities of different networks. This explains

why single agents rarely lead to curative results. In con-

trast, where heterogeneity is limited, as in some leukemias

(e.g., APL), single-agent administration often leads to bet-

ter treatment outcomes if not curative results.

From a computational/bioinformatic point of view, the

heterogeneity issue has been addressed by building data-

bases which incorporate several different types of data

that refer to a common property in tumors under study

and which create connectivity maps between disparate

data. ONCOMINE is one such database [104, 105]. It is

worthwhile noting here that given that there has been a

decline in funds available for cancer research and given

the fact that cancer incidence is on the rise, the develop-

ment and application of personalized treatments and the

development of accurate biomarkers will be a difficult

task ahead for basic scientists and clinicians.

Conclusions

We have proposed a simple conceptual model to explain

the hierarchical organization and possible functional inter-

actions between multimolecular complexes formed by

genetically/epigenetically encoded and modified molecules,

the networks and modules they potentially form and how

changes in their properties and composition (due to

changes in the levels or mutation status of key molecules

exemplified by p27) could explain tumor formation. The

evidence for this model derives from several experimental

and computational/theoretical sources. First, changes in the

levels of cell cycle inhibitors in cyclin/CDK complexes

control assembly and function of the respective complexes

by determining progression or inhibition of progression

depending on the levels of CDKI [54]. Second, alterations

in the levels of some oncogenic proteins (MYC or RAS) can

have opposite effects on growth and proliferation depend-

ing on whether their levels increase in normal (growth

inhibition, arrest, or apoptosis) or transformed cells

(enhancement of tumorigenesis) [96]. Third, based on

combined theoretical and genomic/proteomic data in yeast

models, proteins/genes that belong to the same complex or

module exhibit correlated biological functions [22]. Finally,

regulated MYC overexpression/inactivation in mouse mod-

els suggests that, depending on the presence of different sig-

naling networks/modules, oncoproteins that may be hubs

form different complexes and consequently networks that

affect cell behavior differently [75].

In addition to technical imperfections that generate sys-

tematic experimental errors, several issues will have to be

clarified before systems biological approaches become fruit-

ful in cancer research and find use in clinical applications.

Central to this will be efforts aimed at identifying hubs

between and within networks of oncogenic proteins that

drive specific cancers, correlating these to actual tumor

data and identifying intracomplex or network/module tar-

gets that control complex/network functional interactions

using multiple sources of data. Clearly the identification of

combined mRNA, protein, and miRNA signatures for

tumor entities such as, for example, for invasion or prolif-

eration would facilitate the discovery of novel connections

and biomarkers. Analysis of these data and their reduction

to as few parameters as possible capable of describing dis-

ease states will require progress in (a) the characterization

of the role of known (and unknown) oncogene/suppressor

proteins (and other hub proteins) in their respective

tumor-specific complexes, which to date remain poorly

defined, (b) the delineation of their networks in terms of

functional tumor protein clusters, and (c) placing these

proteins and their physical/functional partners in realistic

clusters within and between networks, and (d) delineating

how they interact in controlling the modules of cell prolif-

eration, growth, and invasion.
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