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Recent advances in tendinopathy
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Abstract

Tendinopathy refers to the clinical diagnosis of activity-related pain resulting in a decline in tendon function. In the last few years, 
much has been published concerning the basic science and clinical investigation of tendinopathy and debates and discussions to 
new questions and points of view started many years ago. This advances review will discuss the current thinking on the basic 
science and clinical management of tendinopathy and in particular new findings in the tendon repair space that are relevant to the 
pathophysiology of tendinopathy. We will further discuss potential novel therapies on the horizon in human tendon disease.
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Introduction
Tendinopathy describes painful conditions that arise in and  
around tendons in response to overuse and are complex, mul-
tifactorial pathologies. Although advances have been made in  
recent years, it remains challenging to treat, as its definitions,  
risk factors, and pathophysiology are still evolving. They com-
monly affect both the upper (shoulder [rotator cuff], elbow, 
and wrist tendons) and the lower (Achilles, patellar, peroneal,  
and gluteal tendons) extremities and are associated with a 
number of different factors, including increasing age, gender, 
type of exercise and physical activity, occupation, and certain  
co-morbidities including metabolic or cardiovascular disease1,2.  
The condition is more common in specific sports that involve  
repetitive loading of a particular tendon or tendon group1, and, in 
the elite sports community, tendinopathy accounts for approxi-
mately 30% of the total number of injuries diagnosed3. As with 
specific sports such as volleyball players suffering from knee 
(patellar) tendinopathy, certain occupations that involve high force 
with repetitive loading of the tendon, such as manual labourers 
(joiners/plumbers/bricklayers), musicians, and surgeons, have a 
higher incidence and prevalence of tendinopathy than the general  
population1,4. This review will provide brief background core  
information while focusing on updates on the basic science of 
tendinopathy and tendon repair, in particular findings that may 
translate to novel therapies on the horizon in human tendon  
disease.

Diagnosis
The diagnosis of tendinopathy is largely a clinical one, with 
the patient often describing activity-provoked localised tendon 
pain and stiffness. A “typical” tendon history is of pain dur-
ing the activity, which then often lessens but can be worse the  
following day, and it can be associated with early morning stiff-
ness. In the early stages, an individual can often continue with  
the activity, experiencing only intermittent pain. With repeated  
use of the affected tendon, however, the pain will often progress 
in nature to a constant debilitating pain and an inability to  
perform the required activity. For more superficial tendons, pal-
pation is often used as a diagnostic tool, such as thickening in 
mid portion Achilles tendinopathy. Deeper tendons require pain  
provocation testing along with additional diagnostic testing to  
help with determining the diagnosis. Changes that appear on 
imaging modalities (ultrasound, magnetic resonance imaging  
[MRI], ultrasound tissue characterisation [UTC], and sonoe-
lastography) do not necessarily correspond to the presence or 
severity of symptoms5. Imaging reveals structural changes and 
the degree of severity, but pain and aggravating factors need 
to be considered when clinically interpreting the results. Thus, 
imaging needs to be placed in the context of the overall clinical  
picture, and the development of new imaging techniques (UTC or  
sonoelastography) that utilise more quantifiable parameters 
will enhance our ability to diagnose, predict the development of  
symptoms, and monitor the efficacy of tendinopathy treatments.

Pathophysiology
The pathogenesis of tendinopathy appears to be multifactorial  
(Figure 1), and despite the growing body of research aiming to  

elucidate its exact aetiology and underlying mechanisms, several 
questions remain unanswered.

Various theories have been proposed with regard to the patho-
genesis of tendinopathy. The vast majority of them fall into one 
of three models based on the primary event in the pathology  
cascade: a) collagen disruption/tearing model, b) inflamma-
tion, and c) tendon cell response. The “failed healing” theory 
proposed by Fu et al. is a unified theory incorporating various 
previously proposed ones6. It suggests that it all starts with an 
initial injury (or repetitive microinjuries) and an unfavourable  
mechanical environment. The normal healing process is diverted 
into an abnormal pathway due to unfavourable mechanical envi-
ronment, disturbances of local inflammatory responses, oxi-
dative stress, and pharmacological influences. This abnormal 
healing then leads to pathological changes in the tendon matrix,  
cytokine profiles, vascularity, innervation, cellularity, and cell 
phenotypes, which in turn lead to clinical presentation, which is 
either pain (a result of increased nociception) or rupture (due 
to mechanical weakness)6. Similarly, the “continuum model” 
of tendon pathology proposed by Cook et al. is also a popular  
unified theory7,8. According to this, there are three stages to ten-
don pathology with continuity between them: a) reactive tendin-
opathy, b) tendon dysrepair (failed healing), and c) degenerative  
tendinopathy. In the first stage, there is a non-inflammatory  
proliferative response in the cell and matrix that occurs with 
acute overload and leads to adaptive thickening of a portion of 
the tendon. In the second stage, there is matrix breakdown, an 
increase in the number of cells, and production of proteogly-
cans and collagen, which is now disorganised. There may also 
be neoangiogenesis and neuronal ingrowth. In the last stage,  
areas of cell death occur because of apoptosis and tenocyte 
exhaustion, and alongside the increasing disorganisation of the 
matrix this results in matrix heterogeneity with little capac-
ity for reversibility of the damage7,8. This latter model does not, 
however, recognise the role of inflammation in tendinopathy,  
which has been demonstrated in numerous studies9.

Regardless of the exact underlying model, animal and human  
studies have identified several factors at a cellular and molecu-
lar level that appear to contribute to or are associated with the 
development of tendinopathy. Histological analyses of diseased  
tendon samples have demonstrated disorganised collagen bun-
dles, collagen fibre fragmentation, replacement of type I with  
type III collagen, neovascularity, and neoinnervation10,11. Rel-
evant research has focused on identifying transcription factors 
and signalling pathways regulating the formation of type I  
collagen and its architecture within the extracellular matrix 
(ECM) of the tendon, and some transcription factors implicated 
in the modulation of COL1A1/A2 gene expression have been  
identified (e.g. scleraxis and Mohawk homeobox protein)12,13. 
The non-collagenous ECM (elastin, glycoproteins, proteoglycans,  
etc.) is also thought to be implicated, as its components have 
been found to play a role in both ECM assembly and the  
regulation of cell growth and differentiation14.

Oxidative injury and mitochondrial dysfunction are also impli-
cated. Degenerative tendon produces reactive oxygen species  
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and oxygen free radicals, which in turn can lead to stress-
induced apoptotic cell pathways15. Apoptosis is thought to 
cause a progressive loss of intrinsic tendon cells and, indeed, 
degenerative rotator cuff tendon samples have been shown to  
demonstrate increased expression of caspase 3 and 8, which are 
known to be initiators of apoptosis16,17. Mitochondrial mem-
brane potential has been shown to be decreased in human  
samples of degenerative tendon, and the expression of BNIP3  
(BCL2-interacting protein 3), which is implicated in pro-
apoptotic pathways and mitochondrial dysfunction, has been  

found to be upregulated18. Finally, nitric oxide (NO), which is 
involved in inflammation, is produced by NO synthase (NOS), 
the activity of which is increased in tendinopathy19. This has 
been repeatedly demonstrated in both diseased human tissue and  
animal models, and, additionally, NO exposure has been shown  
to increase the production of various tendon ECM components20.

Signalling pathways have also been implicated in the patho-
genesis of tendinopathy. Wnt signalling has been reported to 
play a role with overexpression of Wnt3a and beta-catenin in 

Figure 1. Pathogenesis of tendinopathy. Various risk factors including mechanical overuse, environmental factors including smoking, 
metabolic disease (diabetes, hyperlipidaemia), and genetics have been implicated in tendinopathy. Additionally, certain medications 
(fluoroquinolones, statins, excess corticosteroids), neuropathic mediators, excessive apoptosis, dysregulated molecular inflammation, and  
matrix production are all implicated in the development of tendinopathy. MMP, matrix metalloproteinase; TIMP, tissue inhibitors of 
metalloproteinases.
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patellar tendinopathy samples and so has the NF-kB pathway 
in human shoulder tendinopathy samples and mouse tendon 
cells21,22. Finally, rodent tendinopathy models demonstrated 
overexpression of ERK1/2 signalling and inhibition of p38; the  
former is thought to have an important role in the action of  
steroids inhibiting proliferation and collagen synthesis in teno-
cytes and the latter has an effect on the expression of ECM and 
cell proliferation genes23,24. Additionally, genetic predisposition 
is thought to be implicated; a number of genetic polymorphisms 
(COL5A1, MMP-3, TIMP2, and tenascin-C) that disturb ten-
don homeostasis and its healing ability following mechanical  
overload and injury have been identified25–27.

Molecular inflammation and the immune system have been  
shown to play a fundamental role in tendinopathy. Both animal 
models and clinical samples of diseased human tendons have 
shown that tendinopathy is not the result of mere mechanical  
degeneration but involves complex immunological interac-
tions with the influx of innate and adaptive immune cells being 
shown to play important roles9,28. These are thought to convert the  
initial healthy healing response of diseased tendon into chronic 
symptomatic disease by the production of various inflamma-
tory cytokines and chemokines, which alter the microstruc-
ture of tendon. Macrophages and mast cells (both local and  
systemic) are immune cell types that have been shown to result 
in overproduction of inflammatory cells within the tendon and  
stimulate a chronic inflammatory response29. A plethora of 
interleukins and other cytokines are involved in the pathogen-
esis of tendinopathy, some of which are IL-1beta, IL-4, IL-6, 
and TNF-alpha30. IL-17 is thought to be of paramount impor-
tance, as it may play a role in ECM remodelling through type 
III collagen production and initiation of other pro-inflammatory  
cytokines31. Anti-IL-17 agents are currently being investigated  
for the treatment of tendinopathy32. Finally, alarmins (damage- 
associated proteins), which are known to be released rapidly 
after non-programmed cell death (necrosis), are key initiators of 
the innate immune system, and restore tissue homeostasis, have  
also been implicated33.

The underlying mechanism of perceived pain as a result of  
tendinopathy is also incompletely understood. The presence and  
severity of pain do not always correlate with the extent of the  
underlying structural changes, and, indeed, structural changes 
are not a prerequisite for the development of pain. In addition,  
progression of tendon pathology over time is much more likely 
to lead to symptomatic tendinopathy than the absolute extent 
of pathology at a single time point8. Upregulation of gluta-
mate and its receptors has been found in diseased tendon along  
with other nociceptive mediators such as metabotropic gluta-
mate receptor 2, kainite receptor 1, protein gene 9.5, and sub-
stance P, and they are thought to be implicated in the underlying  
pathologic changes in addition to mediating pain34.

Management
Current management can be divided into active rehabilita-
tion, which mainly involves tendon-loading physiotherapy 
regimes along with patient education and intervention strategies, 
including steroid injection, medications, platelet-rich plasma,  

iontophoresis, extracorporeal shockwave therapy (ESWT), low-
energy laser therapy, and therapeutic ultrasound. Importantly, 
the treating clinician should identify any precipitating fac-
tors such as sudden acute changes in load (change in training 
regimes), previous injury, medication changes (increased tendi-
nopathy risk related to the use of fluoroquinolones, antibiotics, 
or steroids), family history of inflammatory arthritis, and any 
relevant medical history (increased tendinopathy risk associated  
with diabetes, smoking, hyperlipidaemia, and obesity).

Exercise-based strategies and other non-surgical 
modalities
A tailored, individualised exercise regime based on current  
evidence-based principles of load and exercise progression is 
most likely to ensure patient compliance and therefore benefit.  
Eccentric tendon-loading exercise regimes remain one of the 
most effective conservative therapies for tendinopathy. Results 
have shown benefit when applied to Achilles and patellar  
tendinopathies of the lower limb35,36, along with lateral elbow 
and shoulder tendinopathy in the upper limb37,38. The addition of  
isometric exercises into a rehabilitation programme has been 
shown to be of benefit, in particular with athletes suffering from 
patellar tendinopathy39,40. These positive findings, however, have  
not been reproduced in more recent studies and therefore its role 
remains ambiguous41. Another strategy, heavy slow resistance  
training (HSRT), allows the tendon to be subjected to greater  
volumes of loading with fewer repetitions. This results in a 
greater time under tension, leading to greater tendon adaptation,  
and can be considered in a progressive loading regime42.

Corticosteroids are often used to provide short-term pain  
relief, allowing the patient to begin an exercise regime; how-
ever, its role is still debated. This is because of certain studies  
showing no benefit of steroid injection versus control43 with  
regard to pain and return to normal tasks, along with the  
detrimental effects of the steroid on tendon function44 and the  
potential of tendon rupture45.

Topical glyceryl trinitrate (GTN) is considered a safe and 
reliable treatment or adjunct for the management of tendin-
opathy. A recent systematic review of randomised controlled  
trials (RCTs) showed significant improvements in pain 
when comparing GTN with placebo in the short term, along 
with further significant improvements for up to 6 months. It 
can, however, be associated with an increased incidence of  
headaches46.

Platelet-rich plasma is thought to promote tendon healing;  
however, to date, there is no high-quality evidence to support 
its use47. Iontophoresis is often suggested for more superficial  
tendons, and its aim is to induce pain relief. Again, there is insuf-
ficient evidence to support its use as a stand-alone treatment, 
but its low side effect profile lends itself to being used as an  
adjunct therapy48.

ESWT has been used as a treatment for tendinopathy and  
soft tissue disorders of the shoulder, elbow, hip, knee, and ankle 
areas. The exact mechanism of ESWT is not fully understood;  
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however, one study suggests that the mechanical stimulus  
provided by ESWT might aid tendon remodelling in tendinopa-
thy by promoting the inflammatory and catabolic processes that 
are associated with removing damaged matrix constituents49. It 
appears to have increased efficacy when used more frequently 
and at an increased dose. It also appears to show increased benefit  
in treating calcific tendinopathy compared with non-calcific  
tendinopathy47. Currently, its use is considered safe as an adjunct, 
but again further high-quality studies are required to determine  
the optimum treatment protocol.

Low-level laser therapy (LLLT) uses light energy at levels  
low enough to not cause skin temperature increases, and there 
is some evidence for its ability to reduce inflammation and 
oedema, induce analgesia, and promote healing in a range of  
musculoskeletal pathologies. A small systematic review con-
cluded that LLLT compared to placebo was an effective treat-
ment option for tendinopathy50. There have also been promising  
results using low-intensity pulsed ultrasound in the treatment of 
Achilles tendinopathy51, but once again further research needs 
to be carried out to determine the long-term benefits and disad-
vantages of these alternative therapies. High-volume injection  
(HVI) is a treatment involving the injection of a large vol-
ume of saline, usually mixed with corticosteroid and/or local 
anaesthetic; however, nearly all studies on HVI consist of rela-
tively small numbers of patients, limiting the generalizability  
of this treatment modality.

Surgery
The aim of surgery is to promote regeneration of the tendon.  
Procedures vary from open procedures to minimally invasive 
operations through percutaneous incisions or with arthroscopy,  
depending on the site of tendinopathy.

No RCTs are available comparing surgery with non-operative  
management for Achilles tendinopathy. Surgery for this tendi-
nopathy often involves tenotomy and debridement of the  
diseased portion. There has been no benefit demonstrated in  
radiofrequency microdebridement of this tendon in comparison  
to surgical decompression52. Patellar tendinopathy is also most 
commonly treated with tenotomy and debridement. A recent  
Cochrane review, however, demonstrated no benefit of open 
surgery versus eccentric exercises for patellar tendinopathy at  
12 months with regard to pain and tendon function53.

Similarly, in the upper limb, lateral elbow tendinopathy is  
treated with debridement and excision of extensor carpi radia-
lis brevis. However, a prospective, randomised, double-blinded,  
placebo-controlled clinical trial found no benefit of the exci-
sion surgery in comparison to the placebo surgery54. The CSAW 
trial for shoulder tendinopathy also demonstrated that although  
surgical groups had better outcomes for shoulder pain and  
function, it was not statistically significant. Surgical decompres-
sion also showed no increased benefit over arthroscopy only,  
questioning the value of the operation for the condition55. 
Finally, a recent systematic review of RCTs showed that surgery  
does not appear to be superior to physiotherapy in the mid 
or long term, and loading therapy (with or without adjuncts) 
is recommended for at least 12 months before surgery is  
considered56.

Strategies for the management of tendinopathy and 
future direction
The future of tendinopathy research requires that the findings  
from basic laboratory research (both acute tendon injury and 
chronic disease models) be integrated into the clinical research 
domain to provide a comprehensive picture of the disease  
process involved in tendinopathy. Thus, results from genetic, 
epigenetic, in vitro/vivo, epidemiological, observational, and 
clinical studies need integration into logical pathways to treat  
the disease.

There has been increasing attention on tendon healing  
strategies recently directed towards both tendinopathy and  
tendon ruptures. Biologic therapies include the use of scaffolds and  
delivery of genes, growth factors, and cells. Scaffolds can be  
used to deliver mechanical support by providing a suitable 
environment for the attachment, proliferation, and subsequent 
migration of cells to establish a base for matrix remodelling 
and ultimately native tendon tissue regeneration. In addition to  
the lack of long-term follow up, findings in clinical studies 
using scaffolds have been inconsistent with respect to clinical 
outcomes and adverse effects57. Approximately one-quarter of 
patients who received non-cross-linked porcine scaffolds expe-
rienced significant aseptic inflammatory reactions; therefore, 
their use is not recommended57,58. Various materials are avail-
able, and, although natural ECM scaffolds were initially favoured,  
synthetic scaffolds seem to be very promising59,60.

Gene therapy remains an experimental treatment approach  
with no licenced clinical application as yet. It can be performed 
through direct gene transfer or viral and non-viral vectors  
coding for growth factors, usually administered with the means  
of local injections. They are designed to supply exogenous 
genetic materials into cells in order to subsequently alter the  
DNA and induce, silence, upregulate, or downregulate the  
expression profile and secretion of proteins. Several factors  
have been tested in animal studies and yielded promising results, 
including, but not limited to, BMP12, bone marrow-derived  
mesenchymal stem cells, and TGF-beta161–63. Growth factors  
have the capacity to promote the differentiation of local stem  
cells into fibroblasts and therefore accelerate tendon healing.

Finally, the use of stem cells is an interesting strategy for  
tendon repair and regeneration, and studies have reported  
promising results with regard to their effects and safety64,65. There 
are two different types of mesenchymal stem cells that are com-
monly used: bone marrow- and adipose tissue-derived cells. 
The exact mechanism of action of stem cells remains unknown;  
therefore, more basic science is needed before they are used in 
meaningful clinical trials. The therapeutic effects of stem cells 
in target tissue are thought to be exerted at least in part through  
paracrine actions, such as through exosomes, which are  
extracellular vesicles66. Exosomes mediate intercellular commu-
nication by delivering functional molecules such as proteins and  
mRNAs to recipient cells, and they are thought to be both  
effective and safe67,68.

All the aforementioned novel healing strategies are promising  
treatments for tendinopathy. More detailed understanding of 
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References Faculty Opinions Recommended

the underlying pathogenesis and basic science of tendinopathy 
will guide the development of clinically effective cellular and  
molecular treatment strategies that will restore injured tendons 
to their premorbid state. Further delineation of associated muta-
tions and epigenetic changes could also facilitate future research 
to identify effective therapies and DNA biomarkers for earlier  
diagnosis. Exosomes may be used as delivery vehicles for  
tendon-targeted gene therapy in environments suitable for best 
possible effects. Furthermore, the ideal stem cell type, cell  
number, and scaffold material are areas of ongoing investi-
gation and have significant potential. The majority of these  
biologic strategies have been applied to models of acute dis-
ease, especially the repair of tendon ruptures, and perhaps more  
attention should be paid to chronic, degenerative tendinopa-
thy, which is much more common in clinical practice. Finally, 
the use of disease-modifying agents such as chondrolytics for 
targeted removal of mucoid deposits may be investigated in 
the future, along with the application of more than one mode 

of biologic therapy simultaneously capitalising on potential  
synergistic effects57.

Conclusion
Despite the increasing attention of the research community  
towards understanding and treating tendinopathy, several ques-
tions remain unanswered. It constitutes a complex condition 
with regard to its pathogenesis and pathophysiology, which 
makes it so challenging to treat. Whilst loading regimes will 
remain the mainstay of clinical treatment, new biologic and  
tissue-engineering therapies are constantly emerging, some of 
which have shown promise in pre-clinical and clinical settings,  
which will provide important adjuncts for those 30–50% of  
patients who may ultimately fail loading regimes. More 
detailed understanding of the underlying basic science through  
laboratory-based research will undoubtedly be of paramount  
importance in guiding the identification and application of  
effective therapies.
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