Environmental contaminants and cardiovascular risk: a systematic review and meta-analysis of observational studies

Supplementary tables and figures

Table S 1 MOOSE checklist

Appendix 1 Details of search strategy

Table S 2 List of studies included in the review and meta-analysis

Table S 3 Major sources of metals

Table S 4 Summary of the baseline levels of environmental contaminants and measurement methods in the included studies

Table S 5 Tests for publication bias

Table S 6 Defintions of terms used

Figure S 1 Dose response analysis

Figure S 2 Subgroup analyses for the association of arsenic with cardiovascular outcomes

Figure S3 Subgroup analyses for the association of lead with cardiovascular outcomes

Figure S 4 Subgroup analyses for the association of cadmium with cardiovascular outcomes

Figure S 5 Subgroup analyses for the association of mercury with cardiovascular outcomes

Figure S 6 Subgroup analyses for the association of copper with cardiovascular outcomes

Figure S 7 Subgroup analysis for the association of arsenic with cardiovascular outcomes by measurement source

Figure S 8 Subgroup analysis for the association of arsenic with cardiovascular outcomes by smoking

Figure S 9 Subgroup analysis for the association of cadmium with cardiovascular outcomes by smoking

Figure S 10 Funnel plots for association of arsenic with cardiovascular outcomes

Figure S 11 Funnel plots for association of lead with cardiovascular outcomes

Figure S 12 Funnel plots for association of cadmium with cardiovascular outcomes

Figure S 13 Funnel plots for association of copper with cardiovascular outcomes

Figure S 14 Funnel plots for association of arsenic with cardiovascular outcomes

Table S1 MOOSE checklist

Item No	Recommendation	Reported on Page No
Reporting of b	ackground should include	
1	Problem definition	4
2	Hypothesis statement	4
3	Description of study outcome(s)	6
4	Type of exposure or intervention used	6
5	Type of study designs used	6
6	Study population	6
Reporting of s	earch strategy should include	
7	Qualifications of searchers (eg, librarians and investigators)	7
8	Search strategy, including time period included in the synthesis and key words	6,3*
9	Effort to include all available studies, including contact with authors	6
10	Databases and registries searched	6
11	Search software used, name and version, including special features used (eg, explosion)	6
12	Use of hand searching (eg, reference lists of obtained articles)	6
13	List of citations located and those excluded, including justification	4-5*
14	Method of addressing articles published in languages other than English	NA
15	Method of handling abstracts and unpublished studies	NA
16	Description of any contact with authors	NA
Reporting of n	nethods should include	
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	17,7-9*
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	NA
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	7-8
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	NA
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	7-8
22	Assessment of heterogeneity	7-8
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	7-8
24	Provision of appropriate tables and graphics	17-29, 3-26*
Reporting of r	esults should include	
25	Graphic summarizing individual study estimates and overall estimate	22-29
26	Table giving descriptive information for each study included	17,7-9*

27	Results of sensitivity testing (eg, subgroup analysis)	10-18*
28	Indication of statistical uncertainty of findings	12,19-24*

Appendix1 Details of search strategy

PubMed strategy:

(("arsenic"[MeSH Terms] OR "arsenic"[All Fields]) OR ("mercury"[MeSH Terms] OR "mercury"[All Fields]) OR ("copper"[MeSH Terms] OR "copper"[All Fields]) OR ("lead"[MeSH Terms] OR "lead"[All Fields]) OR ("cadmium"[MeSH Terms] OR "cadmium"[All Fields]))

AND

("Cardiovascular Diseases" [Mesh] OR "Coronary Artery Disease" [Mesh] OR "Atherosclerosis" [Mesh] OR "Coronary Disease" [Mesh] OR "Myocardial Infarction" [Mesh] OR "Myocardial Ischemia" [Mesh] OR "Stroke" [Mesh] OR "Cardiovascular Disease" [All Fields] OR "Coronary Artery Disease" [All Fields] OR "Atherosclerosis" [All Fields] OR "Coronary Disease" [All Fields] OR "Myocardial Infarction" [All Fields] OR "Myocardial Ischemia" [All Fields] OR "Stroke" [All Fields]

AND

("Cohort Studies"[Mesh] OR "case-control studies"[MeSH Terms] OR "cross-sectional studies"[MeSH Terms] OR "Follow-Up Studies"[Mesh] OR "odds ratio"[All Fields] OR "prospective"[All Fields])

AND

("humans"[MeSH Terms])

EMBASE strategy:

((exp arsenic/ OR exp mercury/ OR exp copper/ OR exp lead/ OR exp cadmium/) OR ((arsenic OR mercury OR copper OR (lead NOT ("lead ECG" OR "12-lead" OR "leads" OR "lead to")) OR cadmium).ab,ti.))

AND

((exp "cardiovascular disease"/ OR exp "Coronary Artery Disease"/ OR exp "Atherosclerosis"/ OR exp "Coronary Disease"/ OR exp "Myocardial Infarction"/ OR exp "Myocardial Ischemia"/ OR exp "Stroke"/) OR (("cardiovascular disease" OR "Coronary Artery Disease" OR "Atherosclerosis" OR "Coronary Disease" OR "Myocardial Infarction" OR "Myocardial Ischemia" OR "Stroke").ab,ti.))

AND

((exp "Cohort Studies"/ OR exp "case-control studies"/ OR exp "cross-sectional studies"/ OR exp "Follow-Up Studies"/ OR exp "odds ratio"/) OR (("Cohort Studies" OR "case-control studies" OR "cross-sectional studies" OR "Follow-Up Studies" OR "odds ratio" OR "prospective").ab,ti.))

NOT (animals NOT humans)

Web of science strategy:

(TS="arsenic" OR TS="mercury" OR TS="copper" OR TS="lead" OR TS="cadmium")

AND

(TS="Cardiovascular Diseases" OR TS="Coronary Artery Disease" OR TS="Atherosclerosis" OR TS="Coronary Disease" OR TS="Myocardial Infarction" OR TS="Myocardial Ischemia" OR TS="Stroke")

AND

(TS="Cohort Studies" OR TS="case-control studies" OR TS="cross-sectional studies" OR TS="Follow-Up Studies" OR TS="odds ratio" OR TS="prospective")

 Table S2
 List of studies included in the review and meta-analysis

Author, Year	PMID	Study name	Markers
Afridi, 2011	20480400		Arsenic
Chen, 2011	21546419	HEALS	Arsenic
Chen, 1996	8624771		Arsenic
Farzan, 2015	26048586	NHSCS	Arsenic
James, 2015	25350952	SLVDS	Arsenic
Liao, 2012	22569360		Arsenic
Moon, 2013	24061511	SHS	Arsenic
Monrad, 2017	28157645	Diet, Cancer and Health	Arsenic
Ruiz-Navarro, 1998*	9618928		Arsenic
Sohel, 2009	19797964		Arsenic
Wade, 2015	25889926		Arsenic
Wu, 2010	20708634		Arsenic
Chowdhury, 2014	24769120	ABLES	Lead
Khalil, 2009	19344498	SOF	Lead
Kromhout, 1988	3203644	The Zutphen Study	Lead
Lustberg, 2002	12437403	NHANES II	Lead
McElvenny, 2015	25872777		Lead
Menke, 2006	16982939	NHANES III	Lead
Moller, 1992	1462969	Glostrup Population Studies	Lead
Pocock, 1988	3203640	BRHS	Lead
Schober, 2006	17035139	NHANES III	Lead
Weisskopf, 2009	19738141	VA-NAS	Lead
Aoki, 2016	26735529	NHANES III	Lead, Cadmium
Barregard, 2015	26517380	MDCS	Cadmium
Li, 2011*	22340168		Cadmium
Menke, 2009	19270787	NHANES III	Cadmium
Nawrot, 2008	19079711	CadmiBel	Cadmium
Tellez-Plaza, 2013	23514838	SHS	Cadmium
Tellez-Plaza, 2012	22472185	NHANES	Cadmium
Yoshizawa, 2002*	12456851	HPFS	Cadmium
Bergdahl, 2013*	22350276	Gothenburg	Mercury
Daneshmand, 2016*	26991769	KIHD	Mercury
Downer, 2016	28056794	PREDIMED	Mercury
Guallar, 2002	15972934	EURAMIC	Mercury
Hallgren, 2001	11570992		Mercury
Mozaffarian, 2011	21428767	HPFS&NHS	Mercury
Virtanen, 2005	15539625	KIHD	Mercury
Wennberg, 2007*	17537290	NSHDS	Mercury
Wennberg, 2011	21048056	NSHDS	Mercury
Ford, 2000	10905530	NHANES II	Copper

Kok, 1988	3394701	EPOZ	Copper
Leone, 2006	16570028	PPS II	Copper
Marniemi, 2005	15955467		Copper
Reunanen, 1996	8862478		Copper
Salonen, 1991	1877585	KIHD	Copper

^{*}Studies excluded from the meta-analysis. One study reporting on exposure to arsenic which did not adjust for seafood consumption, two studies reporting on exposure to cadmium which did not adjust for smoking and three study reporting on exposure to mercury which did not adjust for seafood consumption or n-3 fatty acids were excluded.

Abbreviations: ABLES = Adult blood lead epidemiology and surveillance; BRHS = British regional heart study; EPOZ = Epidemiological study of risk factors for cardiovascular diseases; EURAMIC = European multicentre cases-control study on antioxidants, myocardial infarction and cancer; HEALS = Health effects of arsenic longitudinal study; HPFS = Health professions follow-up study; KIHD = Kuopio ischemic heart disease risk factor study;;; NHANES = National health and nutrition examination survey; NHS = Nurses health study; NHSCS: New Hampshire Skin Cancer Study; No. = number; NR = not reported; NSHDS = Northern Sweden health and disease study; PPS II = Paris prospective study 2; SHS = Strong heart study; SLVDS = San Luis Valley Diabetes Study; SOF = Study of osteoporotic fractures; VA-NAS = Veterans affairs normative ageing study.

Table S3 Major sources of toxic metals

and the United States of America
comes from food consumption ¹ . or water in addition to
idents via inhalation and can cause
dmium exposure ³ .
o ⁴ . Many plants have a high uptake
um household products can expose
ide ³ .
products can expose workers and
tain species of fish in certain areas,
action. The largest occupational
e environment. Mercury can also
many foods ⁸ .
bing materials or naturally high
metal industrial activities such as

Table S 4 Summary of the baseline levels of environmental contaminants and measurement methods in the included studies

Study/Lead Author (Publication Year)	Measurement Method		Baseline Level (SD)*	CV(%)	LOD	% <lod< th=""></lod<>
Arsenic						
Levels measured in urine:						
Afridi (2011)	Graphite furnace atomic absorption spectrometry	Concentration	4.9 [Males] μ g/l 4.8 [Females] μ g/l $^{\Psi}$	NR	15.9pg/g	NR
HEALS	Graphite furnace atomic absorption spectrometry	Creatinine adjusted	199¶ ug/g	NR	NR	NR
* Ruiz-Navarro (1998)	Hydride generation atomic absorption spectrometry	Concentration	3.68 (2.27) μg/l ^ψ	NR	NR	0%
SHS	High performance liquid chromatography coupled to	Creatinine adjusted	9.7¶ (5.8-15.7α) ug/g	6 to 7%	1ug/l	5% (max)
Levels measured in water:	mass spectrometry					
Chen (1996) ** ²	NR	Well water consumed (Cu)	NR	NR	NR	NR
Liao (2012)** ²	NR	Well water consumed (Cu)	NR	1 to 3%	0.8 to 1.5ug/l	NR
DCH (2017)	ICP-MS	Household tap water consumed (Cu)	0.7 (0.03-25.34 ^β) ug/l	NR	0.03ug/l	NR
Sohel (2009)	Hydride generation atomic absorption spectrophotometer	Household tube well water consumed (Cu)	131.1 (116) μg/l	NR	1ug/l	17%
SLVDS	Ion chromatography and inductively coupled plasma mass spectrometry	Household tap water consumed (Cu)	NR	NR	NR	NR
Wu (2010)** ¹	Hydride generation atomic absorption spectrometry	Well water consumed (Cu)	NR	NR	0.2ug/l	NR
Levels measured in toenails:						
NHSCS	Neutron-activation analysis	Concentration	120 (140) μg/l	NR	0.01ug/g	5%
Wade (2015)	Neutron-activation analysis	Concentration	0.87 (0.18-34.0 ^p) ug/g	NR	0.2ug/g	6%
Lead						
Levels measured in blood:						
ABLES	NR	Concentration	NR	NR	NR	NR
BRHS	Flame atomic absorption spectroscopy	Concentration	15.3 μg/dl	NR	NR	NR
McElvenny (2015)	NR	Concentration	44.3 (22.7) μg/dl	NR	NR	NR
Moller (1992)	NR	Concentration	11.5 (5.2) μg/dl	NR	NR	NR
NHANES II	Atomic absorption spectroscopy	Concentration	13¶ μg/dl	7 to 14%	NR	NR
NHANES III	Graphite furnace atomic absorption spectrophotometer	Concentration	2.58 ⁵ μg/dl	3 to 8%	1ug/dl	8%
NHANES III	Graphite furnace atomic absorption spectrophotometer	Concentration	NR	3 to 8%	1ug/dl	8%
NHANES III	Inductively coupled plasma mass spectrometry	Hematocrit corrected concentration	1.73 (0.02) μg/dl	3 to 8%	1ug/dl	8%

SOF	Graphite furnace atomic absorption spectrometry	Concentration	5.3 (2.3) μg/dl	NR	1ug/dl	NR
Zutphen Study	Electro-thermal atomization atomic absorption spectrometry	Concentration	18.3 (7.4) μg/dl	NR	NR	NR
VA-NAS	Graphite furnace atomic absorption	Concentration	5.6 (3.3) μg/dl	1 to 8%	NR	NR
Levels measured in blood:						
EPOZ	Atomic absorption	Concentration	1.27 (0.27) mg/l ^ψ	NR	NR	NR
	spectrophotometer		, , ,			
KIHD	Flame atomic absorption spectrometer	Concentration	1.11 (0.17) mg/l	4%	NR	NR
(2007)	Flame atomic absorption		4.40 (0.05)			
Marniemi (2005)	spectrophotometer	Concentration	1.18 (0.26) mg/l	NR	NR	NR
NHANES II	Atomic absorption	Concentration	1.23(0.34) mg/l	NR	NR	NR
	spectroscopy Flame atomic absorption					
PPS II	spectrometry	Concentration	0.96 (0.14) mg/l	NR	NR	NR
Reunanen (1996)	Atomic absorption	Concentration	1.18 mg/l ^Ψ	<5%	NR	NR
Reunanen (1990)	spectrophotometer	Concentration	1.10 mg/i	\3/6	IVIX	INIX
Cadmium						
Levels measured in blood:						
CadmiBel	Electrothermal atomic	Concentration	1.19^{\S} (0.80- 1.90^{α}) μg /l	ND	NR	NR
Caumber	absorption spectrometer	Concentration	1.29§ (0.76-2.20°) $\mu \mathrm{g}$ /I	NR	INK	NK
MDCS	Atomic adsorption spectrometer	Concentration	0.46 (0.26) μg/l	7%	0.02ug/l	0%
NHANES	Atomic adsorption spectrometer	Concentration	0.44 (0.02) μg/l	1 to 5%	0.06ug/l	3%
NHANES III	Inductively coupled plasma mass spectrometry	Concentration	0.43 (0.01) μg/l	NR	NR	NR
Levels measured in toenails:						
*HPFS	Neutron-activation analysis	Adjusted for toenail weight	0.63 μg/g	14%	NR	NR
Levels measured in urine:						
* Li (2011)	Atomic absorption spectrophotometer	Concentration	NR	NR	NR	NR
NHANES III	Graphite furnace atomic absorption	Creatinine adjusted	Men: 0.28§ μg/g Women: 0.4§ μg/g	3 to 14%	NR	3%
SHS	Inductively coupled plasma mass spectrometry	Creatinine adjusted	0.92 (0.61-1.45 °) ug/g	NR	0.02ug/l	0.1%
Mercury						
Levels measured in blood:						
* Gothenburg	Cold vapour atomic	Concentration	1.4 (1.03-1.89) μg/l	NR	NR	NR
Gottletibulg	fluorescence spectrometry	Concentration	1.4 (1.03-1.83) μg/1	IVIX		INIX
Hallgren (2001)**3	Atomic fluorescence	Concentration (E)	5.7 (5.9) ng Hg/I ^Ψ	NR	NR	NR
	technique Cold vapour atomic					
NSHDS**3	fluorescence spectrometry	Concentration (E)	0.0038¶ (0.0037) μg/l	5%	0.1ug/l	NR
* NSHDS** ³	Cold vapour atomic fluorescence spectrometry	Concentration (E)	3.54¶ (0.01-87β) μg/l	4%	0.2ug/l	NR
Levels measured in hair:	. ,					

KIHD**4	Atomic fluorescence	Concentration	1.9 (1.9) μg/g	7%	NR	NR
	technique		, .,			
* KIHD (2016) **4	Atomic fluorescence	Concentration	1.9 (1.95) μg/g	NR	NR	NR
(2020)	technique		=:0 (=:00) P-0/ 6			
Levels measured in toenails:						
EURAMIC	Neutron activation analysis	Concentration	$0.25~(0.15\text{-}0.40)~\mu\mathrm{g/g^{\Psi}}$	NR	0.1ug/g	5%
HPFS & NHS	Neutron activation analysis	Concentration	$0.37~(0.58)~\mu g/g^{\Psi}$	6%	NR	NR
PREDIMED	Instrumental neutron	NR	0.63§ (0.53) ug/g	NR	NR	NR
PREDIIVIED	activation analysis	INK	0.03° (0.33) ug/g	INIT		INIX
Copper						
Levels measured in blood:						
EPOZ	Atomic absorption	Concentration	1.27 (0.27) mg/l ^Ψ	NR	NR	NR
EPOZ	spectrophotometer	Concentration	1.27 (0.27) High	INIT	INIT	INIX
KIHD	Flame atomic absorption	Concentration	1.11 (0.17) mg/l	4%	NR	NR
KIIID	spectrometer	Concentration	1.11 (0.17) mg/i	470	NIX	IVIX
Marniemi (2005)	Flame atomic absorption	Concentration	1.18 (0.26) mg/l	NR	NR	NR
Widthichii (2003)	spectrophotometer	Concentration	1.10 (0.20) 1116/1	IVIV	NIX	1411
NHANES II	Atomic absorption	Concentration	1.23(0.34) mg/l	NR	NR	NR
MIMICS	spectroscopy	Concentration	1.23(0.34) 1116/1	IVIV	NIX	1411
PPS II	Flame atomic absorption	Concentration	0.96 (0.14) mg/l	NR	NR	NR
LLJII	spectrometry	Concentration	0.30 (0.14) IIIg/I	INL	INIV	INIA
Reunanen (1996)	Atomic absorption	Concentration	1.18 mg/l ^ψ	<5%	NR	NR
reditatien (1990)	spectrophotometer	Concentiation	1.10 mg/i	\ J/0	INIX	INIX

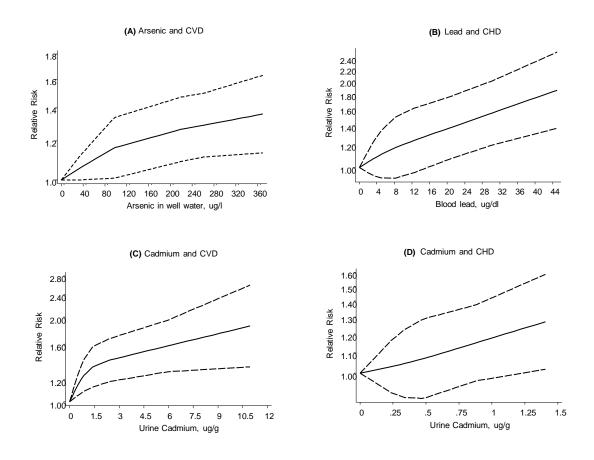
^{*}Mean level (SD) or median (inter-quartile range) of entire cohort unless specified otherwise

Abbreviations: BRHS = British regional heart study; **Cu** = cumulative; **CV**: coefficient of variation, **E** = erythrocytes; **EPOZ** = Epidemiological study of risk factors for cardiovascular diseases; **EURAMIC** = European multicentre cases-control study on antioxidants, myocardial infarction and cancer; **HEALS** = Health effects of arsenic longitudinal study; **HPFS** = Health professions follow-up study; **KIHD** = Kuopio ischemic heart disease risk factor study; **LOD**: limit of detection; **NHANES** = National health and nutrition examination survey; **NHS** = Nurses health study; **NHSCS**: New Hampshire Skin Cancer Study; **NR** = not reported; **NSHDS** = Northern Sweden health and disease study; **PPS** II = Paris prospective study 2; **SD** = standard deviation; **SHS** = Strong heart study; **SLVDS**: San Luis Valley Diabetes Study; **SOF** = Study of osteoporotic fractures; **VA-NAS** = Veterans affairs normative ageing study.

^{**}Same study

[¶]Median level

 $^{^{\}Psi} \text{Control subjects}$


[§]Geometric mean

aInter-quartile range

 $^{^{\}beta}$ Range

^{*}studies were not included in the meta-analysis

Figure S1 Dose-response relations between levels of toxic metals and relative risks of cardiovascular outcomes

Data were modelled with restricted cubic splines in dose-response models. Studies contributing to (A) n=2, (B) n=4, (C) n=3, (D) n=3.

Figure S 2 Subgroup analyses for the association of arsenic with CVD outcomes

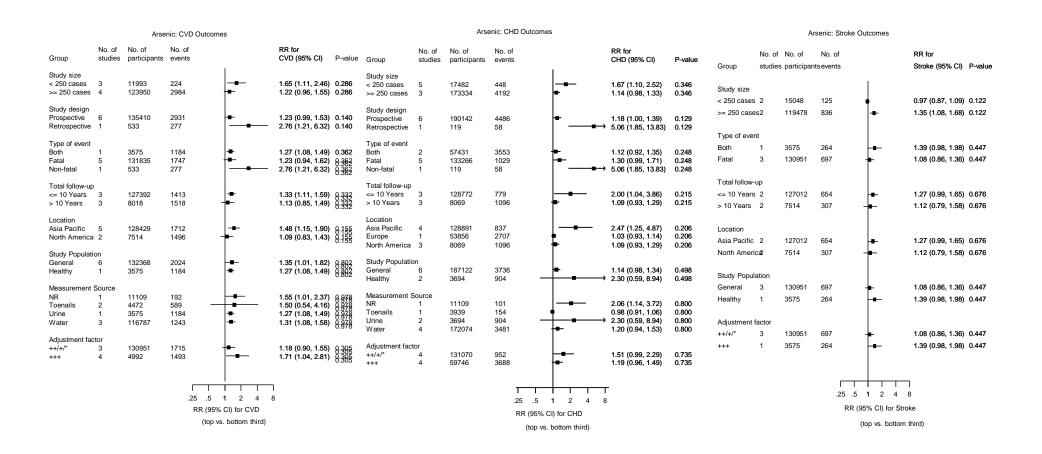


Figure S 3 Subgroup analyses for the association of lead with CVD outcomes

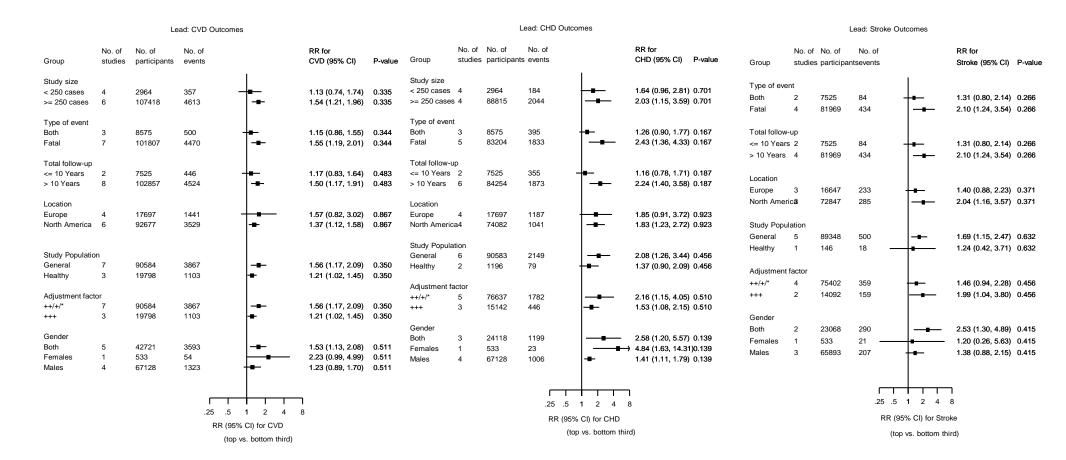


Figure S 4 Subgroup analyses for the association of cadmium with CVD outcomes

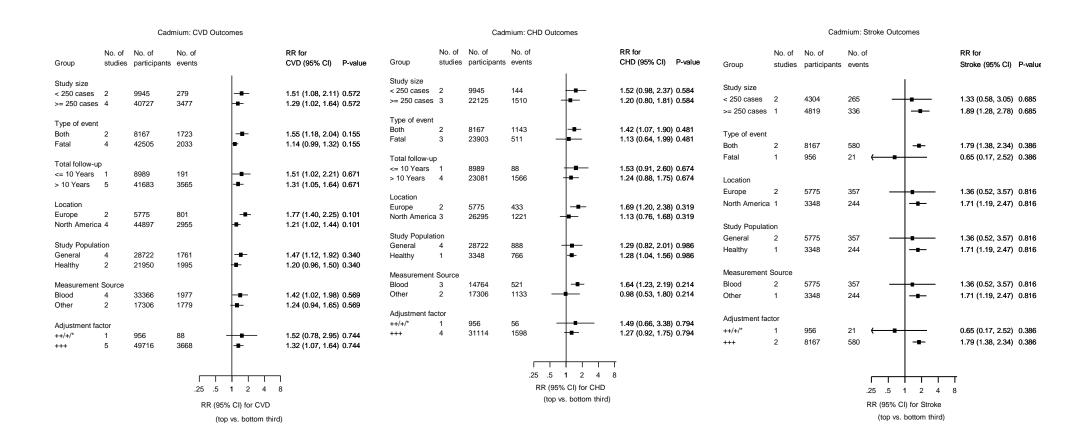


Figure S 5 Subgroup analyses for the association of mercury with CVD outcomes

		N	lercury:	CVD Outcomes		
	No. of	No. of	No. o	f	RR for	
Group	studies	participants	event	5	CVD (95% CI)	P-value
				1		
Study size						
< 250 cases	1	414	147		0.70 (0.37, 1.34)	0.589
>= 250 cases	3	10996	4719	-	1.00 (0.66, 1.51)	0.589
Location						
Europe	3	4556	1439	-	0.95 (0.51, 1.74)	0.896
North America	1	6854	3427	-	0.88 (0.77, 1.01)	0.896
Measurement S	Source					
Blood	1	2271	878	 -	0.71 (0.48, 1.03)	0.500
Other	3	9139	3988	-	1.03 (0.65, 1.63)	0.500
Adjustment fact	or					
++/+/*	1	2271	878		0.71 (0.48, 1.03)	0.500
+++	3	9139	3988		1.03 (0.65, 1.63)	0.500
Gender						
Both	2	7268	3574	-	0.87 (0.77, 0.99)	0.159
Males	1	1871	414	-	1.56 (1.20, 2.01)	0.159
					\neg	
				.25 .5 1 2 4	8	
				RR (95% CI) for CVD		
				(top vs. bottom third)		

Mercury: CHD Outcomes

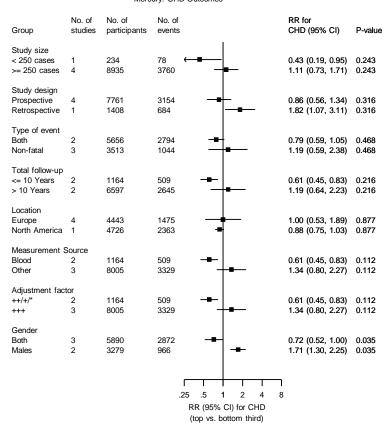
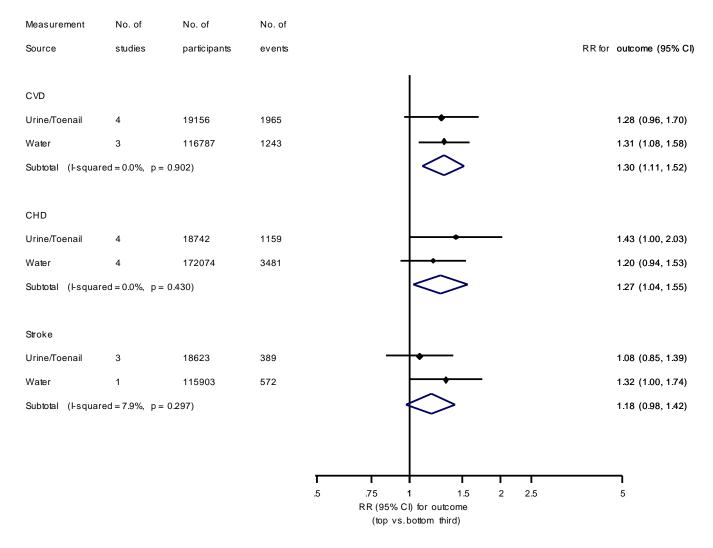



Figure S 6 Subgroup analyses for the association of copper with CVD outcomes

			Copper: CVD Outco	mes					С	opper: Cl	HD Outcomes		
	No. of	No. of	No. of		RR for			No. of	No. of	No. of		RR for	
Group	studies	participants	events		CVD (95% CI)	P-value	Group	studies	participants	events	3	CHD (95% CI)	P-value
				ı			Type of event						
Type of event							Both	2	2355	181		— 2.01 (0.63, 6.46)	0.570
Both	1	660	200	 ■	1.18 (0.84, 1.67)	0.363	Fatal	2	4944	311		2.62 (1.75, 3.92)	0.570
Fatal	3	4725	338		2.22 (1.20, 4.13)	0.363							
							Total follow-up						
Total follow-up)						<= 10 Years	3	2725	341		2.20 (1.04, 4.67)	0.880
<= 10 Years	3	1350	482		2.10 (1.00, 4.38)	0.554	> 10 Years	1	4574	151	─	2.47 (1.47, 4.15)	0.880
> 10 Years	1	4035	56 -	 - -	1.25 (0.65, 2.43)	0.554							
							Location						
Study Populati	ion						Europe	3	2725	341		2.20 (1.04, 4.67)	0.880
General	3	5199	476	↓	1.60 (0.91, 2.82)	0.388	North America	1	4574	151		2.47 (1.47, 4.15)	0.880
Healthy	1	186	62	<u> </u>	3.61 (1.24, 10.51)	0.388							
. rountry	•	.00	02		, 0.0. (, .0.0.)	0.000	Study Population						
Adjustment fa	otor						General	2	1059	290		1.79 (0.77, 4.18)	0.435
++/+/*		1164	400	_	4.70 (0.70 4.00)	0.912	Healthy	2	6240	202		2.74 (1.73, 4.34)	0.435
	2		420	T	1.79 (0.76, 4.20)								
+++	2	4221	118 -		1.95 (0.70, 5.42)	0.912	Adjustment factor		1050	000		4 70 (0 77 4 40)	0.405
							++/+/*	2	1059 6240	290 202	 -	1.79 (0.77, 4.18)	0.435 0.435
Gender							+++	2	6240	202		2.74 (1.73, 4.34)	0.435
Both	2	846	262 —	 •	1.83 (0.63, 5.34)	0.919	Gender						
Males	2	4539	276	 • 	1.93 (0.87, 4.29)	0.919	Both	2	5263	281	<u> </u>	1.70 (0.84, 3.44)	0.304
							Males	2	2036	211		- 3.16 (1.84, 5.42)	0.304
							Walcs	_	2000	211	_	3.10 (1.04, 3.42)	0.304
				 	٦								
			.25 .5	1 2 4	8							_	
			RR (95%	6 CI) for CVD							.25 .5 1 2 4	1 8	
			,	vs. bottom third)							RR (95% CI) for CHD	5	
											(top vs. bottom third)		
											(top vs. pottorn third)		

^{*}The subgroup analysis of copper with stroke was not possible as there were only two studies with small number of participants and cases.

Figure S 7 Subgroup analysis for the association of arsenic with cardiovascular outcomes by measurement source

Pooled risk estimates were calculated using random effects meta-analyses. The Relative Risk (RR) compares the risk for each outcome in individuals in the top third with those in the bottom third of baseline levels of arsenic (i.e. extreme thirds). Abbreviations: Cl=confidence interval; CVD= cardiovascular disease; CHD=coronary heart disease

Figure S 8 Subgroup analysis for the association of arsenic with CHD by smoking

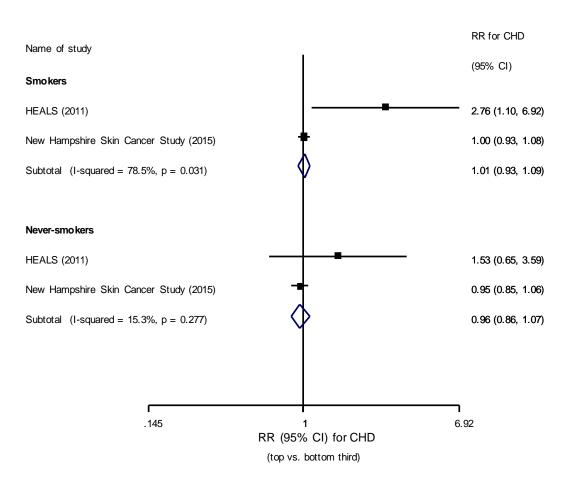
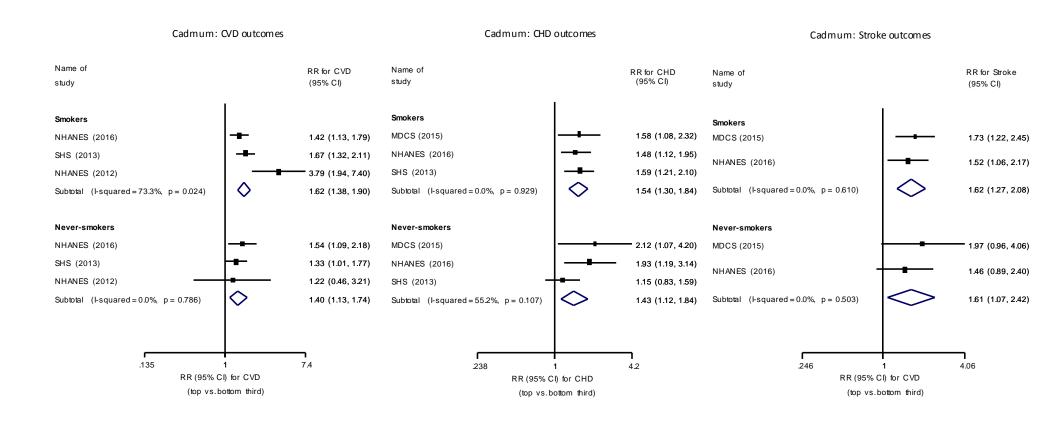



Figure S 9 Subgroup analysis for the association of cadmium with cardiovascular outcomes by smoking

Table S 5 Tests for publication bias

Contaminant	Disease Outcome	No. of studies	Egger's p-value
Arsenic	CVD	7	0.01
	CHD	8	<10-3
	Stroke	4	0.30
Lead	CVD	10	0.65
	CHD	8	0.46
	Stroke	6	0.76
Cadmium	CVD	6	0.13
	CHD	5	0.92
	Stroke	3	0.19
Mercury	CVD	4	0.99
	CHD	5	0.86
	Stroke	2	NA
Copper	CVD	4	0.36
	CHD	4	0.18
	Stroke	2	NA

Abbreviations: CHD = coronary heart disease; CVD = cardiovascular disease; NA = not applicable; No. = number

Figure S 10 Funnel plots for association of arsenic with cardiovascular outcomes

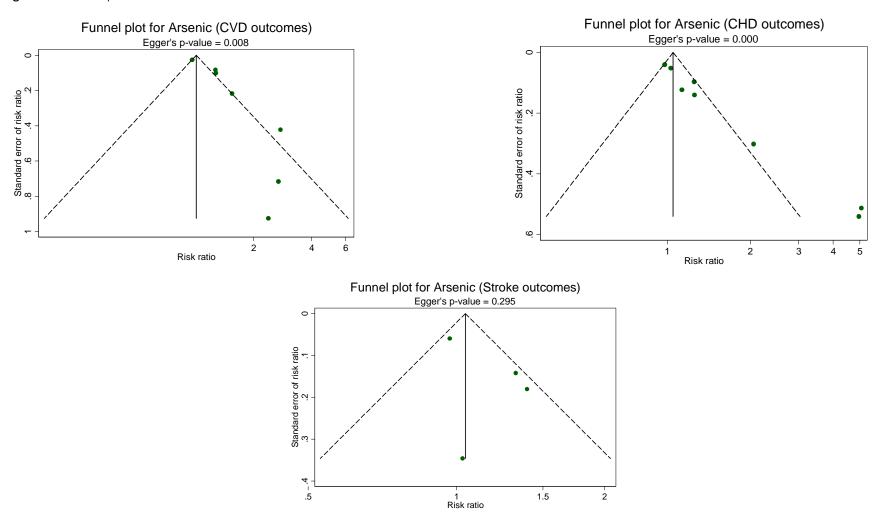


Figure S 11 Funnel plots for association of lead with cardiovascular outcomes

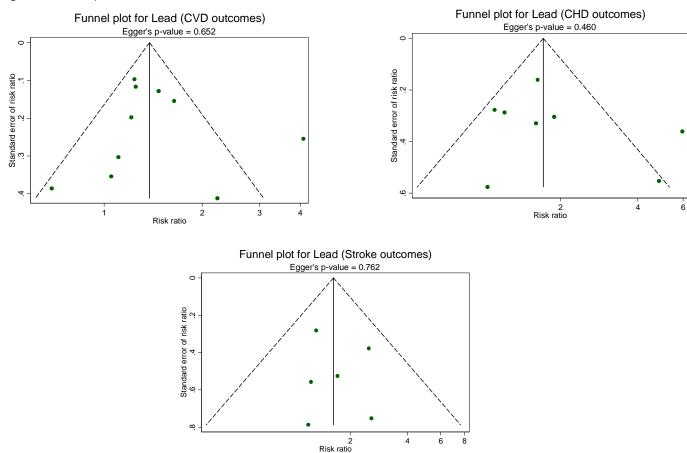


Figure S 12 Funnel plots for association of cadmium with cardiovascular outcomes

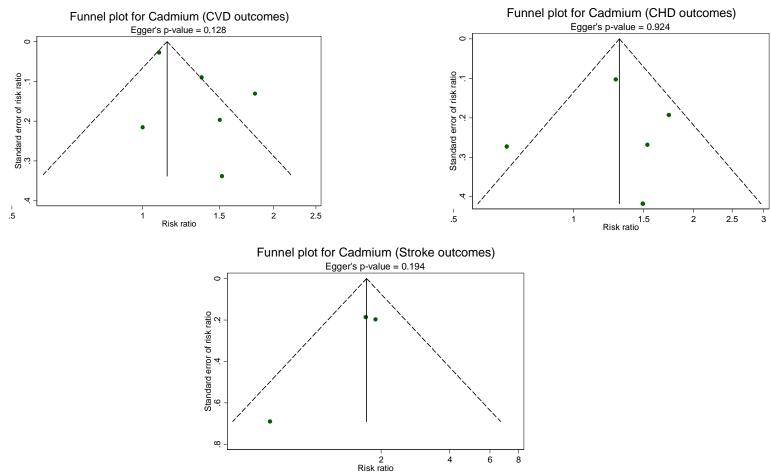


Figure S 13 Funnel plots for association of mercury with cardiovascular outcomes

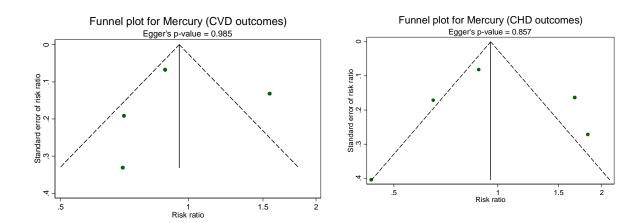
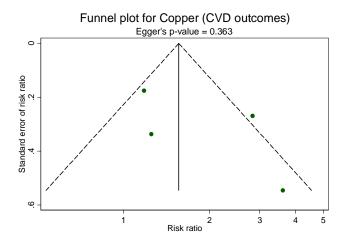
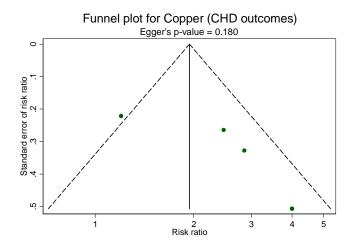




Figure S 14 Funnel plots for association of copper with cardiovascular outcomes

Table S6 Definitions of terms used in the review

Terms	Definitions
Nested case control study	In this study you begin with a defined cohort of cases. Then for each case, a specified number of controls is selected from among those in the cohort who are free of the disease. It is case-control study nested in a cohort study ¹² .
Linear (dose-response) relationship	In linear associations, when one variable increases the other also increases, or similarly when one variable decreases the other also decreases. For example, a linear association between blood lead level and heart disease risk means if the levels of lead toxicity increases, the risk for heart disease also increases.
"Threshold" or "plateau" effect	This occurs when one variable increases, but other increases only at a certain point.
Publication bias	Publication bias is a well-known term in clinical literature in which positive results have a better chance of being published. Conclusions exclusively based on published studies, therefore, can be misleading ¹³ .

References

- 1. Singh R, Singh S, Parihar P, Singh VP, Prasad SM. Arsenic contamination, consequences and remediation techniques: a review. *Ecotoxicol Environ Saf.* 2015;112:247-270.
- 2. Lorenzana RM, Yeow AY, Colman JT, Chappell LL, Choudhury H. Arsenic in Seafood: Speciation Issues for Human Health Risk Assessment. *Human and Ecological Risk Assessment: An International Journal*. 2009;15(1):185-200.
- 3. Jarup L. Hazards of heavy metal contamination. *British Medical Bulletin.* 2003;68(1):167-182.
- 4. Satarug S, Garrett SH, Sens MA, Sens DA. Cadmium, environmental exposure, and health outcomes. *Environmental health perspectives*. 2010;118(2):182-190.
- 5. Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. *Biochimie*. 2006;88(11):1707-1719.
- 6. Hanna-Attisha M, LaChance J, Sadler RC, Champney Schnepp A. Elevated Blood Lead Levels in Children Associated With the Flint Drinking Water Crisis: A Spatial Analysis of Risk and Public Health Response. *American journal of public health*. 2016;106(2):283-290.
- 7. Yoshizawa K, Rimm EB, Morris JS, et al. Mercury and the risk of coronary heart disease in men. *The New England journal of medicine*. 2002;347(22):1755-1760.
- 8. Gaetke LM, Chow-Johnson HS, Chow CK. Copper: toxicological relevance and mechanisms. *Arch Toxicol.* 2014;88(11):1929-1938.
- 9. ATSDR. Public Health Statement for Copper. *United States Centers For Disease Control and Prevention* 2004.
- 10. Kabir E, Ray S, Kim KH, et al. Current status of trace metal pollution in soils affected by industrial activities. *ScientificWorldJournal*. 2012;2012:916705.
- 11. Srinivasa Gowd S, Ramakrishna Reddy M, Govil PK. Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. *J Hazard Mater.* 2010;174(1-3):113-121.
- 12. Ernster V. Nested Case-Control Studies. *Preventive Medicine* 1994;23(5):587-590.
- 13. Hans-Hermann D. Systematic review of publication bias in studies on publication bias. *Bmj.* 2005;331:433.