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ABSTRACT

A recent rise in the use of autologous fat transfer for soft tissue augmentation has paralleled the increasing
popularity of liposuction body contouring. This creates a readily available and inexpensive product for lipo-
grafting, which is the application of lipoaspirated material. Consistent scientific proof about the long-term
viability of the transferred fat is not available. Clinically, there is a reabsorption rate which has been reported to
range from 20 to 90%. Results can be unpredictable with overcorrection and regular need for additional in-
terventions. In this review, adipogenesis physiology and the adipogenic cascade from adipose-derived stem cells
to adult adipocytes is extensively described to determine various procedures involved in the fat grafting tech-
nique. Variables in structure and physiology, adipose tissue harvesting- and processing techniques, and the
preservation of fat grafts are taken into account to collect reproducible scientific data to establish standard in
vitro and in vivo models for experimental fat grafting. Adequate histological staining for fat tissue, im-
munohistochemistry and viability assays should be universally used in experiments to be able to produce
comparative results. By analysis of the applied methods and comparison to similar experiments, a conclusion

concerning the ideal technique to improve clinical outcome is proposed.

1. White adipose tissue

According to the World Health Organization, the incidence of obe-
sity has tripled since 1975. This has incited an increasing demand for
liposuction and contour surgery during these last decades.
Concurrently, our views and understanding of fat tissue have changed.
Fat has evolved from a waste tissue impeding the way to the important
surgical sites, to an important and potential source of cells for re-
constructive medicine.

White adipose tissue was originally considered a fairly inert energy
storage tissue consisting of a fixed number of adipocytes. However,
adipose tissue continuously varies in size throughout life. Adipocytes
gain size during lipid accumulation, but recent advances in adipose
biology have demonstrated that an increase in adipocyte size often is
followed by an increase in adipocyte numbers [1-4]. Adipocytes derive
from multipotent mesenchymal stem cells, now conventionally called
adipose-derived stem cells (ASCs). ASCs can both proliferate or differ-
entiate into adipocytes. In this process, numerous intermediate cell
types exist, difficult to characterize. For practical reasons, two obvious
phases in adipogenesis are most frequently described. In the first or
determination phase, a stem cell is committed to the adipocyte lineage,
and thus called pre-adipocyte. To accomplish this, a growth arrest is
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required, which is normally achieved through contact inhibition. No
morphological difference can be made between the pre-adipocyte and
its precursor, but the cell has lost its potential to differentiate into other
cell types. In the second or terminal differentiation phase, the pre-
adipocyte takes on the characteristics of the mature adipocyte, with
lipid accumulation in the cytosol displacing the nucleus from the center
to the periphery of the cell. Late markers of differentiation, such as
glycerol-3-phosphate dehydrogenase (G3PDH) and fatty acid synthe-
tase (FAS) are now detectable [5].

During this adipogenic cascade, the signal transduction pathway is
regulated by a large number of hormones, cytokines and growth factors.
Insulin, IGF-1, glucocorticoids are among the positive effectors, while
cytokines, TGF-$ family growth factors and protein kinase C (PKC)
inhibitors are viewed as negative regulators. On the transcriptional
level, key regulatory events include the induction of CCAAT/enhancer
binding proteins (C/EBPs), but the master role is played by peroxisome
proliferator-activated receptor-y (PPAR-y). No other factor has been
discovered that promotes adipogenesis in the absence of PPAR-y, while
it is on itself sufficient for adipogenesis [6].

Mature adipocytes synthesize proteins involved in lipid and steroid
metabolism. Leptin, a well-known example, plays a crucial role in the
regulation of energy balance and its levels are increased in obesity. It
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has also been found to increase the vascular permeability in adipose
tissue, and consequently influence the microvessel density [7]. Tumor
necrosis factor-a (TNF-a), interleukin (IL) —6 and —8 are pro-in-
flammatory proteins that are increasingly synthesized by adipocytes in
obesity and play a role in insulin resistance and lipolysis. In vitro,
adipocytes from newly cultured explants of human subcutaneous adi-
pose tissue rapidly express TNF-a and downregulate PPAR-y in vitro as
a catabolic response, even after most gentle tissue handling [8].

The basic organization of a white fat depot consists of mature adi-
pocytes, stromal-vascular cells, blood vessels, lymph nodes and nerves.
The stromal vascular cell (SVF) fraction contains ASCs, pre-adipocytes,
endothelial cells, pericytes, macrophages and fibroblasts. The pheno-
type of the ASCs in the SVF was described in a conjoint statement of the
International Federation for Adipose Therapeutics (IFATS) and the
International Society for Cellular Therapy (ISCT) in 2013 as
CD34 * CD45~CD31~CD273a-CD73 * CD13" [9]. ASCs resemble the
type of mesenchymal stem cells, that, since their original description in
the 1960s [10,11], have been found in nearly all adult tissues. The exact
location of the stem cell populations is suggested to be in the perivas-
cular niche [12].

Adipose tissue is highly vascularized, and it is postulated that each
adipocyte is in close proximity to a blood capillary allowing for efficient
exchange of metabolic products. As adipose tissue continuously un-
dergoes expansion and regression throughout adult life, it requires the
parallel growth of its capillary network. ASCs can release multiple an-
giogenesis-related growth factors including Vascular Endothelial
Growth Factor (VEGF) and Hepatocyte Growth Factor (HGF) [13] and
have shown to trigger blood vessel formation in collagen gels in vitro
[14]. On the other hand, endothelial cells sustain pre-adipocyte viabi-
lity, proliferation and adherence when subjected to defined hypoxic
conditions [15]. Clinically, the revascularization capacities of the fatty
omentum on bowels or when used in sternal reconstruction are well
described. It is, amongst other reasons, the great synergistic potential
between adipogenesis and angiogenesis in fat tissue that fuels the in-
terest for using adipose tissue cells in tissue engineering.

2. Towards reconstructive medicine

An important feature for subcutaneous fat, is that it can easily be
obtained by the minimally invasive procedure of liposuction. This
procedure is well tolerated, safe, and low-cost. Adipose tissue contains a
large number of mesenchymal stem cells, compared to bone marrow. A
bone marrow transplant contains approximately 6 X 10° nucleated
cells per ml [16], of which only 0,001-0,01% are stem cells [17]. In
comparison, subcutaneous liposuction provides approximately
0,5-2,0 x 10° cells per gram of adipose tissue [16,18-21], whereby the
percentages of stem cells range from 1 to 10% [20,22,23]. While ASCs
can be harvested from omental or visceral fat, the reconstructive po-
tential does not appear to be different from subcutaneous fat, and
harvesting would be more invasive [24].

3. In vitro potential

The relative ease by which ASCs can be obtained has incited a large
number of experiments on their reconstructive potential. Adipose SVF
cells can be easily isolated from the lipo-aspirate with enzyme diges-
tion, or, more recently, mechanical protocols. They are far more re-
silient to manipulation than mature adipocytes, and fairly easy to ex-
pand in a typical mono-layer culture, in standard media supplemented
with fetal bovine serum. They can easily be expanded for multiple
passages, until large numbers of cells are achieved (Fig. 1). Within the
heterogeneous SVF cells, the subgroup of ASCs is usually isolated
through plastic adherence in culture conditions.

Currently, cell therapeutic and tissue engineering experiments in-
vestigate the regenerative and therapeutic potential. Cultured ASCs
have shown enormous differentiation potential in vitro. Logically, they
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Fig. 1. a: typical ASC culture. Cells are spindle shaped, and rapidly expanding.
b: culture in adipogenic medium results in a more rounded shape and accu-
mulation of lipid droplets in the cytoplasma, characteristics of adipocytes.

c: Lentiviral transduction of green fluorescent protein allows for easy tracking
of ASC's in 3D gel constructs. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

can differentiate according to classic mesenchymal phenotype, into
adipocytes, osteocytes and chondrocytes [25-27]. Interestingly, they
also show potential for differentiation to neuron-like cells [28-30],
epithelial cells [31], hepatocytes [32,33], pancreatic cells [34] and
hematopoietic supporting cells [26,35,36].

Consequently, some researchers suggest that ASCs exert therapeutic
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potential through differentiation towards a specific cell type in the
target tissue, while other, mostly in vivo animal studies contradict this
[37-39]. They argue that despite the phenotypic differentiation of the
ASCs into the target cell the full functionality is missing.

Most research has focused on the therapeutic potential that resides
in the array of cytokines and growth factors secreted by ASCs, espe-
cially in hypoxic circumstances. These include angiogenic cytokines:
Hepatic Growth Factor (HGF), Vascular Endothelial Growth Factor
(VEGF), Fibroblast Growth Factor 2 (FGF-2), basic Fibroblast Growth
Factor (b-FGF); Hematopoietic cytokines: Granulocyte-Colony
Stimulating ~ Factor  (G-CSF),  Granulocyte/Macrophage-Colony
Stimulating Factor (GM-CSF), Interleukine-7 (IL-7), Monocyte-Colony
Stimulating Factor (M-CSF); Pro-inflammatory cytokines: IL-6, IL-8, IL-
11, TNF- [36]; anti-inflammatory cytokines: prostaglandin E2 [40]. A
large number of studies confirms the ability of ASCs to promote tissue
regeneration by secreting these growth factors, including the central
nervous system, the heart, the kidneys, ischemic limbs and muscles,
skin and scar tissue [41-48]. Especially the angiogenic properties are
impressive and well described [14,49-51].

Tissue engineering approaches focus more on biocompatible scaf-
folds and constructs incorporating the ASCs, differentiated or un-
differentiated, alone or in combination with other cell types.
Differentiated ASCs can replace the cells in the target tissue [52,53],
while undifferentiated ASCs exert more diverse paracrine activity
[54,55]. Besides the classic mesenchymal tissues such as bone [56-59],
cartilage [60], adipose tissue [61,62], studies have equally focused on
skin tissue engineering [63] or nerve reconstruction [52,64]. Bio-
compatible materials for cell seeding include hyaluronic acid con-
structs, collagen type I, fibrin or polymers. The main problem to
overcome is the vascularization of larger (solid) constructs at im-
plantation in vivo. Vascularization requires organization of the con-
structed tissue. Different approaches to accomplish a vascular network
have been suggested: applying mechanical stimulation, using bioma-
terials with appropriate properties, and microfabrication techniques
such as 3D cell-printing. Others circumvent this issue by focusing on
cell-laden injectable gel matrices, acting more like dispersed tissue
grafts in the host tissue.

Finally, ASCs exhibit immunomodulatory properties, and have
shown to protect against graft versus host disease after allogeneic stem
cell transplantation [65-67]. According to the clinical trials database,
112 clinical studies are currently being performed using ASCs, in-
cluding diabetic foot, crohn's disease, stroke, spinal cord injury and
facial rejuvenation [68].

4. Clinical approach

In the intra-operative setting of the current clinical practice, lipo-
aspirate from liposuction is used on a daily basis. Indications include
volume and contour restoration and scar treatment and release (Fig. 2),
although tissue restoration is equally accepted (Fig. 3). The procedure
includes harvesting, preparation of the lipo-aspirate, addition of sub-
stances, and reinsertion of the final product. Most harvesting proce-
dures involve infiltration with Klein solution, now a generic name for
physiologic saline solution containing a local anesthetic such as lido-
caine, and epinephrine. Most researchers agree there is no serious ne-
gative effect of these substances on the fat cells [69-72], while they
reduce the risk of complications of the liposuction. Negative pressure
liposuction with 3 or 4 mm diameter blunt cannula's is performed
through stab incisions. For finer lipo-aspirate, cannula's of 1 mm can be
used. A number of studies have underlined the importance of larger
bore cannula's and low harvesting pressure for maintaining optimal
adipocyte viability [73-78]. Viable adipose cells can be successfully
harvested from the abdomen, flanks, thighs, and medial knees, but
there appears to be a higher yield of ASCs in fat harvested from the
abdominal region and inner thighs [77,79,80]. Clinically, this might
correlate with regions that expand more during excess caloric intake.
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Next, during the lipo-aspirate preparation step, the lipo-aspirate is
subjected to an intra-operative purifying procedure. Various techniques
to extract the blood and oil from the lipo-aspirate are employed,
varying from centrifugation at various speeds, to filtering through
meshes, cleansing with various solutions, or combinations of these.
Most authors agree on handling a fat graft as gently as possible, while at
the same time allowing for removal of dead cells, oil, liposuction fluids
and blood components [81-83.] Finally, the processed fat graft is in-
jected with blunt 1-2 mm cannulas, through small needle holes, in the
area to be reconstructed.

Some authors advocate cell-assisted lipotransfer (CAL) [84,85]. In a
one-stage procedure, a part of the fat tissue is processed for mechanical
or enzyme-digesting SVF isolation, and these cells are then added to the
rest of the adipose tissue for transplantation. Without more extensive
manipulation of the SVF fraction, we can however not use the term
ASCs for these cells. In a two-stage procedure, cell culture can expand
the SVF fraction and isolate the ASCs through plastic adherence. Since
GMP-level facilities and care is required, this adds costs to the proce-
dure which can be as high as 10.000 € [86]. Based on clinical studies,
no adequate level III or IV evidence can support the use of CAL [87,88].

Clinically, there is a reabsorption rate which has been reported to
range from 20 to 90%. Results can hence be unpredictable with over-
correction on one hand and regular procedural repeats on the other.
The lipotransfer technique involves a large number of variables that can
influence the outcome of the graft, and therefore it is difficult to draw
straightforward conclusions on appropriate methods from clinical stu-
dies. Recently, there has been a surge in experiments set up to recreate
one part of the fat transfer process in a controlled setting. In this way
each variable can be analyzed and determined for best outcome.
However, as long as the fate of the cells composing the graft, or the
influence of the recipient tissue is not fully elaborated, viability testing
protocols after processing might not necessarily correlate with a good
clinical outcome in vivo.

Therefore, a number of recent studies have focused on the fate of the
cells composing the fat graft in vivo. Fat grafts initially require nutri-
tional diffusion until vascularization from the recipient bed occurs.
Histologically, in clinically failed grafts, progressive loss of adipocytes
is noted along with a conversion of the graft in fibrous tissue and cysts
[89]. Presumed mechanisms are primarily insufficient vascularity and
inflammation around tissue debris. Therefore, theoretically, smaller fat
deposits and particles are completely revascularized in a shorter time.
Yet, this conflicts with the larger bore cannula's in harvesting being
more beneficial to fat survival.

Undifferentiated preadipocytes, which are 20 times smaller than
adipocytes, have a higher tolerance to ischemia than mature adipocytes
[90]. Shear stress and mechanical trauma are prone to affect the larger
and fragile lipid-laden adipocytes than the smaller and more resilient
precursor cells.

Currently, two theories on the role of the different cells composing
the fat graft after injection at the recipient site, stand opposed to each
other.

The “graft survival theory”, first described by Peer et al. [91], states
that the fat graft survives through imbibition until neo-vascularization
from the recipient site occurs. This theory is adhered by those authors
that advocate fat atraumatic processing of the fat graft to ensure the
highest viability prior to injection [92].

In contrast, a “graft replacement theory” has gained importance,
supported by a number of studies. Eto et al. [93] presented the outcome
of their landmark in vivo mouse study on the three-zone survival theory
in 2012. Inguinal fat pads were transplanted to the scalp area, and
stained at 0, 1, 2, 3, 5, 7, or 14 days. They observed three zones from
the periphery to the center of the graft: the surviving area (adipocytes
survived), the regenerating area (adipocytes died, adipose-derived
stromal cells survived, and dead adipocytes were replaced with new
ones), and the necrotic area (both adipocytes and adipose-derived
stromal cells died) [93]. It was thus concluded that very few adipocytes
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Fig. 2. a: contour deformation and contracted scar after sacrococcygeal cyst removal at young age.

b: restored contours after 2 sessions of lipofilling.
c: mammary hypotrophy in a healthy young female patient.
d: result after 1 session of lipofilling to the breast.

survive the grafting process and are replaced by newly differentiated
ASCs co-transplanted in the graft.

These results were corroborated by Fu et al. [94], who found con-
vincing evidence that the donor stromal vascular fraction cells parti-
cipate in adipogenesis and angiogenesis.

However, others advocate a different replacement theory, stating
that the cells replacing the necrotizing graft completely originate from
recipient tissue. Neuhof and Hirshfeld [96] found that in the first
months after transplantation, grafted cells necrotized and were gradu-
ally replaced by fibrous tissue and newly formed metaplastic fat both
originating from recipient tissue. Dong et al. [95] corroborated these

results with an elegant animal study. A cross-graft mouse model with
transplantation of fragmented and integral inguinal fat pads was used
and both angiogenesis and adipose retention in the graft were found to
be recipient-dominated. These results support a “host cell replacement
theory”, which states that no grafted cells survive, and all cells are
replaced by cells from recipient origin. This would reduce the con-
tribution of the fat graft to both spacing by mature adipocytes and
providing paracrine stimuli by grafted ASCs.

While these in vivo animal models provide a valuable insight in the
fate of the fat graft, it should be noted that minced inguinal fat-grafts
could preserve the spatial matrix of the adipocytes, more than in lipo-

Fig. 3. A: Status of a breast after tumorectomy and radiotherapy resulting in ischemic changes in the skin and retraction of the scar.

B: Results after 2 sessions of lipofilling.
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aspirated fat graft used in the clinical settings. The co-transplanted
spatial structure could induce a bias towards replacement theories by
enlarging the graft volume.

Further refinement in the “graft replacement” mechanism, was
provided by Hong et al. [97], who generated an animal model using
two transgenic reporter mice expressing different fluorescent signals
(DsRed and green fluorescent protein). Tracing experiments elucidated
the dynamic changes of donor ASC, donor fat and recipient tissue. They
found that surviving donor ASCs participated in angiogenesis by dif-
ferentiating into endothelial cells and described newly differentiated fat
from donor ASC & recipient tissue integrated with surviving donor fat.
A combination of graft replacement, survival and host replacement
theories is thus supported.

Based on current research, it seems feasible that the eventual fat
graft mechanism depends on all above-described theories. Gently pro-
cessed adipocytes, deposited in small particles in proximity to recipient
vascularization, survive the transplantation process. Recipient cells can
be attracted by chemotaxis and equally contribute to structural and
paracrine support in the graft, particularly in well-vascularized re-
cipient sites. Co-transplanted stromal vascular fraction cells contribute
in paracrine stimulation of vascularization and wound healing phases
and provide structural support by differentiating into endothelial cells
and adipocytes. In less vascularized recipient sites, the supplementation
of ASCs in the graft could theoretically augment results. Future research
will undoubtedly unravel the contribution of all above-describe the-
ories.

In conclusion, a very promising area of research in adipose re-
constructive medicine is developing. Experimental research focusing on
ASC culture, expansion and tissue engineering constructs is converging
with clinical reconstructive procedures, and the often-abundant energy
reservoir that adipose tissue is regarded upon, might in the future prove
to be the most useful repair tissue reservoir.
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