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Abstract

The abilities to detect warmth and heat are critical for the survival of all animals, both in order to be able to identify suitable
thermal environments for the many different activities essential for life and to avoid damage caused by extremes of temperature.
Several ion channels belonging to the TRP family are activated by non-noxious warmth or by heat and are therefore plausible
candidates for thermal detectors, but identifying those that actually regulate warmth and heat detection in intact animals has
proven problematic. TRPM2 has recently emerged as a likely candidate for the detector of non-noxious warmth, as it is expressed
in sensory neurons, and mice show deficits in the detection of warmth when TRPM2 is genetically deleted. TRPM2 is a
chanzyme, containing a thermally activated TRP ion channel domain attached to a C-terminal motif, derived from a mitochon-
drial ADP ribose pyrophosphatase, that confers on the channel sensitivity to ADP ribose and reactive oxygen species such as
hydrogen peroxide. Several open questions remain. Male mammals prefer cooler environments than female, but the molecular
basis of this sex difference is unknown. TRPM2 plays a role in regulating body temperature, but are other warmth-detecting
mechanisms also involved? TRPM2 is expressed in autonomic neurons, but does it confer a sensory function in addition to the
well-known motor functions of autonomic neurons? TRPM2 is thought to play important roles in the immune system, in pain and
in insulin secretion, but the mechanisms are unclear. TRPM2 has to date received less attention than many other members of the
TRP family but is rapidly assuming importance both in normal physiology and as a key target in disease pathology.
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Introduction

In order to survive, all animals must detect environmental
temperatures and react appropriately to them. Extreme tem-
peratures can cause damage, and even subtle changes in the
environmental temperature can cause changes in the physiol-
ogy of living organisms. Animals must therefore be capable of
detecting noxious thermal extremes, to avoid injury from ex-
tremes of heat or cold, and must also be equipped with the
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ability to detect optimal environmental temperatures in which
to carry out different activities such as hunting, feeding, rest-
ing, and reproducing.

Thermal stimuli can be broadly categorized into painful
heat, innocuous warmth, innocuous coolness, and painful
cold. The mean detection thresholds for innocuous warmth
and innocuous coolness range between 1.3 to 6.2 °C above
and 0.9 to 3.4 °C below the baseline skin temperature, respec-
tively. The mean detection threshold for painful heat is be-
tween 41.5 and 47.0 °C and for painful cold is more variable,
at between 7.3 and 18.4 °C [95]. Differences in age, in the
anatomical region tested, in ethnicity, and in sex have all been
shown to influence the thermal detection thresholds [20, 26,
66, 67, 95]. Generally, the older the age, the higher the thresh-
olds for detection of thermal stimuli, while face and hands are
usually more sensitive [67, 95]. Ethnicity differences in ther-
mal detection and thermal pain between Chinese and Danes
have been reported, with people of Chinese origin being more
sensitive to thermal stimuli [132]. Sex differences in response
to thermal stimuli are most prominent for thermal pain thresh-
olds, with females being more sensitive to both painful heat
and painful cold [95, 121]. Although most studies did not
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show a statistically significant difference between sexes in the
thresholds for thermal detection of innocuous warmth or cool-
ness, several studies have shown a sex difference in thermal
preference. The preferred environmental temperature for hu-
man males, 22 °C, is significantly lower than that for females
(25 °C) [5, 48]. Moreover, one study found that females are
more likely to show thermal discomfort in cool environments
while males to be more likely to feel uncomfortable in warm
environments [128]. In addition, women have a higher mean
core temperature and a lower mean skin temperature than men
[52].

The cellular mechanisms of thermosensation were ini-
tially examined by recording the activation of afferent
nerve fibers in response to thermal stimuli in the
glossopharyngeal nerve and the chorda tympani of cats
[135]. Studies with lingual nerves also showed that both
cold and warm receptors existed [136], and that receptor
activation elicited steady discharges of impulses at con-
stant temperatures, with maximum frequencies observed
between 25 and 35 °C for cold receptors and 37.5 and
40 °C for warm receptors [19, 37]. Discharges elicited
by thermal stimuli were shown in later studies in afferents
from the cat’s skin [35, 36, 44]. Based on the conduction
velocity of the electrical discharges, the transmission of
the thermal stimuli signal was found to rely on unmyelin-
ated C fibers or thinly myelinated Ad fibers [16, 35, 44].
The detection of skin temperature in subprimates and pri-
mates was also shown to depend on cutaneous thermore-
ceptors and the propagation of action potentials in slowly
conducting nerve fibers [16, 35, 44].

TRP ion channels activated by warmth
and heat

Although the existence of thermoreceptors was demonstrated
more than 80 years ago in the studies mentioned above, the
molecular mechanisms underlying the detection of skin tem-
perature by thermoreceptors remained elusive until recently,
when noxious heat stimuli were shown to rapidly elicit an
inward current in a subpopulation of small primary sensory
neurons [11]. The reversal potential of the heat-activated ion
current was very close to 0 mV, showing that the heat-
activated ion channel discriminates poorly among cations.
One of the heat-activated ion channels responsible for the heat
sensitivity of primary sensory neurons was subsequently
cloned by adopting a strategy based on calcium imaging of
HEK293 cells expressing cDNA isolated from sensory neu-
rons, and using capsaicin, the “hot” ingredient of chili pep-
pers, to isolate a functional cDNA encoding a capsaicin recep-
tor [10]. Capsaicin is a member of the chemical family named
the vanilloids, and the channel was at first called vanilloid
receptor subtype 1 (VR1) [10], though to recognize its
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homology with other members of the transient receptor poten-
tial (TRP) ion channel family, it has now been renamed tran-
sient receptor potential vanilloid 1 (TRPV 1) under the unified
nomenclature for the family of TRP cation channels [15].
Several other TRP channels activated by warmth or heat were
identified soon after the cloning of TRPV1. The definition of
thermosensitivity is based on the temperature coefficient (Q;)
value, which is calculated as the relative increase in current
amplitude when the temperature increases by 10 °C. Heat-
sensitive TRP channels are generally defined as TRP channels
with Q¢ values higher than 5, and the thermally sensitive TRP
channels have been identified on this criterion as TRPV1,
TRPV2, TRPV3, TRPV4, TRPM2, TRPM3, TRPM4, and
TRPMS [123].

TRPV1 has a Q¢ value of 25, an activation threshold at
temperature > 42 °C, and carries a nonselective cation cur-
rent displaying outward rectification [122]. In addition to
heat stimuli and capsaicin, a wide range of other agonists,
including resiniferatoxin [97], ethanol [116], anandamide
[99], and extracellular protons [113] also activate TRPV1.
Both C and Ad nociceptive fibers of somatosensory neurons
express TRPV1, and many TRPV1-positive fibers also co-
express the proinflammatory neuropeptides substance P,
neurokinin A, and calcitonin gene-related peptide
(CGRP), substantiating a proinflammatory role for TRPV1
[46, 56, 113]. Shortly after the cloning of TRPV 1, the same
group also successfully cloned a TRPV1 homolog, subse-
quently named TRPV2 [9]. TRPV?2 has a Q;, value higher
than 100, with an even higher activation threshold, at 52 °C,
than TRPV1. Based on its thermal sensitivity, TRPV2 was
initially proposed as a candidate for a high-temperature,
TRPV1-independent mechanism of heat sensation [9].
Like TRPV1, the activation of TRPV?2 elicits a nonselective
cation current displaying outward rectification [15, 63]. In
addition to heat, hypo-osmolarity, membrane stretch, and
cannabinoids also activate TRPV2 [77, 93]. One notable
difference from TRPV1 is that TRPV2 is expressed in
medium- to large-diameter myelinated sensory neurons,
and in addition to sensory neurons, TRPV2 is also
expressed in the epithelium of several different tissues (in-
cluding pancreatic duct, mammary gland, parotid gland,
submandibular gland, renal tubule, and tracheal gland) and
in immune cells [59, 65].

TRPV3, also a close homolog of TRPVI, has a Qg
value higher than 6 and an activation threshold at temper-
atures around 31 °C, and carries an outwardly rectifying
nonselective cation current [15, 86, 100, 130]. Carvacrol,
eugenol, and thymol, found in plants such as oregano,
savory, clove, and thyme, are agonists for TRPV3 [129].
TRPV4 was cloned as an osmotically sensitive channel
carrying an outwardly rectifying nonselective cation cur-
rent [14, 64, 105] and was found to be thermally sensitive
almost 2 years after cloning [29]. The activation threshold
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of TRPV4 by non-noxious heat is around 25 °C [14] with
a Qo value of around 10 [29]. In addition to hypotonic
stress and non-noxious heat, bisandrographolide from the
Chinese herbal plant Andrographis paniculata can also
activate TRPV4 [101]. Both TRPV3 and TRPV4 are
expressed in skin keratinocytes, but not in neurons, and
have therefore been proposed to act as non-noxious
warmth sensors whose excitation could be transferred to
primary afferent terminals of sensory neurons by a factor
released from keratinocytes [13, 68, 86].

TRPM2 was cloned in 1998 with an initial goal of
finding genes responsible for several diseases such as au-
toimmune polyglandular disease type I, bipolar affective
disorder, and nonsyndromic hereditary deafness [78].
TRPM2 carries a voltage-insensitive nonselective cation
current with a linear current-voltage relation. The
thermosensitivity of TRPM2 was not discovered until
2006, when it was demonstrated that TRPM2 can be ac-
tivated upon exposure to a temperature above 35 °C, with
a Qo value at around 15.6 [112]. In addition to heat, the
activity of TRPM2 can be synergistically modulated by
intracellular ADP-ribose (ADPR) and Ca®* [34] and can
also be enhanced by additional factors, such as cyclic
ADP-ribose and nicotinic acid adenine dinucleotide phos-
phate (NAADP) [4, 58]. Reactive oxygen species (ROS),
such as H,O,, can also cause activation or sensitization of
TRPM2 [30, 49, 126]. TRPM3, another member of the
TRPM subfamily, carries an outwardly rectifying nonse-
lective cation current and has an activation threshold at a
temperature above 40 °C, with a Q¢ value of 7.2 [124].
Pregnenolone sulphate, nifedipine, and (3-cyclodextrin
have been shown to activate TRPM3 [79, 125]. TRPM3
is abundantly expressed in small diameter dorsal root gan-
glion neurons and also in a variety of other tissues, in-
cluding kidney, liver, ovary, brain, spinal cord, pituitary,
vascular smooth muscle, and testis [27, 62, 79, 124].

Unlike most of the other members of the TRPM sub-
family, which are nonselective cationic channels, TRPM4
and TRPMS5 are not permeable to divalent cations [28].
TRPM4 carries an outwardly rectifying current that has a
Qo value of around 8.5 between 15 and 25 °C [108].
Intracellular calcium, decavanadate and BTP2 are also
activators of TRPM4, in addition to heat [80, 107, 120].
TRPM4 is widely expressed in a variety of tissues, with
high expression in the heart, pancreas, placenta, and pros-
tate, and lower levels in the kidney, skeletal muscle, liver,
intestines, thymus, and spleen in humans [1]. TRPMS
carries an outwardly rectifying current that has a Q;( val-
ue of around 10.3 with a threshold between 15 and 25 °C.
Like TRPM4, TRPMS5 can also be activated directly by
intracellular calcium, and the concentration of intracellu-
lar calcium leading to activation of TRPMS is even lower

than that of TRPM4, though higher concentrations of in-
tracellular calcium cause inhibition of TRPMS5 [92, 120].

Roles of TRP channels as physiological
sensors of warmth and heat

Although all the heat-sensitive TRP channels mentioned
above display Q¢ values higher than 5 in vitro, and therefore
are plausible thermal sensors covering the entire range over
which thermal detection is known in take place in animals,
attempts to identify the thermosensors that are actually respon-
sible for the physiological detection of warmth and heat in
intact animals have not in general met with great success.
TRPV1 knockout mice show a partial deficit in sensing nox-
ious heat, but they still withdraw their tails from hot water [8],
and, more importantly, no significant difference was noted
between TRPV1 knockout mice and wild-type mice when
evaluated with the two-plate thermal preference test [91].
Although TRPV2 was at first suggested to be responsible for
the TRPV1-independent mechanism of heat sensation, behav-
ioral assays of TRPVI/TRPV2 double knockout mice, or
TRPV?2 knockout mice treated with resiniferatoxin to desen-
sitize TRPV1-expressing afferents, reveal no thermosensory
deficits resulting from genetic deletion of TRPV2 [83].
Genetic deletion of TRPV3 in mice on an intercrossed
C57BL6/129] background was reported initially to cause rel-
atively minor deficits in responses to innocuous and noxious
heat stimuli [75]. However, TRPV3 knockout mice on a ho-
mogeneous C57BL6 background exhibited no obvious
changes in thermal preference behavior, while deletion of
TRPV3 in a 129S6 background resulted in a more restricted
range of occupancy centered around cooler floor temperatures
[43]. Meanwhile, TRPV3 knockout mice showed no deficits
in acute heat nociception on either a C57BL6 or a 129S6
background [43]. Importantly, although the activation thresh-
old for TRPV3 and TRPV4 by heat is in the range of innoc-
uous warmth, mice deficient in both TRPV3 and TRPV4
show a thermal preference behavior on a thermal gradient
similar to wild-type mice and little or no change in acute heat
perception [43]. These results demonstrate that TRPV3 and
TRPV4 do not play important roles in thermosensation and
that their contribution to thermosensation, if any, can be
strongly influenced by genetic background. Mice with a ge-
netic deletion of TRPM3 exhibited reduced but not absent
sensitivity to noxious heat, in a similar manner to TRPV1
knockout mice. Although during the exploration period
TRPM3 knockout mice spend significantly more time at tem-
peratures between 31 and 45 °C than wild-type mice, the
thermal preference behavior of wild-type and TRPM3 knock-
out mice was very similar on a surface temperature gradient of
5 to 60 °C [124]. Regarding the other two warmth-sensitive
TRP channels, TRPM4 and TRPMS, no studies investigating
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the functions of the two channels in thermosensation have
been reported.

In contrast to the lack of a clear role for any individual TRP
channel in the sensation of warmth or heat, the TRPMS ion
channel, which is activated by cool temperatures [70, 85],
plays a clear role in determining the thermal preference of
mice over the temperature range of non-noxious coolness be-
tween 15 and 30 °C [2, 17, 54, 55]. Thus, the only thermally
activated TRP ion channel, out of those discussed above, that
unambiguously confers thermal sensitivity upon the behavior
of an intact animal appears to be the “cool” receptor, TRPMS.

Molecular basis of warmth sensation

The molecular mechanisms underlying non-noxious warmth
sensation remained elusive until we recently demonstrated an
essential role for TRPM2 [109]. As noted above, mouse
models in which TRPV1, TRPV2, TRPV3, TRPV4, and
TRPM3 had been genetically deleted showed no clear deficits
in thermal sensation in the range of innocuous warmth be-
tween 30 and 40 °C. In addition, the fact that nearly 50% of
dorsal root ganglion (DRG) neurons from TRPM3 KO mice
still responded to heat, even when TRPV1 is blocked by a
potent and selective TRPV 1 antagonist, suggests the presence
in sensory neurons of an additional thermal sensor or sensors
other than TRPM3 or TRPV1 [124]. We set out to discover
novel heat-sensitive mechanisms using calcium imaging. Our
strategy was first to identify somatosensory neurons express-
ing TRPV1, TRPV2, TRPV3, TRPV4, or TRPM3, using ag-
onists of these known thermo-TRP channels, and then to focus
on the properties of the novel thermally activated neurons that
did not express any of these known thermo-TRPs. We found
that around 10% of DRG neurons were heat-activated but did
not express any known thermo-TRP, and therefore express the
proposed novel heat-sensitive mechanism. This finding does
not necessarily indicate that the expression of the novel heat-
sensitive mechanism is limited to the 10% of DRG neurons, as
it is possible that the novel heat-sensitive mechanism could
also be co-expressed with other thermo-TRP channels. We
therefore tested the responses of DRG neurons to heat stimuli
after blocking TRPV1 with AMG9810 and TRPM3 with
naringenin, and we found that 46% of DRG neurons
responded to heat, suggesting significant co-expression of
the novel heat-sensitive mechanism with TRPV1 and
TRPM3. Around half of DRG neurons therefore express the
novel heat-sensitive mechanism, with around 10% expressing
it in isolation, and a further ~40% in combination with
TRPV1 and/or TRPM3.

In order to better characterize the novel heat-sensitive
mechanism, we sought to identify a source of neurons
expressing a less complex set of heat-sensitive ion chan-
nels than is present in DRG neurons. In autonomic
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ganglion neurons, both sympathetic and parasympathetic,
we found that around half of isolated neurons showed a
significant calcium increase in response to heat, but that
very few neurons showed any response to agonists of
known thermo-TRP channels. Autonomic neurons there-
fore express the novel heat-sensitive mechanism in isola-
tion, which offers an advantageous preparation for char-
acterizing its properties. Heat-evoked increases of the in-
tracellular calcium concentration were completely
abolished by removal of extracellular calcium, and so
were caused by an influx of calcium from the extracellular
solution. In addition, the calcium influx was reduced but
not abolished in the absence of extracellular sodium or in
the presence of L-type calcium channel blockers, and was
unaffected by the voltage-dependent sodium channel
blocker tetrodotoxin or by the TRPV channel blocker ru-
thenium red. These results indicated that the heat-evoked
calcium entry occurred through a mixed sodium and
calcium-permeable channel, and that in the presence of
sodium, the main current carrier, depolarization of neu-
rons to the threshold for generation of action potentials
by voltage-gated calcium channels caused an additional
calcium influx. By evaluating the current-voltage relations
of autonomic neurons voltage-clamped in the whole-cell
configuration at 36 and 47 °C, with all conventional
voltage-dependent ion channels blocked, the current-
voltage relation of the heat-activated ion channel was
shown to be approximately linear, with a reversal poten-
tial close to 0 mV. The properties of mixed sodium and
calcium permeability and a linear current-voltage relation
with a reversal potential close to 0 mV suggested the
channel to be a TRP ion channel, or possibly a member
of the cyclic-nucleotide-gated (CNG) ion channel family.
To determine the molecular identity of the novel heat-
sensitive ion channel, we carried out an analysis of RNA se-
quencing on a sympathetically derived cell line, MAH cells,
which are similar to sympathetic neurons in their thermal re-
sponses, in that there are no responses to agonists of known
thermo-TRP channels, but the novel heat-sensitive mecha-
nism is present in a significant proportion of cells. When dif-
ferentiated by a cocktail of growth factors, the heat sensitivity
of the MAH cells was found to be reduced. RNA sequencing
showed that the only channels expressed in MAH cells, out of
all TRP and CNG channels, were TRPC1, C2, C3, V2, M2,
M4, and M7. Among these, only TRPM2 has a linear current-
voltage relation, a mixed sodium and calcium permeability,
and was not upregulated by differentiation. The molecular
identity of the novel heat-sensitive ion channel was confirmed
in sensory and sympathetic neurons from TRPM2 '~ mice, in
which the percentage of novel heat-sensitive neurons, and the
amplitudes of the residual heat responses in the few remaining
heat-responsive neurons, were both greatly reduced [109].
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Properties of TRPM2

TRPM2 is a fascinating example of a chanzyme, a membrane
protein containing both a functional ion channel and an enzy-
matic domain. The intracellular C terminus contains a nudix
hydrolase (NUDT9) homology region, which was named after
the mitochondrial ADP-ribose (ADPR) pyrophosphatase
NUDTY9 and gives TRPM?2 the chanzyme designation, al-
though the NUDT9 domain in TRPM2 does not appear to
be functional in the enzymatic sense and the channel is acti-
vated simply by binding ADPR [45, 72, 74, 87, 98, 115]. The
full-length long form TRPM2 protein in humans consists of
1503 amino acid residues (1506 in mouse and 1507 in rat) and
is encoded by 32 exons [78, 104]. In addition to the nudix
hydrolase domain, the C-terminal contains a coiled-coil region
governing channel assembly [72]. The N terminus of the full-
length TRPM2 contains four domains of the TRPM homology
region, including a calmodulin-binding 1Q-like motif provid-
ing positive feedback for channel activation, followed by six
transmembrane domains with a pore-forming loop domain
between S5 and S6 [71, 87, 114]. Partial proteolysis of mito-
chondrial NUDT9 suggests that NUDT9 enzymes consist of
two domains, a C-terminal CORE domain containing seg-
ments with ADPR pyrophosphatase activity and an N-
terminal CAP domain with the function of enhancing the af-
finity of the C-terminal CORE domain for ADPR [89]. The
nudix hydrolase homology domain (NUDT9-H) was shown
to be of importance for normal channel assembly and surface
trafficking, because deletion of the domain significantly de-
creases the membrane expression of TRPM2 [90].

In addition, a variety of splice variants of TRPM2 have
been reported. The first splice variant, cloned from HL-60
cells, is characterized by deletions in the N-terminal region
(nucleotides 2056-2115) and in the C-terminal region (nucle-
otides 4318-4419), and is denoted as TRPM2-ANAC.
TRPM2-AN was shown to be a dysfunctional splice variant
of TRPM2, as evidenced by the finding that the sensitivity to
H,0, and ADPR was abolished in HEK293 cells transfected
with cDNA of the splice variant [126]. Although the deleted
segment overlaps with two 1Q-like calmodulin-binding do-
mains and contains two PxxP motifs implicated in protein—
protein interactions, the dysfunction was also shown to be
unrelated to any of these motifs as removal of each of the
two IQ-motifs or deletion of either one or both PxxP motifs
caused no functional loss. The findings suggest that the AN-
stretch may be a spacer segment for other functional sites [60].
TRPM2-AC was shown to be unresponsive to ADP-ribose
[126]. However, the responses of the splice variant to H,O,
varies among different studies, with some studies showing
that TRPM2-AC could be activated by H,0, as efficiently
as the wild type [81, 126], while another study shows the
AC splice variant to be unresponsive to H,O, [90]. Whether
H,0, directly activates TRPM2, or whether its effect occurs

indirectly via a change in ADPR, is therefore uncertain. The
studies showing activation of TRPM2-AC by H,0, suggest
that the deletion mutant is expressed on the surface membrane,
and moreover that the action of H;O, does not depend on
ADPR as mediator [81, 126]. Results showing that deletion
of the NUDT9-H domain significantly decreases membrane
expression [90] while deletion of the amino acids in the
NUDT9-H CAP region of the TRPM2-AC channels pre-
serves the membrane expression of TRPM2 [88], suggest that
the NUDT9-H CORE domain is involved in the functional
expression of TRPM2 on the membrane. The striatal short
form (TRPM2-SSF) lacks 214 N-terminal amino acid residues
but has intact H,O,-induced Ca”" influx activity [119].
TRPM2-AS is a short form of TRPM2 consisting of the
TRPM2 N terminus and the first two predicted transmem-
brane domains, resulting from alternative splicing which lo-
cates a stop codon (TAG) at the splice junction between exons
16 and 17 [133]. Owing to the lack of the pore region and the
C terminus, the splice variant exerts its function in a dominant
negative form and has been reported to inhibit TRPM2-
mediated calcium influx and thus to reduce susceptibility to
cell death caused by exposure to H,O, [133, 134]. Consistent
with this, the short form splice variant was also shown by co-
immunoprecipitation to interact with the long form TRPM2
and can exert inhibition of the long form TRPM2 [133].
Although heteromers composed of various combinations of
TRP channels have been reported [21, 57], whether TRPM2
interacts with other TRP channels through heteromerization
remains unknown.

The activation of TRPM2 by warmth was first shown in
HEK293T cells heterologously expressing TRPM2, and the
amplitude of the TRPM?2 current evoked by ADPR was also
shown to be enhanced at elevated temperatures [112]. Beta-
NAD*- and cyclic-ADP-tibose evoke little TRPM2 current at
25 °C, but a temperature of 40 °C greatly enhances the cur-
rents evoked by beta-NAD*- and cyclic-ADP-ribose [112].
Although the amplitude of TRPM2 current can be enhanced
in the presence of beta-NAD™- and cyclic-ADP-ribose, the
temperature threshold of TRPM2 was reported to be unaffect-
ed by the presence of beta-NAD*- or cyclic-ADP-ribose
[112]. In contrast, H,O, appears to sensitize the heat responses
mediated by TRPM2 by lowering the temperature threshold of
activation to the range around body temperature both in a
transient expression system and in macrophages [49]. The
thermosensitivity of TRPM2 and the effect of H,O, in sensi-
tizing the thermal responses of TRPM2 were also demonstrat-
ed in sensory and autonomic neurons [109].

TRPM2 is widely expressed in the central and peripheral
nervous system [23], both in nonneuronal microglial cells and
in neurons [12, 22]. In addition, a relatively high level of
TRPM2 expression was shown in a variety of immune cells
[23], including neutrophils [32-34, 38, 61, 84], monocytes
[87, 127, 131], macrophages [49, 137], dendritic cells [84,
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106], mast cell [82], and lymphocytes [4, 6, 94]. The expres-
sion pattern of TRPM2 and its sensitivity to temperatures in
the range of mammalian body temperature suggest a potential
role in thermoregulation, in the immune system, and in in-
flammatory responses.

TRPM2 is responsible for the detection
of non-noxious warmth

In view of the expression of TRPM2 in novel heat-sensitive
neurons, we investigated whether TRPM?2 might be responsible
for non-noxious warmth preference [109]. The thermal prefer-
ence of wild-type adult male mice for a temperature around
33 °C has been well documented with the two-plate thermal
preference test in a number of studies [43, 73, 91]. We used this
system with one control plate at 33 °C, the preferred temperature,
while the temperature of the test plate was adjusted to cooler or
warmer temperatures. The test and control plates were reversed
after 30 min to control for any influence of environmental cues.
The results showed that adult male wild-type mice avoided the
non-noxious warm temperature of 38 °C, in agreement with the
results previously published [43, 73, 91], while TRPM2 knock-
out mice showed no avoidance of 38 °C [109]. Overall, deletion
of TRPM2 caused mice to prefer warmer temperatures over a
wide thermal range from 23 to above 38 °C, suggesting that
TRPM2 is activated by warmth and creates an aversive signal
that drives male mice towards cooler temperatures [109].
Thermal behavior may therefore be thought of as a balance be-
tween an aversive “warm” signal, created by TRPM2, and an
aversive “cool” signal, created by TRPMS as discussed above
[2, 17, 54, 55], with the optimal environmental temperature
achieved when the two signals are in balance.

Sex differences in thermal preference

In adult wild-type male mice, a preference for 33 °C over cooler
or warmer floor temperatures has been well documented [43, 73,
91], but female mice have a distinct preference for warmer tem-
peratures [47, 73]. Altered female behaviors in response to dif-
ferent ambient temperatures, usually a slightly warmer and less
prominent thermal preference than male mice, were also ob-
served [24, 25]. In humans, women prefer a warmer ambient
temperature than men [5, 48] and also on average have a cooler
peripheral skin temperature than men, along with a warmer core
temperature [52]. These differences are therefore consistent
across labs, paradigms, and species, but the reasons for the influ-
ence of gender on thermal behavior remains both interesting and
unknown. Is the difference driven by sex hormones or by other
genetic factors? Is it due to a difference in peripheral thermal
perception, perhaps driven by sex differences in TRPM2 and/or
TRPMS, or is it attributable to other factors?
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Participation of TRPM2 in central thermal
sensation

In view of the role of TRPM2 in sensing ambient warm tem-
peratures, a possible role for TRPM?2 is attractive in the sen-
sation of, and perhaps also in the control of, normal body
warmth. TRPM2 was found to be expressed in a subpopula-
tion of neurons in the preoptic area of the hypothalamus,
which is known to play an important role in the sensation of
central temperatures and in whole-body thermoregulation
[103]. In calcium imaging experiments, these neurons were
found not to be active at the normal body temperature of
37 °C, in both cell cultures and in brain slices, but to be
activated by small temperature elevations, to 38°C or above,
in brain slices. Consistent with this, normal body temperature
was unaffected by genetic deletion of TRPM2, and mild fever
induced by injection of a small dose of PGE, into the hypo-
thalamus was also unaffected. However, a larger increase in
body temperature was noted in TRPM2 knockout mice after
injecting a higher dose of PGE; or other pyrogenic stimuli into
the hypothalamus, suggesting that TRPM2 plays a role as a
“brake” which prevents the development of an excessive fever
response. Chemogenetic activation and inhibition of hypotha-
lamic TRPM2-expressing neurons in vivo caused a decrease
and increase of body temperature, respectively, showing that
these neurons are potently connected to neural circuits in-
volved in the control of body temperature [103]. Overall, this
fascinating work suggests that TRPM2 does not play a central
role in the maintenance of normal body temperature nor in
mild fever but appears instead to act as an “emergency re-
sponse system” which is able to bring into play potent ther-
moregulatory responses in order to reduce body temperature
when it rises to dangerous levels.

Role of TRPM2 in the autonomic nervous
system

Neurons of the autonomic nervous system, both sympathetic
and parasympathetic, express a warm-sensory function medi-
ated by TRPM2, as described above [109]. This finding is
surprising because the autonomic nervous system has been
traditionally viewed as carrying out a purely motor function,
and the idea that it may have an autonomous sensory function
has not, to the best of our knowledge, been considered before.

The prevailing concept of thermoregulation holds that the
peripheral somatosensory system detects the external environ-
ment temperature and sends information to the hypothalamus,
where it is integrated with information on core body temper-
ature detected in the preoptic area. The sympathetic nervous
system then serves as the output pathway that transmits the
integrated thermal command to control the vasomotor tone of
surface blood vessels, the activity of brown adipose tissue, and
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sweating [76]. However, the model ignores a possible effect of
temperature acting directly and locally on tissues. For exam-
ple, local warming has long been known to cause local vaso-
dilation [110], an effect that has been attributed to a reflex
release of vasodilator peptides such as CGRP from activated
sensory nerve endings. However, one study showed that when
conduction of action potentials in sensory nerves was blocked
with anesthetic cream, the steady-state vasodilation by local
warming up to 42 °C was not different from control, but that
the vasodilation was significantly reduced following inhibi-
tion of exocytosis from postganglionic sympathetic neurons
with bretylium [7]. This result suggests that the peripheral
sympathetic nervous system is more important than the so-
matosensory nervous system for the steady-state vasodilation
evoked by local warming. It may be counter-intuitive to be-
lieve that postganglionic sympathetic neurons have an impor-
tant thermosensory role in the vasodilation evoked by local
warming, but evidence for this view is growing because the
inhibition of local warming-evoked vasodilation by bretylium
has now been shown in many studies [39, 40, 42, 111]. It
would be of great interest to investigate a potential physiolog-
ical role for TRPM2 as a thermosensor in the autonomic ner-
vous system.

Role of TRPM2 in the immune system

TRPM2 is widely expressed in the immune system [96], and
the sensitivity of TRPM2 to oxidative stress suggests a poten-
tial involvement of TRPM2 in inflammatory responses [30,
126]. The oxidative stress-induced Ca** influx through
TRPM2 initiates downstream reactions essential for chemo-
kine production and the resultant inflammatory responses.
The crucial role of TRPM2 in inflammatory responses is sup-
ported by the impairment of H,O,-induced production of
macrophage inflammatory protein-2 (MIP2, also known as
CXCL2) in monocytes from TRPM2 knockout mice [131].
TRPM2 was shown to participate in the enhancement of bac-
tericidal activity by lysophosphatidylcholine (LPC) via a sig-
naling pathway involving glycine receptor o2, TRPM2, and
p38 mitogen-activated protein kinases [41]. Furthermore,
TRPM2 knockout mice were shown to be highly susceptible
to infection with Listeria monocytogenes (Lm) and exhibited
impaired innate immunity with reduced level of cytokines IL-
12 and IFNy after Lm infection [53]. These studies suggest
that TRPM2 plays an enhancing role in inflammatory
responses.

On the other hand, one study evaluated the function of
TRPM2 in a model of endotoxin-induced lung inflammation
and found increased release of chemokines and proinflamma-
tory cytokines, including tumor necrosis factor, the chemokine
CXCL2 and interleukin 6, in the lungs of TRPM2 knockout
mice. These results suggest that TRPM2 plays a negative

feedback role in dampening the inflammatory responses in-
duced by oxidative stress [18]. Another study showed that
TRPM2 knockout mice chronically infected with
Helicobacter pylori exhibited increased gastric inflammation
and greater macrophage production of inflammatory media-
tors and macrophage M1 polarization. These results, in con-
trast, are in favor of an inhibitory role of TRPM2 in inflam-
matory responses [3]. The exact role of TRPM?2 in inflamma-
tory responses warrants further clarification.

Role of TRPM2 in pain

A role for TRPM2 in the pathogenesis of inflammatory and
neuropathic pain is suggested from the expression of TRPM2
both in the peripheral nervous system and in the immune
system, together with the fact that TRPM2 is activated by
oxidative stress. One study showed that in carrageenan-
induced inflammatory pain and sciatic nerve injury-induced
neuropathic pain models, mechanical allodynia and thermal
hyperalgesia were attenuated in TRPM2 knockout mice
[31]. Another study showed that the severity of pathological
pain conditions are significantly reduced in TRPM2 knockout
mice; the models investigated include acetic acid-induced
writhing behavior, mechanical allodynia in the monosodium
iodoacetate-induced osteoarthritis pain model, the experimen-
tal autoimmune encephalomyelitis model, the paclitaxel-
induced peripheral neuropathy model, and the
streptozotocin-induced painful diabetic neuropathy model
[102]. Furthermore, the trinitrobenzene sulfonic acid-
induced visceral hypersensitivity was significantly reduced
in TRPM2 knockout mice, while the enhanced visceromotor
response to noxious colorectal distention induced in colitis
model was restored to the control level after treatment with
econazole, a TRPM2 inhibitor [69]. These results show that
TRPM2 promotes the development of pathological pain
states. Selective blockers of TRPM2 may find a future use
as analgesics.

Role of TRPM2 in insulin secretion

TRPM2 is expressed in pancreatic beta cells, which under
normal circumstances are not exposed to significant changes
in temperature. Reactive oxygen species such as H,O, could,
however, modulate TRPM2 and therefore influence the secre-
tion of insulin. In isolated pancreatic islet cells, H,O, induces
both a greater calcium increase and enhanced insulin secretion
when compared to its effect in cells from TRPM2 knockout
mice [50, 117]. A physiological role for TRPM2 is suggested
from the observations that TRPM2 knockout mice show at-
tenuated insulin secretion and higher blood glucose levels in
glucose tolerance tests [S1, 118]. TRPM2 may therefore be an
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important participant in the physiology of glucose homeosta-
sis, though the details of the mechanism are yet to be fully
elucidated.

Conclusion

Over the last decade, we have gained a much deeper under-
standing of the role of TRPM2 in thermosensation and ther-
moregulation, in the immune system and in pain, but there are
still many unresolved questions. Why is thermosensation sex-
dependent, and is the difference driven by TRPM2? Does
TRPM2 contribute to the crucial mechanism that maintains
basal core body temperature at around 37 °C? Present evi-
dence suggests that it does not—but is TRPM2 instead in-
volved in initiating or regulating fever? TRPM2 appears to
be implicated in the responses of the immune system, which
are known to be strongly temperature-dependent, but the
mechanistic details are unclear. There are conflicting results
regarding the role of TRPM2 in inflammatory responses. All
these questions are of crucial importance and need further
investigation.
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