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ABSTRACT: HF, CS2, and COF2 are three important decomposition
components of the SF6 gas insulation medium. In this paper, the gas sensitivity
of Pt doped on (8, 0) single-walled carbon nanotube (SWCNT) to HF, CS2, and
COF2 is investigated based on density functional theory. The binding energy,
charge transfer, density of states, and frontier molecular orbital theory are
discussed. It is found that all processes of HF, CS2, and COF2 adsorbed on Pt-
SWCNT are exothermic. Pt-SWCNT donated 0.182 electrons to CS2 molecules
during the interaction process but acts as an electron acceptor during adsorption
of HF and COF2 on it. After comprehensive consideration of binding energy and
charge transfer, the response of Pt- SWCNT to CS2 may be the best, and those to
HF and COF2 are almost the same. In addition, after the adsorption of the three
kinds of gases on Pt-SWCNT, the order of the conductivity of the Pt-SWCNT
material is CS2 > COF2 ≈ HF via frontier molecular orbital theory analysis. The
Pt-SWCNT material is probably more suitable as a gas sensor for the detection of CS2 in the application of gas-insulated equipment.

1. INTRODUCTION
SF6 has been widely used as insulation medium for the operation
safety of gas-insulated equipment due to its insulation and
excellent arc extinguishing characteristics.1−4 However, in long-
running gas-insulated equipment, SF6 would decompose in
partial discharge to F atoms and other low fluorinated sulfur
species, which further react with trace H2O, trace O2, and
organic solid insulation material to generate HF, COF2, CS2,
SO2, SOF2, SO2F2, S2F10, etc.

5−9 It has been proved that
detecting SF6 characteristic decomposed products by chemical
sensors is a feasible and effective method to online monitoring
and insulation defect diagnosis of gas-insulated equipment.10−13

In recent years, due to the strong responsivity, small size, and
high sensitivity of a single-walled carbon nanotube
(SWCNT),14−16 it has been a research hotspot as a sensor
material. Moreover, the gas sensitivity of the SWCNT will
enhance after decorating its surface with transition metals17−21

and realize its application to detect some gases.22 Cui et al. found
that the SWCNT doped with Pt, Pd, and Rh has good gas
sensitivity to SOF2, CO, CH4, and H2S, due to strong orbital
interactions and chemisorption between the adsorbent and the
target gas10,23,24 by simulations. Yoosefian studied the
adsorption properties of SO2 on Pt- and Au-doped SWCNTs
(5, 5) and found that the energy gap of SO2 adsorbed on Pt-
SWCNT changesmore significantly than that on Au-SWCNT.25

There are a few studies about the gas-sensitive materials for
HF, CS2, and COF2, which can more effectively represent the
degree of solid insulator defects in SF6 gas-insulated equipment,
and Pt doped on the SWCNT surface is a promising material for
gas sensor development. The adsorption properties of HF, CS2,

and COF2 adsorbing on Pt doped on (8, 0) SWCNT were
calculated and analyzed based on density functional theory
(DFT). The work provides fundamental adsorption information
of Pt doped on (8, 0) SWCNT as a possible candidate for a
chemical sensor applied in condition monitoring and defect
diagnosis in SF6 gas-insulated equipment.

2. COMPUTATION DETAILS

All of the calculations in the work were performed by the Dmol3
module based on DFT.26,27 The atomic orbital basis sets
adopted double numerical plus polarization (DNP).28 The
Perdew−Burke−Ernzerhof (PBE) generalized gradient approx-
imation (GGA) was used to deal with electron exchange and
correlation. The Brillouin zone k-point was sampled as 1× 1 × 8
from the Monkhorst−Pack mesh10,29 with semicore pseudopots
being adopted as the core treatment.26 Maximum force, energy
tolerance accuracy, and maximum atom displacement were
selected as 0.002 Ha/Å, 1.0 × 10−5 Ha, and 5 × 10−3 Å,
respectively.16,30 The charge density convergence accuracy of
the self-consistent field was 1.0 × 10−6 Ha.
All of the sizes of supercells were 20 Å × 20 Å × 8.50 Å with

angles of α = 90°, β = 90°, and γ = 120°. The initial HF
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adsorption orientation includes two adsorption modes, namely,
the H and F atoms approaching the Pt site of the Pt-SWCNT
surface (as shown in Figure S1). For CS2, the initial adsorption
orientation includes two modes as well, namely, the C and S
atoms approaching the Pt site of the Pt-SWCNT surface (as
shown in Figure S2). Three modes, namely, the C, O, and F
atoms approaching the Pt site of the Pt-SWCNT surface, were
considered for the initial COF2 adsorption orientation (as
shown in Figure S3). Only the detailed analysis of the adsorption
modes with the largest binding energy was discussed in this
paper, including charge transfer, density of states (DOS),
morphology, and frontier molecular orbital.
The binding energy Ead represents the change of the gas

molecule adsorption system and is given in formula (1)31,32

E E E Ead molecule/Pt SWCNT molecule Pt SWCNT= − −− − (1)

where Emolecule/Pt‑SWCNT represents the energy of the total system
after adsorption of one gas molecule. Emolecule and EPt‑SWCNT
represent the energies of one gas molecule and the intrinsic Pt-
SWCNT surface, respectively.
The charge transfer Qt between Pt-SWCNT and gas

molecules was estimated via Mulliken population analysis. If
Qt < 0, the electrons transfer from the Pt-SWCNT surface to gas
molecules during the adsorption process, and the electrons
transfer from gas molecules to the Pt-SWCNT surface when Qt
> 0.

3. RESULTS AND DISCUSSION
Before the adsorption calculation, the structures of HF, CS2,
COF2, and Pt-SWCNT were optimized. SWCNT (8, 0) is

selected as the carrier, and the Pt atom is connected to two
adjacent C atoms on the SWCNT, which forms a bridge site
outside the SWCNT,33 as shown in Figure 1. The bond lengths
of both Pt and its adjacent two C atoms are 2.264 Å with a C−
Pt−C angle of 36.996°. In addition, there is no deformation of
the SWCNT after Pt doping.

The optimized structures and their parameters of HF, CS2,
and COF2 molecules are shown in Figure S4.

3.1. Adsorption Configurations of HF, CS2, and COF2
on Pt-SWCNT. For all adsorption configurations of HF, CS2,
and COF2 on the Pt-SWCNT surface, we only discuss the ones
with the largest binding energy. The parameters of the
adsorption configurations of the three gas molecules are listed
in Table 1.
For HF, when the HF molecule is close to the Pt-SWCNT

surface by theH atom, the largest binding energy is−0.325 eV in
the two adsorption orientation modes. The adsorption
configuration of HF is shown in Figure 2. The adsorption
distance (between Pt and F) is 2.268 Å, and the bond lengths of
Pt and its adjacent two C atoms change to 2.239 and 2.247 Å
after adsorption, respectively. However, the structures of the
SWCNT and the HF molecule have not changed during the
adsorption process. In total, 0.045 electrons transfer from HF to
the Pt-SWCNT surface, which indicates that HF acts as an
electron donator.
The adsorption configuration of CS2 is shown in Figure 3. The

binding energy is−1.037 eV and the adsorption distance is 2.211

Figure 1. Optimized structure of Pt-SWCNT: (a) front view and (b)
top view.

Table 1. Parameters of the Adsorption Configurations of HF,
CS2, and COF2 on Pt-SWCNT

gas molecule binding energy (eV) charges transfer (e) distance (Å)

HF −0.325 0.045 2.268
CS2 −1.037 −0.182 2.211
COF2 −0.464 0.029 2.454

Figure 2. Adsorption configuration of HF on the Pt-SWCNT surface:
(a) front view and (b) top view.

Figure 3. Adsorption configuration of CS2 on the Pt-SWCNT surface:
(a) front view and (b) top view.

Figure 4. Adsorption configuration of COF2 on the Pt-SWCNT
surface: (a) front view and (b) top view.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c02562
ACS Omega 2021, 6, 23776−23781

23777

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c02562/suppl_file/ao1c02562_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c02562/suppl_file/ao1c02562_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c02562/suppl_file/ao1c02562_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c02562/suppl_file/ao1c02562_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02562?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c02562?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Å. Both C−S bond lengths of CS2 increase from 1.567 to 1.593 Å
and 1.636 Å, while the bond angle of C−S−C decrease from 180
to 156.845° after the adsorption. In addition, the bond lengths of
Pt and its adjacent two C atoms decrease to 2.237 and 2.232 Å,
respectively. The Pt-SWCNT surface donated 0.182 electrons to
the CS2 molecule.
Figure 4 exhibits the adsorption configuration of COF2. The

adsorption distance is 2.454 Å with a binding energy of −0.464
eV. The structure of COF2 has changed slightly after adsorption.
The bond lengths of Pt and its adjacent two C atoms decrease to
2.238 and 2.249 Å, respectively. In addition, the Pt-SWCNT
surface obtains 0.029 electrons from the COF2 molecule during
the adsorption process.
Larger adsorption energy means a larger amount of gas could

adsorb on the surface of a gas-sensing material.34 Meanwhile,
more charge transfer could give rise to higher sensitivity in the
same adsorption condition.35 Therefore, due to larger binding
energy and charge transfer, Pt- SWCNT may have the best
response to CS2 among the three kinds of gas molecules.

However, due to the larger binding energy and the smaller
charge transfer of the COF2 system than those of the HF system,
the response of Pt-SWCNT to COF2 may be nearly the same as
that to HF.

3.2. Density of States Analysis for HF, CS2, and COF2
Adsorbed on Pt-SWCNT. To further estimate the interaction
mechanism between HF, CS2, and COF2 and Pt-SWCNT, the
density of states (DOS) distributions of the three gas molecules
on the Pt-SWCNT surface are discussed; 0 eV refers to the
Fermi level. Figure 5 shows the total density of states (TDOS)
and local density of states (LDOS) distribution of HF adsorbed
on Pt-SWCNT. The TDOS increase little at the Fermi level but
increase obviously at −9.8, −6.5, and −5.5 eV after HF
adsorption. According to LDOS, the overlap between the 1s
orbital of the H atom, the 2p orbital of the F atom, and the 5d
orbital of the Pt atom is not significant, which indicates that the
interaction between HF and the Pt-SWCNT surface is weak. In
addition, the band gap decreases 0.010 eV after HF adsorption

Figure 5. DOS distribution of HF adsorbed on the Pt-SWCNT surface.

Figure 6. DOS distribution of CS2 adsorbed on the Pt-SWCNT surface.
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Figure 6 shows the DOS distribution of CS2 adsorbed on the
Pt-SWCNT surface. The TDOS increases at −15.8, −13, −7.5,
−5,−4.2,−1.8, and 2.5 eV after CS2 adsorption. Compared with
LDOS distribution, the increased areas of the TDOS derive from
the CS2 molecule. In addition, the 3p orbital of the S atom and
the 2p orbital of the C atom inCS2 overlaps with the 5d orbital of
Pt at −5.2 to 0 and 1.2−3.6 eV, respectively, indicating that the
interaction between the CS2 molecule and Pt-SWCNT is strong.

The overlap illustrates the hybridization between atomic
orbitals.
The DOS distribution of COF2 adsorbed on Pt-SWCNT is

exhibited in Figure 7. It can be found that the TDOS has
changed significantly after COF2 adsorption and decrease
obviously at the Fermi level. However, the hybridization
between 2p orbitals of C, O, and F atoms in COF2 and the 5d
orbital of the Pt atom is slight according to the LDOS results.

3.3. Frontier Molecular Orbital Theory Analysis for HF,
CS2, and COF2 Adsorbed on Pt-SWCNT. Frontier molecular
orbital theory is investigated to better understand the Pt-
SWCNT response to HF, CS2, and COF2. The distributions of
the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) accompanied by related
energies are obtained and shown in Figures 8−11. Subsequently,
the energy difference Eg = LUMO−HOMO, which could be a
feasible parameter to measure the conductivity of materials.34

Figure 7. DOS distribution of COF2 adsorbed on the Pt-SWCNT surface.

Figure 8. Configurations of the HOMO and LUMO of Pt-SWCNT
with front and top view: (a) HOMO and (b) LUMO.

Table 2. Values of HOMO and LUMO

calculation system LUMO (eV) HOMO (eV) Eg (eV)

Pt-SWCNT −4.377 −5.084 0.747
HF/Pt-SWCNT −4.288 −4.998 0.711
CS2/Pt-SWCNT −4.612 −5.307 0.695
COF2/Pt-SWCNT −4.283 −4.993 0.710

Figure 9.Configurations of theHOMOand LUMOofHF adsorbed on
the Pt-SWCNT surface: (a) HOMO and (b) LUMO.
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The values of HOMO and LUMO are shown in Table 2. It can
be found that both the HOMO and LUMO of isolated Pt-
SWCNT are mainly around the tube and Pt has an Eg of 0.747
eV. For HF, CS2, and COF2 adsorption systems, all of the three
gas molecules have little contribution to the HOMO and
LUMO according to Figure 9−1011. However, the HOMO and
LUMO areas around the Pt atom are obviously reduced after
CS2 adsorbed on Pt-SWCNT. In addition, Eg values of the three
gas molecule adsorption systems have narrowed compared with
that of isolated Pt-SWCNT, namely, 0.711 eV for the HF
system, 0.693 eV for the CS2 system, and 0.710 eV for the COF2
system. This would lead to an increase in the conductivity of the
Pt-SWCNT material interacting with the three kinds of gases in
the order CS2 > COF2 ≈ HF. The result is consistent with the
order of the response of the Pt-SWCNT surface to the three
kinds of gases. This provides theoretical evidence for the
detection of SF6 decomposition components, HF, CS2, and

COF2, by a Pt-SWCNT-based sensor through the change in
electrical conductivity.

4. CONCLUSIONS

In the work, the adsorption properties of HF, CS2, and COF2 on
Pt-SWCNT have been studied based on DFT, including
adsorption structure, binding energy, charge transfer, DOS,
and frontier molecular orbital theory. The conclusions are
summarized as follows.

(1) All processes of HF, CS2, and COF2 adsorbed on Pt-
SWCNT are exothermic. After comprehensive consid-
eration of binding energy and charge transfer, the
response of Pt- SWCNT to CS2 may be the best, and
those to HF and COF2 are almost the same.

(2) After the adsorption of the three kinds of gases on Pt-
SWCNT, the order of the conductivity of the Pt-SWCNT
material is CS2 > COF2 ≈ HF via frontier molecular
orbitals theory analysis.

(3) The Pt-SWCNT material is probably more suitable as a
gas sensor for the detection of CS2 in the application of
gas-insulated equipment.
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