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Abstract: A mild visible-light-mediated strategy for cysteine
arylation is presented. The method relies on the use of eosin Y
as a metal-free photocatalyst and aryldiazonium salts as
arylating agents. The reaction can be significantly accelerated
in a microflow reactor, whilst allowing the in situ formation of
the required diazonium salts. The batch and flow protocol
described herein can be applied to obtain a broad series of
arylated cysteine derivatives and arylated cysteine-containing
dipeptides. Moreover, the method was applied to the chemo-
selective arylation of a model peptide in biocompatible
reaction conditions (room temperature, phosphate-buffered
saline (PBS) buffer) within a short reaction time.

The formation of C@S bonds is of high interest in the fields of
organic synthesis and drug discovery.[1] However, due to the
undesired coordination between metal catalysts and sulfur
atoms, traditional cross-coupling methods are often inade-
quate strategies for C@S bond formation.[2] Despite the
undesired coordination, some transition-metal-catalyzed
cross-coupling methods for C@S bond formation have been
reported.[3] However, these methods often rely on high
reaction temperatures and/or require stoichiometric amounts
of a strong base. A well-known strategy largely applied in
industry for C@S bond formation is the so-called Stadler–
Ziegler reaction, in which a diazonium salt reacts with an aryl
thiolate to afford the desired thioether derivative.[4] Starting
from the original conditions reported by Stadler and Ziegler,
a plethora of methodologies have emerged, allowing milder
reaction conditions.[5] Among them, our group reported
a mild one-pot procedure for the synthesis of arylsulfides
facilitated by photoredox catalysis.[6]

In the interest of developing mild methodologies for
chemical biology purposes,[7] we envisaged modifying our
procedure to achieve a visible-light-induced protocol for
cysteine arylation. Specifically, we directed our attention
towards the development of a biocompatible metal-free
strategy involving inexpensive organic dyes as photoredox
catalysts. In addition, due to the incompatibility of UV light to
peptides and proteins, we reasoned that visible light photo-
redox catalysis would be perfectly suited to chemical biology
applications owing to the milder reaction conditions (e.g.
room temperature and visible light).

Novel selective chemical modifications of peptides and
proteins are of pivotal importance for the study of protein–
protein interactions and for the development of novel
bioconjugates and drug candidates.[8] Compared to other
amino acids commonly targeted for post-translational modi-
fications, cysteine exhibits low natural abundancy and a rel-
atively high nucleophilicity.[9] Together, these characteristics
account for the generally higher selectivity and the broad
reactivity profile typical for post-translational chemical
modifications involving cysteine residues. Some of the most
widespread strategies for cysteine bioconjugation include
disulfide formation,[10] thiol–maleimide reactions,[11] and alky-
lation with haloalkyl reagents.[12] Other strategies use cysteine
as precursor for the formation of dehydroalanine[13] (Dha), or
as a handle for nucleophilic aromatic substitution allowing
access to perfluorinated staples in peptides and proteins.[14]

Moreover, several methodologies relying on thiol-ene[11] (or
thiol-yne[15]) reactions have been reported, often requiring
UV irradiation to generate the thiyl radical. Fewer records in
the literature describe the use of transition metals for cysteine
modification. Among them, recent developments illustrate
methodologies for cysteine arylation[16] as well as viable
protocols for cysteine arylation in proteins.[17] Inspired by
these reports, we envisioned that photoredox catalysis could
serve our purpose to obtain a mild and straightforward
methodology for cysteine arylation. Moreover, we hypothe-
sized that highly electrophilic benzenediazonium salts would
be suitable as arylating agents, able to easily generate aryl
radicals (Ered as high as 0.5 V vs. saturated calomel electrode,
SCE) via a single electron transfer (SET) pathway.[18] The
generated aryl radicals could then be trapped by the
nucleophilic thiol moiety of cysteine.

Thus, we commenced our investigation with the arylation
of N-Ac-l-cysteine-OMe 1a using 4-fluorobenzenediazonium
tetrafluoroborate in acetonitrile (MeCN) under batch con-
ditions. In the absence of light and photocatalyst, a modest
26% of the desired arylated product 3g was obtained within
2 hours reaction time (Table 1, entry 1). When exposed to
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a 24 W compact fluorescence light source (CFL), a similar
yield of 25% was observed, indicating that visible light alone
does not significantly increase aryl radical formation (Table 1,
entry 2). However, in the presence of Ru(bpy)3Cl2·6 H2O
(1 mol%) as a benchmark photoredox catalyst, a higher yield
of 40 % was obtained (Table 1, entry 3). In order to minimize
the risks associated with the handling of potentially explosive
diazo intermediates and desiring to simplify our protocol into
a one-pot procedure, we investigated the in situ formation of
the diazonium salt starting from readily available 4-fluoroani-
line, tert-butyl nitrite (t-BuONO, 2.0 equiv) and catalytic
amounts of tetrafluoroboric acid (HBF4, 1.5 mol%). Within
2 hours, product 3g could be isolated in an improved 56%
yield (Table 1, entry 4). Tetrafluoroborate benzenediazonium
salts are easily isolated and exhibit higher stabilities as
compared to diazonium salts bearing other counterions.
However, by implementing the in situ formation of diazonium
salts, the counterion choice appeared less restrictive (i.e. no
need to use the BF4 counter-ion to afford shelf-stable
diazonium salts). Instead, we chose to use catalytic amounts
of easy-to-handle para-toluenesulfonic acid (TsOH·H2O),
which gave similar results (59%, Table 1 entry 5). To develop
a biocompatible strategy, we further tested the possibility to
employ an organic dye, eosin Y, as photocatalyst for our
transformation. Gratifyingly, in the presence of 1 mol% of
eosin Y, the desired product was obtained in 59 % (Table 1,

entry 6). This is in line with recent reports on the ability of
eosin Y to be oxidatively quenched by diazonium salts, thus
generating aryl radicals.[19] Further increasing the amount of t-
BuONO to 3 equiv did not lead to any improvement in yield
(Table 1, entry 7). Solvent screening revealed that the reac-
tion afforded lower yields in DMSO (15%, Table 1, entry 8)
but proceeded well in PBS buffer (pH 8, 46% Table 1,
entry 9), a commonly used solvent for peptide and protein
modifications.

One of the major limitations of photocatalytic reactions
conducted in batch is the inefficient irradiation of the reaction
mixture, often resulting in sub-optimal yields and difficulty of
scale-up.[20] In order to circumvent these issues, we translated
our arylation protocol into a micro-flow procedure. We
developed a photomicroreactor assembly consisting of
a 3D-printed holder equipped with 0.45 mL PFA micro-
capillary tubing (500 mm ID) and 3.12 W white light-emitting
diodes (LEDs; see the Supporting Information for micro-
reactor details).[21] Remarkably, within only a 30 second
residence time, 79 % of compound 3g was obtained (Table 1,
entry 10). Due to the evolution of nitrogen gas (consistent
with the reduction of diazonium salts), the formation of a slug
flow was observed, which ensured optimal mixing effi-
ciency.[22] The significant acceleration of reaction kinetics
and increase in product yields can be attributed to the optimal
irradiation of the reaction mixture.[20a]

With optimized conditions in hand, we evaluated the
scope of our protocol both in batch and in continuous flow
(Scheme 1). The arylation reaction tolerated a wide variety of
substituents on the aniline coupling partner. Aniline mole-
cules bearing alkyl substituents reacted in modest yields in
batch to give the corresponding arylated cysteine derivatives
(3a to 3c) and improved yields were obtained in flow for
compounds 3a and 3b. Notably, compound 3 d (49% batch vs.
61% flow) bearing an alkyne moiety could be of use for
further functionalization of biomolecules through copper-
catalyzed alkyne-azide cycloaddition methods (CuAAC).[23]

Anilines bearing both ortho and para substituents also reacted
in modest to good yields to give the desired arylated
derivatives 3e and 3 f (28% and 66% batch vs. 73% in flow
for 3 f). In general, we observed that electron-deficient
anilines gave higher yields as compared to the electron-rich
anilines. This can be attributed to the difference in reactivity
of their corresponding diazonium salts. In fact, electron-
deficient aryldiazonium salts are less stable and therefore
more prone to reduction via SET.[18b] Moreover, a series of
fluorinated derivatives was obtained in good to excellent
yields (3 g to 3m). Specifically, para- and ortho-fluoro (3g
59% batch, 82 % flow, 3 h 70 % batch), para- and meta-
trifluoromethyl- (3 k 60% batch, 89 % flow and 3 l 81 % flow)
and trifluoromethoxy- (3m 62% flow) arylated cysteine
derivatives were all prepared in good yields. Additionally,
perfluoroarylated derivatives 3 i (flow 40%) and 3 j (batch
42%, flow 45%) were synthesized in satisfactory yields.
Similar perfluoroarylated cysteine derivatives have been
reported by Pentelute and co-workers as convenient inter-
mediates for peptide stapling.[14a,b]

Next, we explored the potential of our methodology for
Cl, Br and I-containing anilines, as all halogenated derivatives

Table 1: Optimization of reaction conditions in batch for cysteine
arylation.[a]

Entry Light
source

Catalyst Changes from optimized
conditions

Isolated
yield [%]

1 no light none pre-made diazonium 26
2 CFL none pre-made diazonium 25
3 CFL Ru(bpy)3Cl2 pre-made diazonium 40
4 CFL Ru(bpy)3Cl2 in situ formation, HBF4 56
5 CFL Ru(bpy)3Cl2 in situ formation, PTSA 59
6 CFL eosin Y none 59
7 CFL eosin Y in situ formation,

3 equiv. tBuONO
52[b]

8 CFL eosin Y DMSO 15
9 CFL eosin Y PBS 46
10 white

LEDs
eosin Y continuous flow[c] 79 (92[b])

[a] Standard reaction conditions: 0.5 mmol N-Ac-l-cysteine-OMe (1a),
4-fluoroaniline (1.3 equiv), t-BuONO (2.0 equiv), 1.5 mol% TsOH·H2O
and 1 mol% eosin Y in 5 mL MeCN (0.1m), white CFL, 2 hours reaction
time. For pre-made diazonium salts: 4-fluorobenzenediazonium tetra-
fluoroborate was used in absence of t-BuONO and TsOH·H2O. [b] Yield
determined by GC-MS with n-decane as internal standard. [c] For
detailed flow conditions, see Scheme 1 and the Supporting Information.
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could represent useful synthetic handles for further peptide
functionalization. Both ortho- and para-Cl derivatives were
obtained in satisfactory yields (3o 78%, 3p 62%) as well as
the ortho-Br derivative 3n (79 %). Moreover, para- and meta-
I derivatives were synthesized (3q 35%, 3r 41%) albeit in
slightly diminished yields. The lower yields observed in the
presence of an iodine atom could be explained by considering
that iodoarene moieties are prone to iodine transfer to aryl
radicals, thus affording 1,4-diiodobenzene, which we did
observe as a significant side product in our reaction (detected
in GC-MS).[19e] Additionally, we explored the possibility of
employing keto- and ester-containing anilines, thus obtaining
para-methyl ketone and ortho-methoxy ester derivatives 3s
(78 %) and 3t (75%) in good yields. Finally, we probed the
reactivity of the heterocycle 3-amino-5-Cl pyridine towards
our transformation. Gratifyingly, the pyridine-containing
cysteine derivative 3u was obtained in 69 % yield in flow.

Owing to the ease of scalability, our flow protocol could
be easily employed to obtain arylated cysteine derivatives on
gram scales. Consequently, this notable feature allows one to
prepare sufficient quantities for use in automated solid phase

peptide synthesis (SPPS). As an example, we performed
a continuous-flow scale-up experiment with N-Ac-l-cysteine-
OMe 1a (5 mmol) and 3-trifluoromethylaniline. Within
approximately two hours of operation time, 1.16 g (72 %) of
derivative 3 l was obtained.

Encouraged by the results obtained for the arylation of N-
Ac-l-Cys-OMe, we prepared a small array of cysteine-
containing dipeptides to test the compatibility of our method-
ology with simple model peptides. Therefore, four dipeptides
(4 N-Boc-l-Ala-l-Cys-OMe, 5 N-Boc-l-Leu-l-Cys-OMe, 6
N-Boc-l-Trp-l-Cys-OMe and 7 N-Boc-l-Phe-l-Cys-OMe)
were prepared in solution via native chemical ligation, and
were subjected to our arylation protocol (Scheme 2).[24]

Satisfyingly, N-Boc-l-Ala-l-Cys-OMe afforded the corre-
sponding arylated dipeptides 8a (60%), 8b (56%) and 8c
(42 %) in good yields. Similarly, good yields were obtained
with N-Boc-l-Leu-l-Cys-OMe for derivatives 9 a to 9d. A
remarkable acceleration and increase in yield was observed
when the arylation of N-Boc-l-Leu-l-Cys-OMe was con-
ducted in flow. When attempting the arylation of N-Boc-l-
Trp-l-Cys-OMe, we found the presence of indole to be

Scheme 1. Scope of cysteine arylation in batch and flow. a) Reaction conditions batch: 1.0 mmol N-Ac-Cys-OMe (1a), aniline (1.3 equiv), t-
BuONO (2 mmol), 1.5 mol%TsOH·H2O and 1 mol% eosin Y in 10 mL ACN (0.1m), white CFL, 2 h reaction time. b) Reaction conditions flow:
2.0 mmol N-Ac-Cys-OMe (1a), aniline (1.3 equiv), t-BuONO (2 equiv), 4 mol%TsOH·H2O and 1 mol% eosin in 40 mL ACN (0.05m), white LED
light, 30 seconds residence time; Reported yields are isolated yields [average of two runs]. c) 60 seconds residence time. d) 150 seconds residence
time. e) Gram scale experiment in continuous flow (5 mmol scale).
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incompatible with the in situ diazonium formation.[25] How-
ever, when pre-formed diazonium salt was added to N-Boc-l-
Trp-l-Cys-OMe, the corresponding arylated derivative 10 a
was obtained in 39% yield. Finally, N-Boc-l-Phe-l-Cys-OMe
afforded the corresponding arylated derivative 11a in 55%
yield.

In order to further demonstrate the utility of our method-
ology, we focused our attention on performing our arylation
strategy on more complex peptide substrates. However, we
anticipated that the in situ formation of diazonium salts might
be incompatible with the delicate nature of peptides and
proteins. Keen to adapt our protocol to biologically relevant
reaction conditions, we tested the possibility of employing
pre-made diazonium salts and aqueous phosphate buffer
(pH 8) for our cysteine arylation. Thus, we applied our
arylation protocol under these mild reaction conditions on
peptide 12, which was used upon resin cleavage without
further purification. In the presence of para-F benzenediazo-
nium salt tetrafluoroborate or para-OCF3 benzenediazonium
tetrafluoroborate, full conversion to the desired products 13
and 14 was achieved within 30 minutes as detected by LC/MS
(Scheme 3). Notably, no selectivity issues were observed in
presence of lysine and serine residues, and no organic solvent
was required, thus demonstrating the excellent compatibility
of our protocol with other common post translational
modification methods involving these residues.

In conclusion, we reported a one-pot protocol for cysteine
arylation via visible light photoredox generation of aryl
radicals from their corresponding diazonium salts. In situ
formation of diazonium salts starting from readily available

anilines reduces the risks associated with the handling of
potentially explosive intermediates.[20a,22b] An array of ary-
lated cysteine derivatives decorated with a broad range of
substituents was obtained in moderate to good yields (17
examples, 28–79%). The implementation of a microflow
reactor afforded faster reaction times and increased yields (30
to 150 seconds residence time, 11 examples, 45–89% yield).
Moreover, a diverse set of cysteine containing dipeptides was

Scheme 2. Arylation of cysteine-containing dipeptides in batch and flow. a) Reaction conditions for dipeptide arylation in batch are the same as
for the arylation of N-Ac-l-cysteine-OMe but on 0.25 mmol scale. b) Reaction conditions for dipeptide arylation in flow are the same as for the
arylation of N-Ac-l-cysteine-OMe but on a 1 mmol scale. c) For Trp-Cys pre-made 4-tBu benzenediazonium tetrafluoroborate was used.
d) 150 seconds residence time.

Scheme 3. Arylation of a cysteine-containing peptide. 1 equiv of crude
peptide 12 (0.47 mmol), 10 equiv diazonium salt, 1 mol% eosin Y in
1 mL PBS buffer (pH 8), white CFL, 30 minutes reaction time.

Angewandte
ChemieCommunications

12705Angew. Chem. Int. Ed. 2017, 56, 12702 –12707 T 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

http://www.angewandte.org


arylated successfully in batch and in flow (12 examples, 32–
86% yield). The reaction was easily scaled-up, affording more
than one gram of the arylated cysteine derivative within
2 hours of total operation time. Finally, in biologically
relevant conditions, a model peptide containing additional
nucleophilic side chains was selectively converted to its Cys-
arylated derivative within 30 minutes. Taking into account the
simplicity of our reaction conditions (atmospheric conditions,
visible light irradiation, short reaction time), we believe that
our procedure will be appealing to chemical biologists for post
translational chemical modification of cysteine.
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