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Abstract

Viral production from infected cells can occur continuously or in a burst that generally kills the cell. For HIV infection, both
modes of production have been suggested. Standard viral dynamic models formulated as sets of ordinary differential
equations can not distinguish between these two modes of viral production, as the predicted dynamics is identical as long
as infected cells produce the same total number of virions over their lifespan. Here we show that in stochastic models of
viral infection the two modes of viral production yield different early term dynamics. Further, we analytically determine the
probability that infections initiated with any number of virions and infected cells reach extinction, the state when both the
population of virions and infected cells vanish, and show this too has different solutions for continuous and burst
production. We also compute the distributions of times to establish infection as well as the distribution of times to
extinction starting from both a single virion as well as from a single infected cell for both modes of virion production.
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Introduction

The earliest events in infection are stochastic. Whether exposure

to virus leads to systemic infection or complete elimination of the

virus can be a matter of luck, particularly when exposure is to low

levels of virus. For example, the transmission probability for HIV

infection is 10{3–10{2 per coital act [1–3]. In 80% of HIV

infections of heterosexuals, a single viral strain is transmitted or

founds the infection [4]. In most cases after sexual exposure to

HIV, infection fails to take off. When it does take off it likely does

so from a single infectious virion or a single infected cell. Whether

exposure to virus, be it HIV or the common cold, results in

persistent infection or elimination hinges on numerous poorly

understood factors including antibody and innate immune

responses, virus specific cytotoxic T lymphocyte responses, the

spatial distributions of these components [5], and pure chance.

Here we study some simple viral infection models in a stochastic

setting using HIV as a model system. The models that we consider

are relevant for the earliest stages of infection before target cells are

depleted to any extent and before immune responses are stimulated.

Thus, we consider models with no immune response in which the

number of target cells, T , is held fixed and where we consider only

variations in the number of virions, nV , and the number of infected

cells, nI , with nV and nI being non-negative integers. We derive

exact analytic expressions for the extinction probability, i.e., the

probability that the virus and all infected cells are completely

eliminated from the host, for two related models that differ in the

manner in which virus is produced. We also present simulation

results for the conditional mean time to observable infection.

The extinction problem is related to the classic ‘‘gambler’s ruin’’

problem [6], which Pascal [7] first solved and then posed to

Fermat, hoping in vain to stump him, and to Huygens [8] who

thought there might be some applicability to disease and wrote

‘‘For what can there be in common between the Value of a

Chance in a Game, and the Knowledge and Cure of a Distemper?

And how can the nicest Determination of the former, any way

influence or illustrate the latter?’’ More recently Tan and Wu [9]

developed a 4-dimensional stochastic infection model for HIV that

incorporated target cells and latently infected cells and studied it

via Monte Carlo simulations. They noted that there was positive

probability that the virus could be eliminated by the process [9].

Monte Carlo approaches were also used by Kamina et al. [10] and

Heffernan and Wahl [11] to study the probability that an infection

would not become established after exposure to a viral inoculum of

a given size. Tuckwell and Corfec [12,13] developed similar multi-

dimensional models to study early infection but modeled them as

diffusion processes via simulation of stochastic differential

equations. Merrill [14] modeled early infection as a branching

process that kept track of the number of infected cells but not of

virions. Lee et al. [15] also modeled only infected cell dynamics

during acute infection but focused on the stochastic changes in

HIV genetic sequences starting from an infection initiated by a

single HIV genome. Tuckwell et al. [16] studied the probability of

viruses entering a host infecting one or more target cells before

being cleared, but did not carry out a detailed analysis including

infected cells. Haeno and Iwasa [17] developed a stochastic model

of early infection in order to study the generation of drug resistant

virus in an exponentially expanding viral population. Ribeiro and
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Bonhoeffer [18] also develop a stochastic simulation of early

infection in which only infected cells are follwed to study the best

time to start antiretroviral therapy in a model with stochastic

generation of drug resistant mutants. In this manuscript we model

early infection as a discrete random process in which both the

number of virions and the number of infected cells are followed.

The form of the models that we develop are similar to those

used in epidemiology to study the spread of infection from person

to person [19]. As such we will find that the basic reproductive

number, R0, first introduced in epidemiology to denote the

average number of people infected by one infected person put into

a population of susceptibles, plays a role in our analysis. Here R0

will denote the average number of new cells infected by one cell

during its lifetime when placed in a population of fully susceptible

cells. As in epidemiology, we will find that when R0v1 infections

will surely die out and when R0w1 there is a positive probability

that the infection will die out. Our goal here is not simply to

reiterate these well known results but rather to uncover basic

features of early HIV infection and to study the differences

between continuous and burst viral release.

Model

One of the simplest infection models consists of virions, (V),

target cells (T), and productively infected cells (I) with transitions

[20]:

(1) VzT
k

(2) I
Nd

(3) I
d

(4) V
c

I

IzV

1

1,

ð1Þ

where 1 denotes the empty set and indicates that infected cells or

virus is being cleared. The symbols above the arrows denote the

rates of the various processes, where k is the rate constant

characterizing infection, d is the death rate of infected cells, N is

the viral burst size, i.e., the total number of virions produced by an

infected cell over its lifetime, Nd is the rate at which infected cells

produce virus, and c is the virion clearance rate [20]. In some

models, particularly those in which a cytolytic lymphocyte

response may affect lymphocyte lifespan, the symbol p is used to

denote the virion production rate rather than Nd [20]. Here,

where we focus on the earliest events in infection, before there is

an immune response, using Nd for the virion production rate

allows us to simplify some expressions. Also, because we are

focusing on early infection we neglect variations in the number of

target cells. This is justified because, as we show below, only a tiny

fraction of target cells need be infected to insure that the infection

will persist. Thus the model above can be written:

(1) V
kT

(2) I
Nd

(3) I
d

(4) V
c

I

IzV

1

1:

ð2Þ

We call the model specified by Eq. (2) the ‘‘continuous

production’’ model because once a cell is infected it produces

virus continuously throughout its life.

A slightly different but related model is given by the set of

transitions

(1) V
kT

(2) I
d

(3) V
c

I

NV

1

ð3Þ

We call the model specified by Eq. (3) the ‘‘burst’’ model because

once a cell is infected it releases all its virus in a single burst

simultaneous with its death. Although an infected cell may not

burst as in a lytic phage infection of bacteria, HIV may be rapidly

produced towards the end of an infected cell’s lifespan as in other

retroviral infections [21]. Also, because we are studying very early

infection, before immune responses begin, we assume death of a

cell is due solely to viral cytopathic effects and hence ignore the

possibility that death occurs before N virions are released.

Both models have identical mean-field kinetics given by:

dV

dt
~{(czkT)VzNdI

dI

dt
~kTV{dI

ð4Þ

where V and I are the concentrations of virus and infected cells. At

the deterministic level the burst and continuous production models

make the same predictions. Note that this model differs from the

‘‘standard’’ model of viral infection in that viral clearance occurs at

rate czkT rather than at rate c, i.e., the model keeps track of the fact

that one virus is lost every time a cell is infected. However, since kT is

a constant the model is equivalent to the standard model in which c
in the standard model incorporates virion loss due to infection [22].

Note that the origin (V~I~0) is a steady state of the

deterministic system. The origin is a stable steady state provided

the basic reproductive ratio R0v1, where R0 is the number of

new cells infected by an infected cell during its lifetime with

R0:
NkT

kTzc
: ð5Þ

Although this is easily seen by calculating the determinant of the

linear system specified in Eq. (4) it is worth noting that for HIV,

(kTzc) is large compared to d and virions become ‘‘slaved’’ to

infectious cells [23], so that V&dNI=(czkT), which results in

dI=dt&d(R0{1)I . We show that if R0v1 virus and all infected

Author Summary

The dynamics of HIV infection and treatment has been
extensively studied using ordinary differential equation
models. Recent work on HIV transmission has suggested
that most sexually transmitted infections are started by a
single virus or infected cell. This observation coupled with
the fact that successful HIV transmission only occurs in 1
per 100 to 1 per 1000 coital acts suggests that early events
in infection are stochastic. Here we develop a stochastic
model of HIV infection and use it to characterize the
dynamics of early infection when virus is released from
cells either continuously or in a burst. We show that these
mechanisms of viral production produce different early
dynamics, with different probabilities of extinction and
different distributions of time to establish infection. In
deterministic models, these modes of viral production are
indistinguishable.

Stochastic Theory of Early Viral Infection
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cells will be eliminated with certainty. Unlike deterministic models,

for R0w1 there is still a finite probability that the virus and all

infected cells will be eliminated stochastically. We shall also see

that once the virus ‘‘takes off’’, it roughly satisfies the slaving

approximation V&dNI=(czkT), while before it takes off the

dynamics are fundamentally stochastic.

Results

Stochastic Extinction
We consider systems which can be fully specified by a state vector

~mm. For both the burst and continuous production models~mm~(nV ,nI ),
where nV and nI are the number of virions and infected cells,

respectively. Upon a transition the state ~mm is incremented by one of

the transition vectors fd~mmg~(d~mm1,d~mm2,:::d~mmnmax
) where nmax is the

maximum number of transitions the system can make out of any state.

For the continuous production model we have nmax~4 and

d~mm1~({1,1), d~mm2~(1,0), d~mm3~(0,{1), and d~mm4~({1,0).
The rate of the ith reaction is given by ri. Thus, for the continuous

production model there are four types of reactions: (1) infection with

rate r1~kTnV , (2) viral production with rate r2~NdnI , (3) death of a

infected cell with rate r3~dnI , and (4) virion clearance with rate

r4~cnV . The probability that the ith reaction is the next reaction is

given by Gillespie’s algorithm [24]:

pi(~mm)~
ri(~mm)

Z(~mm)
ð6Þ

where

Z(~mm)~
Xnmax

i

ri(~mm): ð7Þ

For the continuous production model, p1~kTnV=Z, p2~NdnI=Z,

p3~dnI=Z, p4~cnV=Z, and Z~kTnVzNdnIzdnIzcnV . The

time of the next reaction is a random variable with distribution

Z(~mm)exp({Z(~mm)t). For the burst model, nmax~3, d~mm1~({1,1),
d~mm2~(N,{1), d~mm3~({1,0) and the corresponding reaction rates

are r1~kTnV , r2~dnI , and r3~cnV .

Our goal is to determine the probability that an exposure to virus

eventually evolves to ‘‘extinction’’, i.e., (nV ,nI )~(0,0). Throughout

this article, we refer to the loss of all virus and infected cells from the

host as ‘‘extinction’’ and to the decay of virus as ‘‘clearance’’.

Stochastic extinction is a multi-dimensional analogue to the

classic gambler’s ruin problem first solved by Pascal [7]. The

extinction probability, E(~mm) from state ~mm, satisfies [6,25–27]:

E(~mm)~
X

i

pi(~mm)E(~mmzd~mmi), ~mm=~00 , ð8Þ

E(~00)~1 : ð9Þ

Equation (8) can be understood from Figure 1. If the system starts

out in state ~mm on the first transition the state will jump to one of

the nmax states ~mmzd~mmi, i~1,2,:::,nmax, with probability pi.

Clearly, then the extinction probability from state ~mm is the

weighted sum of the extinction probabilities at the neighboring

sites where the weights are just the probabilities of making the

individual transitions. Note that E~1 is always a solution sinceP
i pi~1.

Although the general solution is intractable we will show that if

processes of virion and infected cell extinction are independent,

the functional equation for E can be reduced to an algebraic one.

Since each virus and infected cell acts independently in our model,

we assume:

E(nI ,nV )~rV
nV rI

nI , ð10Þ

where rV and rI are the probabilities that a process initiated with

a single virion or single infected cell, respectively, results in

extinction. Using Eq. (10), Eqs. (8–9) can be reduced to algebraic

equations for rV and rI . In the following we carry out this

program for both the continuous and burst models.

Extinction Probability for the Burst and Continuous
Production Models

For the continuous production model, substituting Eq. (10) into

Eqs. (8–9) yields

r
nV
V r

nI
I ~

kTnV

Z
r

(nV {1)

V r
(nI z1)

I z
NdnI

Z
r

(nV z1)

V r
nI
I

z
dnI

Z
r

nV
V r

(nI {1)

I z
cnV

Z
r

nV {1

V r
nI
I ,

ð11Þ

Figure 1. State space diagrams. (A) Continuous production model. Starting from the state ~mm (the red dot) there are four possible reactions from
the point ~mm~(nV ,nI ) to the neighboring points. As stated in the text the possible transitions are ~mm?~mmzd~mmi where d~mm1~({1,1), d~mm2~(1,0),
d~mm3~(0,{1), d~mm4~({1,0). (B) Burst Model. Starting from the state ~mm (the red dot) there are three possible reactions from the point ~mm~(nV ,nI ) to
the neighboring points. As stated in the text the possible transitions are ~mm?~mmzd~mmi where d~mm1~({1,1), d~mm2~(N,{1), d~mm3~({1,0). For both
models the ith reaction occurs at rate ri(~mm) with probability pi(~mm)~ri(~mm)=Siri(~mm) as discussed in the text.
doi:10.1371/journal.pcbi.1001058.g001
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where Z~Z(nV ,nI ). We convert this system of equations to a pair

of algebraic equations by first setting nI~0 and obtaining a first

equation and then setting nV~0 to obtain another. Note that

Z(0,nI )~d(Nz1)nI and Z(nV ,0)~(kTzc)nV . Thus we obtain

the pair of equations

rV~crIz(1{c) ð12Þ

rI~
N

Nz1
rV rIz

1

Nz1
, ð13Þ

where c:kT=(czkT) is the probability that a virion infects a cell.

Note from the definition of R0, c~R0=N. Substituting Eq. (12)

into Eq. (13), we obtain a quadratic equation with solutions, rI~1
and rI~1=(Nc)~1=R0. Substituting into Eq. (12), we find rV ~1
and rV~(1=N)z1{c~1{(R0{1)=N. Since probabilities need

to be less than or equal to 1,

rcont
I ~min(1=R0,1) ð14Þ

rcont
V ~min(

1

N
z1{c,1)~min(1{

R0{1

N
,1) ð15Þ

for the continuous production model single cell and single virion

extinction probabilities. Thus, if R0ƒ1, rcont
I ~rcont

V ~1, whereas

if R0w1, rcont
I ~1=R0 and rcont

V ~1{
R0{1

N
.

For the burst model, as we show in the next section, a similar

analysis yields

rburst
V ~min(r�V ,1) ð16Þ

rburst
I ~min((r�V )N ,1) ð17Þ

where r�V is a positive real root of

1{rV

1{(rV )N
~c , ð18Þ

or equivalently of

0~c(rV )N{rV z(1{c) : ð19Þ

Noting that c~kT=(czkT)v1 for cw0 and using Descartes’

rule of signs shows that there are either 2 or 0 real positive roots.

Since rV ~1 is one root, there is exactly one other positive root of

Eq. 18, which we denote r�V . Note that if c~0 then c~1 and

there is only one root, r�V~1.

Figure 2 shows the single virion extinction probability, rV , as a

function of c for N~2, 5, and 25 for both the burst and

continuous models. For large N the extinction probabilities for

both models converge to the diagonal line (1{c) connecting the

upper left to the bottom right corners. For both models the single

virion extinction probability, rV , is a function of c and N and that

rV~1 for cƒ1=N , i.e, for R0ƒ1. Also in both models if rV ~1
then rI~1 and in both cases extinction is certain if R0ƒ1. This is

not a new result and could be derived from a branching process

approach where the process would be subcritical if R0v1 and

then extinction would be guaranteed. Results along this line in the

context of epidemiological models are summarized in Britton and

Lindenstrand [28] and Britton [29]. Britton [29] also points out

that Reed and Frost in a series of unpublished lectures from 1928

study an epidemiological model where all infections are assumed

to occur exactly at the end of the infectious period, which is

analogous to the burst model where infection can only be

transmitted from one cell to another at the end of the infected

cell’s life.

The main difference between the two models is that

rburst
V vrcont

V . The difference between the two models is most

easily understood in the c~1 limit where the probability of a

virion infecting a cell rather than being cleared approaches 1. Note

that in the burst model R0ƒN since the number of cells infected

by a single infected cell must be less than or equal to the number of

virions produced, and in the continuous production model this is

true for the mean. As c?1 we find that rburst
V ?0 and rcont

V ?1=N.

In the c~1 limit virus is not cleared in either model but disappears

only by infecting another cell. In the burst model all infected cells

result in the creation of N new virions. Thus, for the burst model,

the extinction probability approaches zero as c?1. By contrast,

for the continuous model there is a chance that an infected cell will

die before it produces any virus.

In the infinite N limit the single virion extinction probabilities

become equal for the two models, i.e., limN?? rburst
V

~ limN?? rcont
V ~rlimit

V ~1{c. We have been focusing on the

single virion extinction probability rV . Note that E~rnV

V rnI

I and

that for R0w1, rcont
I ~1=R0, and rburst

I ~(rburst
V )N . In the large N

limit if cw1=N then rI?0 for both models. Thus in the large N

limit the probability of stochastically clearing the infection is

effectively zero if any cells at all are infected, since each infected

cell is assumed to produce an arbitrarily large amount of virus in

this limit.

Random burst size. In the burst model considered above,

every infected cell releases N virions, the notion being that a cell

produces virus until a critical number N is reached, at which time

it releases the entire stock of virus that it has produced since

infection. Here we consider a generalization of the burst model, in

which the burst size is a random variable so that the probability of

a burst of size j is pj , with
P?

j~0 pj~1. In this case, reaction 2 in

Eq. (3) becomes a set of reactions:

I
dpj

jV (j~0,1, . . . ), ð20Þ

where j~0 implies an infected cell dies before releasing any virus.

For the generalized burst model, we use an analysis similar to the

one above.

Substituting Eq. (10) into Eqs. (8–9) yields

r
nV
V r

nI
I ~

kTnV

Z
r

(nV {1)

V r
(nI z1)

I z

P
j pjdnI

Z
r

(nV zj)

V r
nI {1

I

z
cnV

Z
r

nV {1

V r
nI
I :

ð21Þ

We again convert this system of equations to a pair of algebraic

equations by first setting nI~0 and obtaining a first equation and

then setting nV ~0 to obtain another. Note that

Z(0,nI )~d
P

j pjnI~dnI and that Z(nV ,0)~(kTzc)nV . Thus

we obtain the pair of equations

rV~crIz(1{c) ð22Þ

Stochastic Theory of Early Viral Infection
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rI~
X

j

pjr
j
V ð23Þ

with solutions

rburst
V ~min(r�V ,1) ð24Þ

rburst
I ~min(

X?
j~0

pjr
�j
V ,1) ð25Þ

where r�V is a positive real root of

1{r�V
1{

P
j pjr

�j
V

~c : ð26Þ

As in the case of the burst model, there are two real roots when

cv1, with one being rV~1 and the other denoted r�V . If pj~1

for j~N and 0 otherwise we have the burst model discussed in the

previous section.

We investigated the single virion extinction probability, r�V as a

function of c for pj Poisson distributed with mean N and

compared it to the burst model (with pN~1 and pj~0 for j=N).

We found that the single virion extinction probability, r�V , was

similar for the random burst and burst models for N~5 and

nearly identical for N~10.

Dynamics
The earliest stages of HIV and SIV infection have a characteristic

‘‘eclipse’’ phase during which the virus remains below the limit of

detectability of current assays. Here we explore the role stochastic

effects play in determining the length of the eclipse phase. Using

Gillespie’s stochastic simulation method [24] we compute the mean

time to detectability following a one virion challenge. In Figures 3–

10 we use the following parameters for illustrative purposes: N~10,

kT~10/day, d~1/day [30], and c~20/day [31]. For these

parameter values, R0~3 1=3, which is lower than the median value

of R0 found by Ribeiro et al. [32], Stafford et al. [33] and Little et al.

[34] during primary HIV infection. However, these estimates relied

on data obtained after the virus was observable and in the case of

Stafford et al and Little et al. mainly after the viral load peak. At

earlier stages of infection, R0 could be different.

Figure 2. The single virion extinction probability, rV , versus c, the probability that a virion infects a cell rather than is cleared.
Dashed lines: burst model. Solid lines: continuous production model. Black dashed (solid) lines: N~2 burst (continuous). Red dashed (solid) lines:
N~5 burst (continuous). Blue dashed (solid) lines: N~25 burst (continuous). The heavy dotted line is the limiting curve rV ~1{c.
doi:10.1371/journal.pcbi.1001058.g002

Stochastic Theory of Early Viral Infection
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A value of N of about 50,000 has recently been estimated for

SIV infection in rhesus macaques [35]. However, not all virions

are infectious. In the formulation given above we have assumed all

virions are equivalent and hence equally infectious. Although one

could generalize the model to include both infectious and

noninfectious virions, following only infectious virions has the

advantage of allowing one to track smaller numbers of virions in

simulations. For virus isolated during chronic infection, approx-

imately one in 1000 to 10,000 virions appear to be infectious [36–

39], suggesting that if we model only infectious virus values of N
between 5 and 50 might be reasonable. As our default, we have

chosen a value of N consistent with these estimates. Recent work

has suggested that virus isolated early in infection has a higher

ratio of infectious to noninfectious virus [40], and thus depending

on the source of infecting virus larger values of N might be

appropriate.

Our choices of default values of d and c are based on estimates

derived from data obtained during chronic infection [30,31], and

thus they too might not be appropriate for the earliest stages of

infection. Lastly, the value of kT was chosen so that with the other

parameter choices a sensible value for R0 was obtained. Thus,

while the parameter choices studied here are reasonable guesses

based on what we know about HIV infection dynamics, there is

some uncertainty about them.

Figures 3 and 4 show nI (t) and nV (t) for the continuous

production and burst models, respectively. As expected, in both

cases infection can persist (top panels in Figures 3 and 4) or go

extinct (bottom panels in Figures 3 and 4). Here we have

arbitrarily defined persistent infection as nI~32. Although it is

mathematically possible for the virus to be cleared by chance with

nI~32, at this point the probability of stochastic extinction is on

the order of 10{17. This is because for R0w1,

E(nI ,nV )ƒ(1=R0)nI &10{17. Also, virus becomes detectable in

plasma with conventional assays when its concentration is 50

copies/ml. Assuming that deterministic equations are appropriate

at this point, one finds that if virus and infected cells are at quasi-

steady state then V~NdI=(czkT). Thus, if each infected cell

produces 50,000 virions [35], lives about a day while productively

infected [30] and has a clearance rate (czkT ) of about 23/day

[31], then when I~32, V will be approximately 50 copies/ml

assuming virus distributes through approximately 1.5 liters of

extracellular body water in a 7 kg macaque. Thus, by the time

nI~32 the eclipse phase of SIV infection should be over. For HIV

infection the volume of distribution is about 10-fold larger (a 70 kg

human has about 15 liters of extracellular body water) and thus

virus detectability would be delayed until nI is about 10-fold

larger. Nonetheless, the probability of extinction would still remain

v10{17.

In the realization that leads to persistent infection in the

continuous production model, the initial virus quickly infects a

single cell and that cell starts producing new virions. Thus, nV

begins fluctuating from time zero as virions are produced and

cleared stochastically (Figure 3). Further, these released virions

infect new cells and nI rises substantially over the first 2 days of

infection. By contrast, in the burst model, in the illustrated

realization that leads to persistent infection (Figure 4), after the first

virus infects a cell that cell lives about 1.25 days. No additional

virus is produced until this cell dies and thus nV stays at zero until

day 1.25 at which time a burst of virus is produced. While some of

this newly produced virus infects new cells, the rest gets cleared

Figure 3. Continuous production model time series. Initial conditions: nV (0)~1,nI (0)~0. Top left: nI versus t for a realization that leads to
infection. Top right: nV versus t for the same realization. Bottom left: nI versus t for a realization that leads to extinction. Bottom right: nV versus t for
the same realization. kT~10=day, c~20=day, and N~10.
doi:10.1371/journal.pcbi.1001058.g003
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and nV returns to zero until another cell dies at approximately 1.8

days. Additional cells are infected at this point and nI rises due to

this and subsequent bursts of virus.

Realizations that lead to extinction are shown in the lower

panels of Figures 3 and 4. Note the y-axes are scaled differently

than in the cases that lead to persistent infection. In the continuous

production case, by chance most of the produced virus is cleared

and thus nV never gets above 3. Also, the number of infected cells

remains small, reaching nI~4, before these cells sequentially die

and extinguish the infection. In the burst model, even though in

the realization shown 10 virions are produced in each of three

bursts, the first two bursts only lead to the infection of 1 cell each

and virions in the last burst are all cleared without infecting any

cells leading to the extinction of the infection.

Because a particular realization may not be representative of a

stochastic process, we show in the left column of Figure 5 100

realizations of the continuous production model that lead to

infection starting from a single virion, and in the right column 100

realizations that lead to extinction. Figure 6 is the same as Figure 5

except the initial condition is nV (0)~0,nI (0)~1, i.e., the infection

is started by the introduction of a single infected cell. During

sexual transmission of HIV it is not known whether infected cells

or virus particles penetrate epithelial layers and initiate infection.

For the burst model, Figures 7 and 8 show 100 realizations each of

infection and clearance for the initial conditions (nV (0)~
1,nI (0)~0) and (nV (0)~0,nI (0)~1) respectively. It can be seen

that in none of the burst model realizations that lead to extinction

were there ever more than a single infected cell. By contrast, the

continuous model had several realizations in which 2 or 3 cells

were infected but still went to extinction. Infected cells in the burst

model always produce N infectious virions (here N~10). Infected

cells in the continuous model realizations that led to extinction

never produced more than 4 infectious virions total even though

there were as many as 3 infected cells. The differences in the two

models are fairly evident in the sets of realizations that lead to

extinction. The differences in the realizations that lead to infection

are not evident to the naked eye because the particle numbers start

to get large and the models converge towards mean-field

dynamics.

In a stochastic model each infection can have a different course

and the scenarios described above even with 100 realizations need

not be representative. We thus ran simulations until 100,000

realizations resulted in infection. For the continuous production

model this occurred after a total of 429,639 simulations had been

performed. Of these 429,639 simulations 329,639 resulted in

extinction and 100,000 in infection. The resulting fraction of

simulation that went extinct, 0.767, is in accord with our

calculation of E(nI ,nV ). Note that for the continuous model

E(0,1)~rV ~1{(R0{1)=N. With R0~10=3 and N~10 we

find the extinction probability is rV~0:767.

For the burst model the single virion extinction probability, Eq.

(18), gives rV~0:673. To check this, we performed simulations

using the burst model until 100,000 realizations resulted in

infection. To achieve this a total of 306,592 simulations were

performed. Of these 306,592 simulations, 206,592 resulted in

extinction and 100,000 resulted in infection, yielding a 67.38%

chance of extinction, in accord with the predicted value,

rV ~0:673. (The expected value for the number of extinctions in

306,592 Bernoulli trials is 206,336 and the standard deviation is

259.8.)

Figure 4. Burst model time series. Initial conditions: nV (0)~1,nI (0)~0. Top left: nI versus t for a realization that leads to infection. Top right: nV

versus t for the same realization. Bottom left: nI versus t for a realization that leads to extinction. Bottom right: nV versus t for the same realization.
kT~10=day, c~20=day, and N~10.
doi:10.1371/journal.pcbi.1001058.g004
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The analytical results that we have derived for the extinction

probabilities do not provide any information about dynamics.

Thus, the stochastic process could take hours, days or months

before extinction is reached. To gain insight into these dynamics,

we have plotted in Figures 9 and 10, for infections starting with a

single virion, the fraction of simulations that go extinct at various

times after infection, with Figure 9 for the continuous production

model and Figure 10 for the burst model. These histograms

represent the distributions of time to extinction conditioned on

the process ultimately going extinct. Both the continuous

production and burst models have a sharp initial decay in their

conditional distributions of times to extinction. One might expect

the extinction rate to be proportional to c, since that is the rate at

which virions are cleared. However, from the graphs one can

deduce that the initial decay occurs on a time scale given by

czkT . Since new cells are infected at rate kT it is not

completely self-evident that the initial decay should be given by

czkT .

Figure 5. Continuous model. Representative time series. Initial condition: nV ~1, nI ~0. Left column: 100 realizations that lead to infection. Right
Column: 100 realizations that lead to extinction.
doi:10.1371/journal.pcbi.1001058.g005
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The fact that the initial decay is given by czkT rather than just

c can be understood in terms of a simple 3-state Markov chain

0JVII , where the initial state is V , a single virion, i.e.,

(nV (0),nI (0))~(1,0), 0 represents the extinction of the infecting

virion, i.e. (0,0), and I representing the virion infecting a new cell,

i.e. (0,1). Given that extinction occurs, consider the conditional

distribution of times for the system to make the transition from V
to 0. The probability that the system remains in state V given that

it was in state V at time 0, is just PV (t)~exp({(czkT)t) where c

and kT are the transition rates from V to 0 and V to I ,

respectively. The probability flux from V to 0 is just cPV (t). Let

P(0,tjV ,0) be the conditional probability that the system makes

the transition into 0 for the first time at time t, given that it was in

state V at time t~0. Then P(0,tjV ,0)~
Ð t

0
cPV (t’)dt’~

c=(czkT)(1{exp({(czkT)t)). The conditional distribution of

first passage times from V to 0 is then, p0(t)~(1=P0)dP(0,tjV ,0)=
dt~(czkT)exp({(czkT)t), where P0~c=(czkT) is the

probability that the system transitioned into 0 from V . This is

Figure 6. Continuous model. Representative time series. Initial condition: nV ~0, nI ~1. Left column: 100 realizations that lead to infection. Right
Column: 100 realizations that lead to extinction.
doi:10.1371/journal.pcbi.1001058.g006
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exactly analogous to the sharp initial decay with rate czkT from

the single virion initial condition.

After the initial transient, the distributions of times to

extinction display long tails that decay roughly with rate d. In

both models the long tails are caused by the infection of cells.

Once a cell is infected it takes much longer to reach extinction,

on average, than before any cells are infected. The difference

between the two models is largely due to the difference between

the single infected cell extinction probability rI , in the

continuous and burst models, i.e., rcont
I ~

1

R0
~0:3 and rburst

I ~

(rburst
V )N&0:02 for our default parameter values. Extinction from

an infected cell is much less likely for the burst model than for

the continuous model. Thus there is substantially more

probability in the tails (of the distribution of times to extinction

starting from a single virion) for the continuous model than for

Figure 7. Burst model. Representative time series. Initial condition: nV ~1, nI ~0. Left column: 100 realizations that lead to infection. Right Column:
100 realizations that lead to extinction.
doi:10.1371/journal.pcbi.1001058.g007
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the burst model. For the continuous model we have derived

approximate analytic solutions to the full problem that we shall

present elsewhere.

To further highlight the difference between the models, we

examined the time needed to obtain a 95% probability of

extinction given that the process goes extinct. For the default

parameter values, the burst model reaches 95% (conditional)

probability that the infection is extinct after about 2.5 hours,

whereas the continuous model reaches this probability of

extinction after about a half day. Thus, there is a significant

difference in the behavior of systems governed by the continuous

production and burst models. Note also that the conditional

distribution of times for an arbitrary number of virions to go

extinct can be inferred from the conditional single virion

distribution of extinction times.

The time to extinction is difficult to determine experimentally,

while the time to observable infection is not. Thus, we have

studied the time it takes for infection to reach nI~32, which as we

Figure 8. Burst model. Representative time series. Initial condition: nV ~0, nI ~1. Left column: 100 realizations that lead to infection. Right Column:
100 realizations that lead to extinction.
doi:10.1371/journal.pcbi.1001058.g008
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have argued above is essentially the time for SIV to be detectable

in a rhesus macaque, and which is also a measure of the time to

reach a state comparable to established infection. For both the

continuous and burst models we generated a 100,000 realizations

in which nI~32 is reached. For these simulations, the distribution

of times until 32 cells are infected is shown in Figure 9 and

Figure 9. Continuous production model. Top Left: Distribution of times until an infection begun with a single virion goes extinct. The
conditional mean time to extinction is about 0:08 days for this parameter set. Top Right: Distribution of times until an infection begun with a single
virion results in 32 infected cells, given that the infection does not go extinct. The conditional mean time until there are 32 infected cells is 1:78 days.
Bottom Left: Distribution of times until an infection begun with a single infected cell goes extinct. The conditional mean time to extinction is about
0:37 days. Bottom Right: Distribution of times until an infection begun with a single infected cell results in 32 infected cells, given that the infection
does not go extinct. The conditional mean time until there are 32 infected cells is 1:75 days.
doi:10.1371/journal.pcbi.1001058.g009
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Figure 10. Burst model. Top Left: Conditional Distribution of times until an infection begun with a single virion goes extinct. The conditional mean
time to extinction is about 0:04 days. Top Right: Distribution of times until an infection begun with a single virion results in 32 infected cells, given
that the infection does not go extinct. The conditional mean time until there are 32 infected cells is 2:5 days. Bottom Left: Distribution of times until
an infection begun with a single infected cell goes extinct. The conditional mean time to extinction is about 1:2 days. Bottom Right: Distribution of
times until an infection begun with a single infected cell results in 32 infected cells, given that the infection does not go extinct. The conditional
mean time until there are 32 infected cells is 2:46 days.
doi:10.1371/journal.pcbi.1001058.g010
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Figure 10 for the continuous production and burst models,

respectively, and with infections initiated either with a single virion

or with a single infected cell. The mean time to reach 32 infected

cells in the burst model is 2.46 days and in the continuous

production model 1.75 days for either initial condition. Here the

two initial conditions give essentially the same result. In an

infection started with a single virion, if the virion is cleared the

process goes extinct. Since we have conditioned on this not

occurring, the initiating virion must infect a cell, and hence it

quickly generates the same state as initiating infection with a single

infected cell. One also expects the burst and continuous models to

converge to statistically indistinguishable behavior once the

particle numbers are sufficiently high, well before there are 32

infected cells. The differences in the mean time to reach 32

infected cells starting from a single infected cell is substantial. This

is because the early dynamics are dominated by stochastic effects.

In Figure 11 we have plotted the mean time to infection from

nI (0)~1,2,3,4 (and nV (0)~0) for the two models. For nI (0)~1
the differences are substantial but decrease with increasing nI (0).

Discussion

The dynamics of acute HIV and SIV infection have been

modeled deterministically by a number of authors [32,33,41–43],

and in some cases these models have been used to fit data and

extract best-fit parameter values. However, despite the success of

these models they do not properly capture the very earliest

dynamics of infection where stochastic effects may play a large

role. Recent data has convincingly established that a large fraction

of infections are established by one or a few infectious virions or

infected cells [4,44–48]. If during sexual transmission only a few

virions or infected cells are actually transmitted from one infected

person to another then one would expect that a large fraction of

sexual encounters between an infected and uninfected person

might not lead to successful viral transmission. Epidemiological

studies support this and have concluded that HIV transmission

occurs at frequencies of between 1 in 100 and 1 in 1,000 coital acts

[3]. Similarly, experimental studies of SIV infection by intrarectal

inoculation of virus has shown that at low doses not every

encounter with virus leads to detectable infection and that there is

substantial variability in the number of inoculations needed to

establish detectable infection [47]. Further, as with HIV when

infection was detectable, in most cases it appeared that only one or

a few viral genomes established the infection. Lastly, one study

aimed at detecting HIV-1 at the earliest possible moments in

infection using a qualitative assay that could detect the presence of

4 HIV-1 RNA copies/ml with 95% accuracy showed that in some

individuals a period of intermittent low-level viremia preceded the

period of steadily rising viremia previously studied with determin-

istic models [49]. Intermittent low level viremia and frequent

extinction of infection is precisely what would be expected by a

stochastic model as shown by our stochastic stimulations.

A number of previous authors have also performed stochastic

simulations of HIV infection [10–14,18,50]. What is novel here is

that we have shown that the stochastic extinction probability, E,

for early infection models is amenable to exact solution under the

assumption that clearance of each infecting virion and infecting

cell occurs independently. We validated the predictions of this

analysis via stochastic simulations based on the standard model of

viral infection. That our model and simulations agree is not

surprising as in the basic target-cell limited model each virion and

infected cell acts independently. One can think of situations where

Figure 11. Mean time to reach 32 infected cells versus nI (0). Black: Burst Model. Red: Continuous Production Model.
doi:10.1371/journal.pcbi.1001058.g011
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this does not hold; for example, if a threshold number of infected

cells is required to generate an immune response that then rapidly

clears the infection. Thus, while mathematically it is fairly clear

when the independence assumption holds, and most current

models of early HIV dynamics that ignore immune responses are

consistent with this assumption, whether real viral extinction

processes are in fact independent is an experimental question.

There is at least one report of experiments on rhesus macaques in

which it appears that repeated low dose challenges are cleared

independently, suggesting that immune responses are not

generated during exposures that lead to viral extinction as

assumed by our models [51].

Although we have not done so here, one can use our analytical

results on extinction probabilities to explore the parameter ranges

that give rise to different probabilities of extinction. For example, if

one assumes that extinction occurs 99% of the time so as to yield a

1% chance of infection in a coital act, in which say 1 infectious

virion is transmitted to an uninfected individual, then one requires

that rv~0:99. Then for the continuous production model, Eq.

(15), predicts that with N~10 one requires R0~1:1, and with

N~100 one requires R0~2. While values of R0 in the literature

are higher than this [32–34] they were obtained from viral load

measurements obtained after the viral level has reached 50 HIV

RNA copies/ml or higher. Thus, very early in infection R0 may be

much smaller than determined later in infection or N may be

larger than assumed here. Experimental validation of these

possibilities is needed.

To further explore potential parameter ranges, Chen et al. [35]

estimate that in SIV infection 50,000 virions can be released from

an infected cell. Further, Ma et al. [40] showed that when 10 SIV

particles taken from a recently infected macaque were injected

intravenously into two other macaques, both became infected,

indicating that the ratio of infectious particles to virions was

between 0.1 and 1 in this experiment. To see if these numbers

make sense in the context of our extinction calculation, assume

that of the 50,000 virions released N~5,000 were infectious. Also,

assume there is only a 0.1% chance of infection per coital act as

frequently cited for stable couples with low prevalence of high-risk

cofactors [3]. Then by Eq. (15) with N~5,000, we find R0~6,

which is in the range estimated by Stafford et al. [33] and Ribeiro

et al. [32] for acute HIV infection. This example shows that

various parameter estimates in the recent literature are consistent

with the findings of our model. However, the fact that the two

monkeys injected intravenously with 10 SIV particles became

infected is not consistent with the 0.1% infection rate per coital act

assumed above. Clearly, sexual transmission and direct injection of

virus into the blood stream are very different events. Further, if

R0~6 and N~5,000 infectious particles, then from the definition

of R0, Eq, (5), kT=(kTzc) = R0=N~1:2|10{3, and an estimate

of kT can be made if a value of c is assumed. In our simulations we

used c~20 d{1 which yields kT~0:024 d{1 (for infectious

virions), but higher values of c are possible depending upon

whether one is estimating clearance from blood or lymphoid tissue

as recently discussed by De Boer et al. [52]. Clearly, direct

measurements of these parameters during acute infection still

needs to be done, but these example provide some guidelines as to

what we might expect.

Our calculations focused on determining rV and rI , the

probabilities of an infection starting from one virion or from one

infected cell going extinct, respectively. Once these probabilities

are determined it is straightforward to analyze circumstances

where more than one virion or one infected cell initiates infection.

For example, assume that nV~10 infectious virions are transmit-

ted to a recipient and initiates infection. Frequently only one viral

genome is identified by sequencing [4]. One explanation for this

observation is that nV {1 of the virions lead to extinction and only

one virion founds a successful infection. If we assume that

successful infection only occurs in 1 per 1,000 coital acts [3], then

1{(rV )10~10{3 or rV ~0:9998999. Further, the probability of

only one viral genome founding the infection, given that infection

occurs, is given by the conditional binomial distribution, i.e.,
10
1

� �
r9

V (1{rV )=(1{r10
V ), which with rV~0:9998999, occurs

with probability 0.9995. Thus, even if 10 infectious virions are

transmitted, if successful infection is rare, as in this example, one is

almost assured that only one virus will grow and found the

infection.

Another unique aspect of our work is that we show in a

stochastic setting continuous viral production can be distinguished

from viral production that occurs in a burst. In at least one

lentivirus, visna virus, the greatest fraction of virus production

occurs towards the end of the viral life cycle [21], more consistent

with a burst model than a model with constant continuous

production. For HIV it has not yet been established whether a

burst or continuous production model is most appropriate. One

might envision viral production from a highly activated CD4+ T

cell to occur in a process approximating a burst, whereas

production from an infected resting CD4+ T cell or from an

infected macrophage, where infected cell life spans might be weeks

rather than days [53], might be continuous. In simple determin-

istic models, such as the standard model of viral infection, burst

versus continuous production can not be distinguished, and give

rise to identical dynamics. Here we show that the probability of

extinction is different for continuous production and burst

production and that the time to establish infection differs between

these two modes of production.

Our core result is that with the burst model one obtains lower

extinction probabilities (see Figure 2) and longer times to the

establishment of infection than with the continuous production

model (see Figures 9, 10 and 11), even when the mean number of

virions produced is the same. In the continuous production model

virus production starts as soon as a cell is infected and these

released virions can infect other cells leading to a more rapid

establishment of infection than with the burst model. Further, with

continuous virion production there is more heterogeneity in the

number of virions an infected cell produces owing to the variability

in infected cell lifespans. In fact, there is a chance an infected cell

will die before producing any virions. This in turn leads to a

greater chance of the process going extinct. In epidemic models a

similar effect has been noted, where for R0w1, increased

variability in individual infectiousness increases the probability of

stochastic extinction [54].

In the continuous production model we have assumed that the

rate of virion production is constant. In prior work using

deterministic models to describe HIV dynamics, more realistic

models of viral production have been studied in which the rate of

viral production varies continuously over the cell’s lifespan [55–

57]. In such models the rate of viral production is described by a

function p(a), where a denotes the age or length of time a cell has

been infected. Our continuous production and burst model are

two choices of possible functions, i.e. p(a) = constant and p(a)
being a Dirac delta function. Clearly many other choices are

possible. Such age-structured HIV production models have not yet

been analyzed in a stochastic context.

In the burst model we first assumed that each cell produces

exactly N virions. As this is unlikely to be true, we then generalized

this by allowing N to be a random variable. Viral production at

the individual cell level still remains to be measured and thus
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nothing is known about in vivo burst size distributions. Further, in

both cases the burst size was not coupled to the cell’s lifespan.

Another possible extension of our model is to allow the lifespan of

a cell to be influenced by the rate of viral production or the viral

burst size. Cells that use resources to produce virus rapidly might

die sooner. Alternatively, one could envision that the amount of

virus produced by a cell is influenced by the cell’s lifespan. For

example, if a cell produces virus at a constant rate and then

releases it in a burst, then a cell that lives longer would have the

opportunity to make more virus. Couplings between cell lifespan

and viral production have been studied previously in deterministic

models by a number of authors [55–58].

Because our model is derived from the standard model of viral

infection it carries over features and limitations of that model. In

particular, both the standard model and our continuous

production model assume that once a cell is infected it begins

producing virus immediately. Also, in the burst model even if a cell

lives an infinitesimal amount of time after being infected it releases

a full burst of virus. In reality, many steps of the viral life cycle

need to be completed before viral production can occur. It is

straight forward to refine our models so that infected cells wait a

period of time before they can begin to produce virus. This has

been done previously in the context of differential equation models

[59,60]. Obviously, in the stochastic model the waiting time

distributions until extinction or infection are strongly affected by

such a modification. On the other hand, the extinction

probabilities remain unaltered if one assumes infected cells before

they begin to produce virus have negligible death rates. Including

death of such cells will require a modification of the extinction

probability calculations.

The analysis we have presented assumes that target cell levels

remain constant. This assumption is valid early in infection if we

assume the system is well-mixed as there are approximately

2|1011 CD4z T cells in a human [61], and perhaps 10-fold less

in a macaque, and our model only follows the infection process

until 32 cells are infected. At longer times, once the number of

infected cells get large enough to have an impact on target cell

numbers, stochastic fluctuations would be of no significance in the

context of a well-mixed system and deterministic models should be

appropriate. If HIV is introduced into the blood, say through

transfusion or by intravenous drug use, then the well-mixed

assumption with no target cell limitation would seem appropriate.

However, in sexual transmission, one could envision that spatial

effects near the site of transmission are important and in the region

that the entering virions or infected cells find themselves in target

cells maybe rare and hence limiting. Thus, it might be of interest

to study the nonlinear problem in which target cell numbers vary.

One could also envision situations in which immune responses are

included in the model, such as in studies of vaccine-induced

protection, and in which stochastic effects are important in

describing the early immune response. Such extensions of our

model remain to be developed.

Lastly, our model has not yet addressed the question of how the

initial infecting agents, infectious virions or infected cells, get

access to target cells. In experiments involving intrarectal or

intravaginal challenge of rhesus macaques large numbers of virions

have been introduced, e.g. 6|105 to 6|107 in the experiments

by Keele et al. [47]. Nonetheless, only one or a few viral genomes

were seen to expand in infected animals. Whether larger numbers

cross epithelial barriers and are then rapidly eliminated or whether

the barrier itself prevents all but a few viral genomes to gain access

to target cells and expand is not known, Thus, models and further

experiments examining these early steps are still required.

In conclusion, we have developed stochastic models of early

viral infection in which continuous viral production and burst viral

production are distinguished. The models capture the stochastic

aspects of some of the earliest events in infection and provide

quantitative insights into the possibility that early infection will go

extinct rather than become established. We provide analytical

solutions for the extinction probability and, via simulation, insights

into the distribution of times until infection goes extinct or

becomes established.
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