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1 Smart Engineering Ltd., UPC Spin-Off, Jordi Girona 1-3, 08034 Barcelona, Spain;
alejandro.nogales@upc.edu (A.N.); igor.reynvart@estudiant.upc.edu (I.R.)

2 Civil and Environmental Engineering Department, Universitat Politècnica de Catalunya (UPC),
Jordi Girona 1-3, 08034 Barcelona, Spain; nikola.tosic@upc.edu (N.T.); albert.de.la.fuente@upc.edu (A.d.l.F.)

* Correspondence: stanislav.aidarov@upc.edu

Abstract: Fiber-reinforced concrete (FRC) is an attractive alternative to traditional steel bar-reinforced
concrete structures, as evidenced by the constantly increasing market consumption of structural
fibers for this purpose. In spite of significant research dedicated to FRC, less attention has been
given to the effects of low temperatures on the mechanical properties of FRC, which can be critical
for a variety of structural typologies and regions. With this in mind, an experimental program was
carried out to assess the flexural behavior of macro-synthetic fiber-reinforced concrete (MSFRC) at
different temperatures (from 20 ◦C to −30 ◦C) by means of three-point bending notched beam tests.
The tested MSFRCs were produced by varying the content of polypropylene fibers (4 and 8 kg/m3).
The results proved that the flexural strength capacity of all MSFRCs improved with decreasing
temperature. Finite element analyses were then used to calibrate constitutive models following fib
Model Code 2010 guidelines and to formulate empirical adjustments for taking into account the
effects of low temperatures. The outcomes of this research are the basis for future experimental and
numerical efforts meant to improve the design of MSFRCs subjected to low temperatures during
service conditions.

Keywords: polymeric fiber reinforced concrete; experimental program; temperature variation;
residual tensile strength; one-way element; beam; non-linear analysis; modeling

1. Introduction

Fiber-reinforced concrete (FRC) is one of several new types of innovative concretes
that can be used for structural purposes in accordance with a number of national and
international codes, guidelines, and design recommendations [1–6]. The incorporation of
fibers in cement-based composites allows the partial or even total substitution of traditional
reinforcement (reinforcing steel bars) with a positive effect on the fracture energy of the
matrix [7], cracking control [8–12], fire resistance [13–15], fatigue [16,17], redistribution
capacity [18–21], and impact resistance [22–25]. As a result, the application of FRC is already
observed in a multitude of structural elements, such as precast tunnel segments [26–28],
elevated flat slabs [29–31], reinforced earth-retaining walls [32], and ground-supported flat
slabs for industrial applications [33,34].

Moreover, numerous research programs are focused on the material characterization
of FRC [35–39] and the further elaboration of both analytical [40–46] and numerical [47–51]
design approaches to suitably evaluate the response of FRC elements under diverse
load/boundary conditions. However, the majority of research studies tend to evalu-
ate the mechanical performance of FRC subjected to normal temperature conditions or
high/extremely high (e.g., fire) temperatures. In contrast, the behavior of FRC at low
temperatures is scarcely analyzed, although there are a number of possible scenarios
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in which it would be essential to adequately predict its structural response under rela-
tively adverse conditions, e.g., (1) the storage (Figure 1), handling, and transportation
of precast tunnel segments in cold regions or (2) the service life of industrial floors for
cold-storage warehouses.
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Figure 1. Precast concrete elements subjected to low temperatures (reproduced with permission
from [52]).

Drawing an analogy with plain or traditionally reinforced concrete under these condi-
tions, an increase in compressive and tensile strength can be expected [53,54] along with the
embrittlement of a concrete matrix [55]. Taking into account the increased tensile strength
of the material, sufficient ductility to the structural element must be provided by the re-
inforcement once cracking occurs. In the case of FRC, residual tensile strength is mainly
responsible for the post-cracking behavior of the material—this property should also be
improved as the matrix–fiber interaction enhances with decreasing temperatures as long as
the mechanical properties of the fibers are not negatively affected by external conditions.

However, to the authors’ best knowledge, only a few experimental investigations were
dedicated to examining the influence of low temperatures on the post-cracking response of
FRC with moderate values of compressive strength (up to 60 MPa). Pigeon and Cantin [56]
highlighted the slight and significant increase in steel fiber reinforced concrete (SFRC)
toughness at −10 ◦C and −30 ◦C, respectively. Caballero-Jorna et al. [57] emphasized a
minor enhancement of the post-cracking flexural strength of SFRC and MSFRC at −15 ◦C,
whereas Richardson and Ovington [58], on the contrary, stressed a considerably greater
flexural strength of both SFRC and MSFRC at −20 ◦C. Despite the obtained results, there
is still a lack of information for modeling possible “temperature–post-cracking flexural
strength” relationships for different types of FRC and, more importantly, the adjusted
designed procedures to suitably predict the structural response of FRC at low temperatures
have still not been analyzed.

With this in mind, the presented research study was conducted, this being comprised
of two main parts. Primarily, an experimental program was carried out in order to char-
acterize pre- and post-cracking flexural behavior of FRC at different temperatures (from
20 ◦C to −30 ◦C): the standardized three-point bending test (3PBT) on a notched beam
(150 × 150 × 600 mm3) according to EN 14651 [59]. For the sake of more detailed analysis,
two types of FRC were characterized: MSFRC with fiber contents of 4 kg/m3 (MSFRC-4)
and 8 kg/m3 (MSFRC-8).

Thereafter, multi-linear constitutive models were derived pursuant to the fib Model
Code 2010 [1] in order to simulate experimentally obtained “load–displacement” curves at
20 ◦C, 0 ◦C, −10 ◦C, and −30 ◦C. Moreover, correction factors to the elaborated constitutive
diagrams were identified with the aim of fitting the numerical prediction to the real behavior
of the tested beams.

As a result, the experimental outcome enlarged existing databases on FRC mechanical
performance and allows practitioners to consider the mechanical properties of FRC when
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designing for cold climates or conditions where low temperatures are expected. Addition-
ally, the numerical part of the study evidenced the necessity of the correction factors to
precisely predict the real behavior of FRC elements reinforced by a given amount/type
of fibers.

2. Experimental Program
2.1. Concrete Mix

The adopted mix (Table 1) corresponded to the normal strength concrete and S3 con-
sistency class, i.e., the measured slump was between 100 and 150 mm [60]. A Portland
cement type CEM II-A/L was used for producing the MSFRC mixes. The concrete matrix
consisted of three aggregate sizes: sand 0/4, gravel 4/10, and gravel 10/20 from crushed
calcareous stone. A lignosulphonate-based plasticizer and a polycarboxylate-based super-
plasticizer were also added during the material elaboration in order to provide the required
workability of the mix.

Table 1. Composition of studied MSFRC.

Materials MSFRC-4 MSFRC-8

CEM II-A/L 42.5R (kg/m3) 310 310
Coarse aggregate 10/20 (kg/m3) 690 680
Coarse aggregate 4/10 (kg/m3) 127 125

Fine aggregate 0/4 (kg/m3) 1025 1025
Water-cement ratio 0.58 0.58

Additives (% on cement content) 1.2 1.5
Synthetic fibers (kg/m3) 4 8

Based on the described concrete composition, two types of FRC were produced:
polypropylene fiber-reinforced concrete with a fiber content of (1) 4 kg/m3 (volume fraction
0.425%) and (2) 8 kg/m3 (volume fraction 0.850%); Table 2 gathers the essential properties of
the used polypropylene fiber (PPF). MSFRC-4 was oriented to industrial floors in which only
the minimum reinforcement is required to control cracking due to thermal–hydrometric
(temperature and shrinkage gradients) phenomena. In turn, MSFRC-8 was selected to
reproduce medium-heavy duty pavements, which, apart from the previously mentioned
indirect loads, could be subjected to external loads of notable magnitude.

Table 2. Properties of the implemented fiber.

Property PPF Representation

Material Transparent polypropylene
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Shape Embossed monofilament
Diameter (mm) 0.85
Length (mm) 48
Aspect ratio 56.5

Number of fibers per kg 41,200
Tensile strength (MPa) >400

2.2. Test Setup and Testing Procedure

The structural response of the elaborated MSFRC mixes in terms of flexural pre- and
post-cracking strengths was analyzed at 20 ◦C (reference temperature), 0 ◦C, −10 ◦C, and
−30 ◦C. This mechanical property of the studied MSFRC was assessed in compliance with
EN 14651 [59] (Figure 2a) by testing six notched prismatic beams (150 × 150 × 600 mm) for
each temperature magnitude, resulting in 48 tested samples. The casting and demolding
(in 24 h) of the prismatic beams in question were followed by the curing of these specimens
in a temperature (20 ◦C) and humidity (95%) controlled chamber for 28 days.
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Thereafter, three-quarters of all beams were placed in a laboratory freezer, and each
quarter was cooled to 0 ◦C, −10 ◦C, and −30 ◦C, respectively. Importantly, the prismatic
samples were equipped with a thermocouple in order to guarantee the target test tempera-
ture and, additionally, to monitor its evolution (Figure 2b). Once the required temperature
was reached, the specimens were placed in an INSTRON 8505 testing machine (Figure 2c)
equipped with a load cell of 100 kN in order to estimate the flexural behavior. The pa-
rameters of major concern within the testing procedure were the limits of proportionality
(fLOP), fR1, and fR3; fLOP represented the pre-cracking flexural behavior, whereas the residual
tensile strengths fR1 and fR3 were used to derive the constitutive models of the MSFRC for
design purposes, being related with serviceability and ultimate limit states, respectively.

3. Experimental Results and Discussion

Figure 3 gathers responses obtained by means of the 3PBT in terms of pre- and post-
cracking strength and crack mouth opening displacement (CMOD); average values are
highlighted by red lines (based on six tested specimens for each case), whereas result scatter
(envelope) is represented by a shaded area. Primarily, pre-cracking behavior was assessed
for both MSFRC-4 and MSFRC-8. Taking into consideration that this mechanical property
is mainly dependent on the material matrix [61,62] (amount of cement paste and granular
skeleton), similar results were expected regardless of the fiber content.

This expectation was proven accurate, as seen in Figure 4—the limit of the propor-
tionality of MSFRC-4 and MSFRC-8 at the reference temperature was almost identical.
Decreasing the temperature to the threshold value for water to start freezing (0 ◦C), fLOP
started increasing by 15.8% and 47.0% for MSFRC-4 and MSFRC-8, respectively. Further
reduction in the temperature led to a significant enhancement of fLOP: a total increment
of 67.7% and 66.5% was detected for the above listed materials at –10 ◦C, whereas the
temperature magnitude of –30 ◦C entailed an increment of 68.5% and 73.2% for MSFRC-4
and MSFRC-8, respectively (comparing with fLOP at 20 ◦C).

Thereafter, the effect of the temperature variation on the residual tensile strengths
(fR1, fR3) was estimated. This mechanical parameter, apart from the characteristics of the
concrete matrix, depends on a certain number of factors, such as the mechanical properties
of the implemented fibers, fiber geometry (having a main effect on anchorage and bond
capacity), and fiber distribution and orientation within the critical section. Therefore, the
analysis of post-cracking behavior of FRC at low temperatures is a challenging aspect to
be investigated.
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The results that can serve as a base for further investigations are presented in Figure 5.
Analyzing the observed structural response of the tested FRC beams, the positive effect
of low temperatures on the energy required to produce fiber pull-out can be emphasized,
i.e., the concrete matrix that embeds the fibers shrinks with the decrease in temperature,
provoking an increase in confinement pressure along the fibers and thus enhancing the
anchorage capacity of fibers. This phenomenon, in turn, improves the post-cracking flexural
behavior as it was depicted in [63,64]. Importantly, the studied range of temperatures had
no detectable negative influence on the mechanical properties of the implemented fibers
and, thereby, on the overall performance of the studied FRC beams.

Materials 2022, 14, x FOR PEER REVIEW 6 of 14 
 

 

The results that can serve as a base for further investigations are presented in Figure 
5. Analyzing the observed structural response of the tested FRC beams, the positive effect 
of low temperatures on the energy required to produce fiber pull-out can be emphasized, 
i.e., the concrete matrix that embeds the fibers shrinks with the decrease in temperature, 
provoking an increase in confinement pressure along the fibers and thus enhancing the 
anchorage capacity of fibers. This phenomenon, in turn, improves the post-cracking flex-
ural behavior as it was depicted in [63,64]. Importantly, the studied range of temperatures 
had no detectable negative influence on the mechanical properties of the implemented 
fibers and, thereby, on the overall performance of the studied FRC beams.  

 
Figure 5. Mean values of fR1 and fR3 with corresponding standard deviations of the studied MSFRCs 
at different temperatures. 

Additionally, the effect of the higher fiber content on the enhancement rate of the 
residual tensile strength (due to temperature reduction) can be stressed: the relatively 
moderate values of residual tensile strengths in the case of MSFRC-4 did not ensure the 
continuous increment of post-cracking strength, i.e., both fR1 and fR3 presented similar en-
hancements of this parameter in the range between 0 °C and −30 °C. Contrarily, MSFRC-
8 evidenced a significant increment of residual tensile strengths once temperatures sur-
passed the threshold temperature magnitude of 0 °C—up to 71.2% in comparison with 
the reference values (at 20 °C). Moreover, the greater increase in fR3 should be highlighted, 
opposing the enhancement rate due to low temperatures to the increase in fR1—this phe-
nomenon results from the improvement of the bond capacity in the matrix–fiber interac-
tion that is generally a governing failure mechanism (fiber debonding). 

Although the obtained experimental outcome clearly evidenced the increase in pre- 
and post-cracking flexural strength of the given FRCs, further studies are required to ex-
tend the database related to the effect of low temperatures on flexural capacity of the ma-
terial in question, varying temperature magnitudes, concrete mixes, and fiber type/con-
tents. This will allow to propose a relationship between temperature variation and the 
flexural strength of FRCs; this relationship, in turn, will allow to characterize the materials 
at ambient conditions with a subsequent estimation of their potential behavior at more 
severe conditions. 

4. Numerical Analysis 
In previous sections, experimental tests have proven the positive effect of low tem-

peratures on FRC by increasing post-cracking strength. Based on the authors’ experience, 
the FRC constitutive equation proposed in the fib Model Code 2010 [1], which was set as 
a reference for design engineers and practitioners to take into account the post-cracking 
behavior of FRC, needs to be adjusted in order to properly reproduce the latter. The ad-
justments usually adopted in MSFRC are to reduce residual strength at early stages (for 
CMOD < 0.5 mm) since the constitutive equation tends to overestimate the flexural post-
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Additionally, the effect of the higher fiber content on the enhancement rate of the
residual tensile strength (due to temperature reduction) can be stressed: the relatively
moderate values of residual tensile strengths in the case of MSFRC-4 did not ensure the
continuous increment of post-cracking strength, i.e., both fR1 and fR3 presented similar en-
hancements of this parameter in the range between 0 ◦C and −30 ◦C. Contrarily, MSFRC-8
evidenced a significant increment of residual tensile strengths once temperatures surpassed
the threshold temperature magnitude of 0 ◦C—up to 71.2% in comparison with the refer-
ence values (at 20 ◦C). Moreover, the greater increase in fR3 should be highlighted, opposing
the enhancement rate due to low temperatures to the increase in fR1—this phenomenon
results from the improvement of the bond capacity in the matrix–fiber interaction that is
generally a governing failure mechanism (fiber debonding).

Although the obtained experimental outcome clearly evidenced the increase in pre-
and post-cracking flexural strength of the given FRCs, further studies are required to extend
the database related to the effect of low temperatures on flexural capacity of the material
in question, varying temperature magnitudes, concrete mixes, and fiber type/contents.
This will allow to propose a relationship between temperature variation and the flexural
strength of FRCs; this relationship, in turn, will allow to characterize the materials at
ambient conditions with a subsequent estimation of their potential behavior at more
severe conditions.

4. Numerical Analysis

In previous sections, experimental tests have proven the positive effect of low tem-
peratures on FRC by increasing post-cracking strength. Based on the authors’ experience,
the FRC constitutive equation proposed in the fib Model Code 2010 [1], which was set as
a reference for design engineers and practitioners to take into account the post-cracking
behavior of FRC, needs to be adjusted in order to properly reproduce the latter. The
adjustments usually adopted in MSFRC are to reduce residual strength at early stages
(for CMOD < 0.5 mm) since the constitutive equation tends to overestimate the flexural
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post-cracking capacity after cracking, whereas the behavior at larger crack openings tends
to be underestimated, and the residual strength needs to be increased [65,66].

With that in mind, this section presents a non-linear finite element (FE) simulation
to obtain and assess the ratio of residual strength (obtained by means of a numerical
simulation) to experimental residual strength (fR,NL/fR,EXP) for the FRC mixes (MSFRC-4
and MSFRC-8) tested at different temperatures. In order to derive these fR,NL/fR,EXP ratios,
the strategy adopted is the following: first, non-linear simulations of a beam flexural
post-cracking strength test were carried out implementing an FRC-constitutive relationship
according to fib Model Code 2010 [1]. Figure 6 depicts the schematic representation of the
stress-crack width curve for FRC according to the fib Model Code 2010 [1]. A full curve is
obtained as the combination of the post-cracking response of plain concrete (where fctm and
GF stand for mean tensile concrete strength and fracture energy, respectively) and the fiber
contribution through the pull-out mechanism, the first point being σ1 = fctm and w1 = 0 mm,
the second point σ2 and w2 (the intersection between the two curves), and the third one
σ3 = fctm and w3 = 2.5 mm. Moreover, since the results did not fit the experimental ones
well, the fR1 and fR3 coefficients (to derive constitutive curves according to the fib Model
Code 2010 constitutive equations) were modified so that the resulting curves fit the values
at CMOD of 0.5 and 2.5 mm, which are the crack openings for serviceability and ultimate
limit states, respectively. The latter task was undertaken by implementing a back analysis
by an iterative trial and error process.
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In order to carry out the numerical analysis, non-linear simulations were implemented
by means of the commercial finite element (FE) software ABAQUS CAE 2016 [67], as its
adequacy in properly reproducing the post-cracking flexural performance of FRC has been
successfully proven through an available Concrete Damaged Plasticity (CDP) numerical
model [20,66]. CDP is a smeared crack plasticity-based numerical model, which assumes
that the main two failure mechanisms are tensile cracking and concrete crushing. Input data
are required in terms of uniaxial stress-strain (σ–ε) curves for both tensile and compressive
behavior. In this study, in order to minimize mesh dependence due to different mesh size,
the stress-crack width (σ–w) tensile curve was used instead of σ–ε [67]. The compressive
constitutive curve adopted was proposed in the fib Model Code 2010 [1], and the CDP
magnitude of the parameters adopted for all the simulations were those proposed in
ABAQUS Users’ Manual [67] for plain concrete, which can be found elsewhere [68].

The adopted 2D model considering plain strain conditions is depicted in Figure 7,
which shows the loading and boundary conditions along with the mesh. In agreement with
the experimental test, the boundary conditions were imposed so that vertical displacement
was restrained (Uy = 0) at both supports and horizontal displacement (Ux = 0) in one of
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them. The loading was applied by means of displacement control using an explicit dynamic
algorithm (quasi-static analysis) in order to properly capture the post-cracking performance
of FRC. The mesh comprised 485 nodes and 886 triangular linear elements (CPE3) with a
mesh size of 20 mm, refined in the mid-section with 5 mm size elements, wherein the mesh
size was determined after carrying out a mesh sensitivity analysis.
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The results of the non-linear simulations for MSFRC-4 and MSFRC-8 for all tempera-
tures are plotted in Figure 8. The load–CMOD graphs include three curves: experimental
results and two from non-linear simulations (1) implementing the fib Model Code [1] con-
stitutive equation (FE MC-2010, derived using fR1 and fR3 obtained from the experimental
tests presented in Section 3) and (2) using the constitutive curve (FE MC-2010 Modified),
adjusted so that the results fit the experimental curve at 0.5 and 2.5 mm. As can be seen,
the simulations with FE MC-2010 Modified only fit the experimental data at these points,
and hardening is produced in a linear way. Based on the authors’ experience, in those cases
where the hardening is produced in a curved way, more points would be necessary in the
constitutive equation in order to better adjust the experimental outcome [65,66].

It is worth noticing that the ultimate displacement in the fib Model Code [1] constitutive
curve is 2.5 mm (set as the stress for ultimate limit state analysis). However, in this
research study, after 2.5 mm, the constitutive curve smoothly decreases to zero stress, set at
w = 5 mm, in order to better capture the flexural bearing capacity of MSFRC at latter stages.
Without the last branch of the curve, the maximum post-cracking load of the tests, after the
drop due to cracking, cannot be captured since it is produced for crack openings higher
than 2.5 mm [65,66].

Table 3 gathers more detailed information regarding fR1 and fR3 parameters for MSFRC-
4 and MSFRC-8, respectively. These parameters were used for deriving the constitutive
curves obtained from the experimental data and by means of the back analysis. In addition,
the table also presents the fR,NL/fR,EXP ratios for each MSFRC mix and temperature.

Based on the outcome presented in the table, it can clearly be seen that the ranges
of the fR,NL/fR,EXP ratios for either fR1 or fR3 are quite narrow, particularly for fR1. In this
sense, it could be stated that the fR,NL/fR,EXP ratios are constant despite the increasing
post-cracking strength with decreasing temperature. In view of this, in cases where no
data are available for low temperatures, and the structure is expected to be subjected to
large temperature variations, the same fR,NL/fR,EXP ratio (for either fR1 and fR3) at reference
temperature could be taken for the MSFRC design.
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Table 3. fRNL/fREXP ratio for MSFRC-4 and MSFRC-8 at studied temperatures.

Temperature
(◦C)

MSFRC-4 MSFRC-8

fR,EXP (MPa) fR,NL (Mpa) fR,NL/fR,EXP fR,EXP (Mpa) fR,NL (Mpa) fR,NL/fR,EXP

fR1

20 0.94 0.60 0.64 1.88 1.35 0.72
0 1.20 0.80 0.67 2.4 1.80 0.75

−10 1.23 0.80 0.65 2.89 2.25 0.78
−30 1.22 0.80 0.66 2.83 2.25 0.80

fR3

20 1.03 1.03 1.00 2.26 2.40 1.06
0 1.40 1.60 1.14 3.02 3.20 1.06

−10 1.49 1.80 1.21 3.87 4.60 1.19
−30 1.52 1.80 1.18 3.75 4.60 1.23
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In order to verify this assumption, in Figure 9 were plotted the FE simulations using the
residual strengths from the tests at each temperature and multiplied by the fR,NL/fR,EXP ratio
(for either fR1 and fR3) at 20 ◦C (i.e., fR1,NL/fR1,EXP = 0.65 and 0.75 for MSFRC-4 and MSFRC-
8, respectively, and fR3,NL/fR3,EXP = 1.10 for both solutions). As can be seen, the differences
at CMOD 0.5 and 2.5 mm have a deviation lower than 10% in all cases (Figure 9) which
is assumed to be acceptable for engineering design. Moreover, taking into consideration
the scatter in the experimental tests of MSFRC post-cracking performance, these new
simulations are inside the envelope, which means that this approach is representative of
the mechanical performance of each solution of MSFRC.
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It is worth noticing that, in a hypothetical situation in which no tests were performed
at low temperatures, fR1 and fR3 at different temperatures could be obtained based on the
established relationship “temperature variation–flexural strength” that is to be elaborated
once the broader database of the experimental results is developed, as proposed in Section 3.

5. Conclusions

In this paper, an experimental program was described following an analysis of low
temperature effects on the pre- and post-cracking flexural behavior of macro-synthetic fiber
reinforced concrete (MSFRC). In total, 48 prismatic notched beams were tested under a
three-point bending configuration, varying temperatures from 20 ◦C to −30 ◦C. Moreover,
numerical analyses were performed to verify the suitability of the current constitutive
models suggested by the fib Model Code 2010 for simulating the pre- and post-cracking
response of the MSFRCs tested at low temperatures. The following conclusions may be
derived from the obtained results:

• Low temperatures led to an increase in the required energy to produce fiber pull-out,
and therefore, post-cracking flexural behavior was enhanced: fR1 and fR3 increased to
54% and 71%, respectively, for temperatures below 0 ◦C.

• A greater increase in fR3 at low temperatures (in comparison with the observed values
of fR1) was observed. This could be due to the confinement effect caused by the
shrinkage of the matrix embedding the fibers. This effect seemed to lead to a higher
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fiber bond (higher matrix–fiber friction). This outcome is of paramount importance
for design procedures at ultimate conditions.

• The numerical analysis adopting the multi-linear constitutive model that is suggested
by the fib Model Code 2010 evidenced a certain overestimation of the real flexural
behavior in cases of studied MSFRC prismatic beams. This phenomenon led to the
requirement of introducing correction factors to properly simulate the structural
response of the elements in question. Importantly, the imposed correction factors (for
both fR1 and fR3) were almost identical despite the temperature variation, although the
fiber content did have an effect on these values.

The outcome of the described research program reveals the enhanced performance
of the given FRCs in terms of pre- and post-cracking flexural strengths—therefore, these
phenomena should be taken into account during the design procedures of elements that
are to be subjected to low temperatures during transient or in-service conditions. However,
further investigation is required to expand the experimental database related to the behavior
of FRCs at low temperatures. This will allow to evaluate the “temperature–pre- and post-
flexural strength” relationships so that designers and practitioners will only need to carry
out the characterization of the required material at ambient conditions (20 ◦C) in order to
adequately predict structural behavior at low temperatures.
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