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We explore the ideas and advances surrounding the genetic basis of pigment dispersion syndrome (PDS) and pigmentary glaucoma
(PG). As PG is the leading cause of nontraumatic blindness in young adults and current tailored interventions have proven
ineffective, a better understanding of the underlying causes of PDS, PG, and their relationship is essential. Despite PDS being a
subclinical disease, a large proportion of patients progress to PG with associated vision loss. Decades of research have supported
a genetic component both for PDS and conversion to PG. We review the body of evidence supporting a genetic basis in humans
and animal models and reevaluate classical mechanisms of PDS/PG considering this new evidence.

1. Introduction

Pigment dispersion syndrome (PDS) is the shedding of
pigment from the posterior surface of the iris into the anterior
segment following theflowof aqueoushumour. This shedding
does not independently impair vision inmost affected individ-
uals. However, a subset of patients with PDS progresses to
pigmentary glaucoma (PG) with high intraocular pressure
(IOP) and glaucomatous optic neuropathy. To date, although
several population studies have established a relationship
between these two disorders, the underlying pathology
remains cryptic. A heterogeneous and possibly complex
genetic component appears to underlie at least a proportion
of PDS/PG cases. Understanding this genetic component
can not only provide insight into the underlying pathology
of PDS/PG but also form the basis for rationally designed
therapeutics for this important cause of blindness worldwide.

2. Pathophysiology

The defining characteristic of PDS is the bilateral shedding of
pigment from the posterior iris pigment epithelium (IPE)
and the subsequent deposition of this pigment in the anterior

segment, first described in 1899 [1]. Pigment lost in this way
can be visualized gonioscopicly as iris transillumination
defects which describe depigmented zones that abnormally
allow light to pass through them [2]. These slit-like depig-
mented zones tend to be observed radially in the midperiph-
eral iris and, according to ultrasound biomicroscopy studies,
patients with PDS often have abnormal iridozonular contacts
[3, 4]. As described in more detail below, these abnormal
contacts have previously been proposed to be responsible
for pigment shedding via a mechanical rubbing model [3].
Iris transillumination defects are observed in approximately
86% of patients with PDS [5]. Liberated pigment is trans-
ported into the anterior segment via aqueous humour flow.
Aqueous humour convection currents are driven primarily
by blinking [6] then deposit this pigment in a vertical stripe
on the cornea known as a Krukenberg’s spindle [1, 7]. This
phenotype is observed in around 90% of PDS patients and
does not correlate with differences in corneal thickness or
density [8, 9]. Possibly, the most important clinical sign in
the pathophysiology of PDS is the observation of dense
trabecular meshwork pigmentation [7]. PDS patients tend
to have a diffuse and uniformly dense pigmented trabecular
meshwork, unlike patients with the phenotypically related

Hindawi
Journal of Ophthalmology
Volume 2018, Article ID 5926906, 11 pages
https://doi.org/10.1155/2018/5926906

http://orcid.org/0000-0001-8962-9021
http://orcid.org/0000-0002-0567-0113
https://doi.org/10.1155/2018/5926906


pseudoexfoliation syndrome where punctate deposits of
material in the trabecular meshwork are observed [10].

Histologic examination has revealed that pigment gran-
ules are phagocytosed by both corneal epithelial cells and
trabecular meshwork cells rather than being adsorbed onto
their surface [11–14]. Phagocytic stress causes alterations to
the trabecular meshwork extracellular matrix structure and
adhesion [15, 16] which could explain the trabecular mesh-
work dysfunction observed in PDS/PG patients [14]. In
PDS/PG patients, trabecular meshwork cells die and exhibit
localized necrosis [17]. The resultant reduced conventional
aqueous humour outflow which is likely the primary mecha-
nism in the conversion from PDS to PG as reduced outflow is
an established mechanism for IOP increase and glaucoma-
tous optic neuropathy [17, 18]. Nevertheless, the degree of
trabecular meshwork pigmentation does not directly corre-
late with conversion risk but is however related to the severity
of optic neuropathy in PG patients [19, 20]. The lens and iris
have been suggested to function together in a ball-valve
pressure mechanism, called the reverse pupillary block,
maintaining one-way aqueous humour flow [21]. Elevated
anterior segment pressure may bend the iris posteriorly,
increasing iridozonular contact and as a result exacerbate pig-
ment shedding [22, 23]. However, iris bending cannot be
solely due to pressure as a study using ex vivo iris explants
showed that iris bowing is a normal feature of iris dilatormus-
cle activity and position [24]. Hyperplastic iris dilatormuscles
have been observed in several patients with PDS, and this
dysfunction may contribute to posterior iris bowing [25–27].

Although currently limited, some evidence has accrued to
support the involvement of the retinal pigment epithelium
(RPE) in PDS/PG. Patients with PDS have significantly lower
Arden ratios than patients with primary open-angle glau-
coma (POAG) or ocular hypertension (OHT) which may
indicate RPE degeneration [28]. Lattice retinal degeneration
occurs in 22–33% of PDS/PG cases which is high, despite
the known association between PDS and myopia [29–31].
An estimated 12% of eyes with PDS also experience ret-
inal detachment, occurring in 5.5-6.6% of total PDS
cases [22, 31, 32]. Together these data support a more general
involvement of pigmented cells in the pathology of PDS/PG,
but further characterization of possible RPE dysfunction
associated with PDS/PG is necessary.

3. Epidemiology

At a population scale, there are three main questions to
answer about PDS and PG. As PDS is the underlying condi-
tion, it is important to know how many people are affected as
well as details regarding their demographic characteristics.
The incidence of PDS has been estimated to be between 1.4
per 100,000 to 4.8 per 100,0005 in the United States. How-
ever, some estimates place prevalence as high as 2.45%
in the United States [33]. Screening for PDS however is
complicated by its subclinical nature, the fact that pigment
dispersion is more easily observed in lightly pigmented eyes
and the phenomenon of symptom abatement known as
“burn-out” [5, 20]. People affected by PDS may not seek
out eye exams since their vision is not impaired, and affected

individuals may be asymptomatic for obvious pigmentary
defects due to “burn-out,” together leading to an underesti-
mation of PDS prevalence. Burn-out typically occurs in older
individuals and it is possible some patients who present with
glaucomatous optic neuropathy, who are then diagnosed
with POAG, may be more accurately described as PG cases
with burn-out. PDS is known to affect young myopes which
may explain some of the structural iris pathologies associated
with the disease [7, 31, 34]. North American studies have
established a higher prevalence of PDS in white patients
and a lower than expected incidence of PDS in black patients
[34–36], but the aforementioned ability to more readily
detect aberrantly located pigment in light-coloured eyes
might lead to an ascertainment bias.

Conversion from PDS to PG is a highly variable and het-
erogeneous phenomenon impacted by both genetic and envi-
ronmental factors. For example, despite the prevalence of PDS
being approximately equal in both men and women, more
males progress to PG [6, 19, 22, 31] and that conversion occurs
about a decade earlier in men than women [6, 21, 31, 34, 37].
PDS patients have an increased family history (4–21%) of
glaucoma [5, 31, 38]; however, that percentage increases
greatly in patients with PG (26–48%) [5, 34, 39, 40]. Rigorous
exercise has been shown to induce pigment dispersion,
enhance posterior iris bending, and increase IOP which all
contribute to conversion risk [41–44]. IOP is a major risk
factor for PDS to PG conversion, with the increase in risk
being proportional to the increase in IOP [5, 45]. The actual
rate of conversion is highly variable between studies and seems
to in part depend on the ethnic background of patients.
Conversion rates as high as 35–50% have been reported in
US populations [19, 37, 46]. However, in another study which
evaluated conversion over time, the conversion rate was esti-
mated at 10% at 5 years and 15% at 15 years [5]. In a Latin
American cohort, the conversion rate was observed to be
37.5% at 50months which is in good agreement withUS stud-
ies [45]. However, in a Pakistani cohort, the observed conver-
sion rate was only 4% at 15 years whichmay support ethnicity
as a risk factor for conversion [47]. Ultimately, the diversity in
conversion rates supports the observation of heterogeneous
genetic and environmental risk factors. In theWestern world,
PG represents 1–1.5% of total glaucoma cases and, due to its
early age of onset, is the most common cause of nontraumatic
glaucoma in young adults [33, 48] making it an important
cause of debilitating blindness.

4. Human Genetics

Current research on the genetic component of PDS/PG
supports a genetically heterogeneous and possibly complex
inheritance model. Analysis of four 3-generation pedigrees
with Irish or mixed Western European ancestry affected by
PDS/PG supported an autosomal dominant mode of
inheritance given the identification of affected individuals
in every generation without a sex bias [49]. Using microsatel-
lite markers, a chromosomal region named GPDS1 (glau-
coma-related pigment dispersion syndrome 1) (OMIM ID
600510) was mapped to the human chromosome 7 (7q35-
q36) in a subset of patients. To date, this linkage has not been
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replicated by other mapping studies. Additionally, no candi-
date genes in this region have been successfully associated
with PDS/PG. Of several genes in the region, the most prom-
ising candidate is likely human endothelial nitric oxide
synthase (NOS3) as it is known to play a role in maintaining
vascular tone and dysfunction and may contribute to
structural abnormalities of the iris [50–52]. However, muta-
tions in NOS3 have not been reported to be associated with
PDS/PG to date.

Another region, on chromosome 18, has also been associ-
ated with PDS/PG in several studies. Using a single pedigree,
significant linkage to the 18q11-q21 region was observed [53]
and later analysis of four additional pedigrees not linked to
GPDS1 found significant linkage to the 18q21 region, assum-
ing an autosomal dominant mode of inheritance [54].
Finally, there exists one case study of an Estonian man with
PDS harbouring novel deletions on both the nearby 18q22
and 2q22.1 [55]. However, as for the GPDS1 locus, no genes
in these regions have been associated with PDS/PG.

Two candidate genes associated more broadly with other
subtypes of glaucoma, myocilin (MYOC), and lysyl oxidase
homolog 1 (LOXL1) have shown limited association with
PDS/PG.MYOC is well known for its association with several
subtypes of glaucoma including juvenile open-angle glau-
coma (JOAG) and primary open-angle glaucoma (POAG)
[56–58]. Several cases of potentially damaging mutations
in MYOC in patients with PDS/PG have been observed
[59–61], and MYOC is expressed in several ocular tissues
including the iris which makes it biologically plausible,
despite its still cryptic biological function. However, the very
small number ofMYOC variants found associated with PDS/
PG suggests that MYOC is either a very infrequent cause of
PDS/PG or that this association is spurious. Given the
phenotypic similarities between pseudoexfoliation syndrome
(PXS) and PDS (deposition of material in the anterior
segment), several studies have investigated a possible associ-
ation between LOXL1, a gene strongly associated with PXS
[62–66], and PDS/PG. To date, no causal association of
PDS/PG and LOXL1 variants has been observed [67, 68]
but variants in LOXL1 could act as a modifier of both of
disease risk and age of onset [67, 69]. Interestingly, a patient
with coexisting [70] PXS and PDS has been described,
supporting again the idea that these related disorders are
separate clinical and genetic entities.

There may be also some overlap between PDS and the
rare recessive disease Knobloch syndrome (OMIM number
267750) caused by mutations in COL18A1 [71, 72]. Kno-
bloch syndrome is a developmental disorder with ocular
abnormalities and severe skull formation defects. Recently,
it is has been reported that PDS and PG are a hallmark sign
of Knobloch syndrome and that understanding PDS/PG is
important for management of Knobloch syndrome [73].
However, given the severity of the other diagnostic symp-
toms of Knobloch syndrome, variants in COL18A1 are
unlikely to cause a large proportion of PDS/PG cases. Two
case reports have associated Marfan syndrome (OMIM
number 154700) with PDS/PG and suggested that FBN1
variants, while not causative for PDS, may contribute to
conversion to glaucoma [74, 75]. Although glaucoma

generally has been associated with Marfan syndrome [76],
there currently exists insufficient evidence to associate
PDS/PG directly with Marfan syndrome or variants in FBN1.

5. Animal Studies

Whereas human studies have failed to elucidate any gene
associated with PDS/PG, animal research has successfully
identified several genes associated with similar phenotypes.
Undoubtedly, the most significant progress has been made
using the DBA/2J mouse glaucoma model which has proven
invaluable to both PDS/PG research and understanding of
glaucomatous optic neuropathy as a whole [77–81]. DBA/2J
mice were observed to sporadically develop iris atrophy, pig-
ment dispersion, increased IOP, and glaucoma-like retinal
ganglion cell death [81]. Later, the genes responsible for these
sporadic phenotypes were mapped to two main genes: Tryp1
and Gpnmb which accounted for the iris atrophy and pig-
ment dispersion respectively [77]. Iris pigment dispersion
and associated atrophy have also been observed in several
other mouse models and causative genes together implicate
melanosome genes as playing a central role in iris pigment
dispersion pathogenesis [77, 82–84].

Melanin synthesis is a tightly regulated process whereby
potentially cytotoxic intermediates [85] polymerize onto
structural protein fibrils in melanosomes and the specialized
pigmented organelle in melanocytes. Several genes involved
in melanin synthesis have been implicated in iris pigment
dispersion and atrophy in mice studies. Tyrp1 encodes
tyrosinase-related protein 1, an important melanosome
membrane-bound structural component of the tyrosinase
complex that oxidizes 5,6-dihydroxyindole-2-carboxylic acid
(DHICA), has catalase activity, and modulates tyrosinase
(Tyr) function [86–88]. In a screen of coat color variants,
the Tyrp1b-lt (light coat) allele (which contains a single
missense Tyrp1 mutation) was associated with iris pigment
dispersion in the LT/SvEiJ inbred mouse [82, 89]. The Tyrp1b

(brown coat) allele has two missense mutations and has been
shown to cause iris atrophy in both the DBA/2J and YBR/EiJ
inbred mouse strains [77, 84, 90]. Mutation of essential cyste-
ine residues in both Tryp1b-lt and Tyrp1b alleles causes the
release of cytotoxic melanin synthesis intermediates from
melanosomes leading ultimately to melanocyte cell death
[87, 89]. A spontaneous coat colour variant nm2798 is caused
by the dopachrome tautomerase (Dct) allele Dctslt-lt3J and is
associated with iris pigment dispersion [82]. Dct is another
protein in the tyrosinase complex and also participates in
melanin synthesis by converting dopachrome to DHICA
[91]. Mutations of Dct are likely to cause melanosomal dys-
function and melanocyte toxicity via escape or accumulation
of cytotoxic melanin synthesis intermediates [85, 86, 91, 92].
A large-scale genetic analysis of genetic modifiers of the iris
transillumination defect in the DBA/2J mouse model identi-
fied the oculocutaneous albinism type 2 (Oca2) gene, an
important regulator of melanin synthesis through melanoso-
mal pH control [93, 94]. The human homologue OCA2 also
has a direct tie to iris pigmentation, being the causative loci
for both its namesake disease, oculocutaneous albinism type
2 (OMIM number 203200) and iris color [94–98].
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Several genes important to melanosome function, but not
involved in melanin synthesis, have also been implicated in
iris pigment dispersion phenotypes. A C-terminally trun-
cated allele of glycoprotein nonmetastatic melanoma protein
b (Gpnmb) allele, Gpnmbr150x, was mapped as causing iris
pigment dispersion in the DBA/2J strain [77]. Although not
directly involved in melanin synthesis, Gpnmb is important
to melanosome structural integrity and containing the
cytotoxic melanin synthesis intermediates [77]. Intriguingly,
C-terminal truncation of its homologue Pmel (Si allele) in
mice causes melanosome dysfunction and melanocyte cell
death leading to body-wide pigmentary abnormalities but
not iris pigment dispersion [99–101]. Gpnmb has additional
neuronal and immune cell adhesion functions that are
important to the pathology of glaucoma in DBA/2J mice
[102–104]. Understanding the immune component of
Gpnmbr150x-mediated iris pigment dispersion may be impor-
tant to elucidate the known involvement of the immune
system in PDS [25, 105]. Similarly, Lyst encodes the lyso-
somal trafficking regulator protein which is important for
trafficking components to the early stage 1 melanosomes,
and variants can cause Chediak-Higashi syndrome (number
214500) [106]. The Lystbg-j allele causes beige coat color in
the C57BL/6J background. Beige mice exhibit pronounced
pigment dispersion and increased melanosome volume with
similarities to both PDS and PXS [82, 83]. The underlying
molecular mechanism for this phenotype is not yet under-
stood but could be related again to cytotoxic melanin synthe-
sis intermediates. The same large-scale genetic analysis which
identified Oca2 also identified several genes not directly
involved in melanin synthesis. The motor protein Myosin
Va (Myo5a) gene, signalling protein protein kinase C ζ
(Pkcζ), and transcription factor zinc finger and BTB
domain-containing protein 20 (Zbtb20) were identified as
key modifiers of the iris transillumination defect [93]. Both
Myo5a and Pkcζ have a direct tie to pigmentation either
through intercellular trafficking of melanosomes [107–109]
or through melanocyte dendrite formation [110] (a structure
important to intercellular trafficking), respectively. It is not
clear how Zbtb20 may influence this phenotype as the gene
remains an understudied transcription factor with ties to
the nervous, detoxification, and immune system function
thus far, the latter having been already implicated in the
DBA/2J mouse model previously [111–113]. Finally, in the
vitiligo substrain of C57BL/6J mice, a variant in the master
pigmented cell transcription factor Mitf (Microphthalmia-
associated transcription factor) [114] caused relatively late
onset pigment dispersion and increased eye size, possibly
due to increased IOP82. The Mitfmi-vit allele likely disrupts
the regulation of Tyrp1, Dct, Gpnmb, Lyst, Myo5a, and even
PKCζ given Mitf’s essential role in regulating melanocyte
identity and function [115–117].

One additional animal model exists with some relevance
to PDS/PG. Canine ocular melanosis (OM) shares some phe-
notypic similarities with PDS/PG in that the pigment is lost
from the posterior of the iris leading to transillumination
defects, pigment accumulates aberrantly in the TM, and
increased IOP with glaucoma developing in affected canines.
However, OM is characterized by a host of other pigmentary

anomalies and pathogenic phenotypes including but not lim-
ited to iris root thickening, uveal melanocytic neoplasms,
large scleral/episcleral pigment plaques, fundus pigmenta-
tion, corneal edema, and anterior uveitis [118, 119].
Together, these dramatic anomalies are more reminiscent
of cancer than PDS/PG making the applicability of this
model to human disease limited. A genetic screen in Cairn
terriers assuming an autosomal dominant mode of inheri-
tance ruled out genes implicated in the DBA/2J model as
being causative for OM [120].

Together, the body of animal research strongly supports a
central role for dysregulation of melanin synthesis, melano-
some integrity, and melanocyte health in the pathogenesis
of PDS. Although based on the reverse genetic nature of
screening coat color (and thus pigmentation) affecting vari-
ants for iris pigment dispersion, it is striking that so many
different genes acting in similar processes have been associ-
ated with this phenotype in mice. In some sense, the animal
literature on iris pigment dispersion is in marked contrast
with human clinical research that has focused on the struc-
tural features of PDS as opposed to the cellular ones. None
of the genes implicated in mouse models have yet been asso-
ciated with PDS/PG in humans. While not discussed in detail
in the current review, there is also a broader literature on the
progression of IOP, glaucomatous optic neuropathy, axonal
transport changes, and other glaucoma-associated pheno-
types studied in the DBA/2J mouse model presented in detail
within several informative reviews [121–123]. Interestingly, a
recent large genetic analysis has revealed that the iris transil-
lumination defect is independent of the increased IOP
observed in the DBA/2J model [124]. Instead, this
glaucoma-like phenotype seems to be regulated primarily
by other genes such as the calcium voltage-gated channel
auxiliary subunit alpha2delta1 (Cacna2d1) which has
broader relevance for POAG [125]. Although glaucoma
develops in both the DBA/2J and YBR/EiJ mouse strains, it
is important to note that strong evidence suggests glaucoma-
tous optic neuropathy may be linked to underlying neurode-
generation independent of Tyrp1 alleles [84, 126]. This gap
between the iris pigment dispersion phenotype and the glau-
comatous phenotypes observed in these mouse models limits
their applicability to PG but remains an interesting contrast
to the research in humans.

6. Models of PDS/PG

The discordance between structural features being primarily
implicated in human PDS and melanocyte death being impli-
cated in animal studies suggests it is essential to reevaluate
classical models of PDS/PG. Undoubtedly, the most thor-
oughly investigated model of PDS/PG is the “structural
model” in which a structural abnormality of the iris is respon-
sible for excessive iridozonular contact which removes
pigmented cells from the IPE via a mechanical rubbing force
(Figure 1) [3]. Several lines of evidence support this struc-
tural model. Some patients with PDS have demonstrable iris
concavity, and most are myopic further supporting some
structural component [4, 7, 31, 34]. Abnormal iridozonular
contact can be observed in patients with PDS where
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mechanical rubbing may occur [3, 4] correlating well with
the midperipheral and radial distribution of iris transillumi-
nation defects [2, 22]. Mechanical strain on the eye via rigor-
ous exercise leading to pigment liberation demonstrates the
potential mechanical nature of this defect [41–44]. The con-
cept of the reverse pupillary block acting to maintain this
abnormal contact and facilitates mechanical rubbing has rel-
evance for both PDS and pseudophakia [3, 23]. However,
there are several limitations of this structural model as well.
Notable is the lack of evidence supporting laser peripheral iri-
dotomy (LPI) as a beneficial surgical intervention. LPI is
designed to flatten the iris and alleviate iris concavity. Given
that in a structural paradigm of PDS/PG, such an abnormal-
ity would be the source of the abnormal iridozonular contact
and thus pigment shedding. However, a Cochrane review of
LPI found no clear benefit of LPI in preventing loss of visual
field but also rated the studies examining the technique as
very low quality [127]. LPI appears to be effective at flatten-
ing the iris, thus eliminating the structural insult, but this
does not prevent progression to PG [128–130]. Additionally,
a paucity of evidence exists surrounding the lifespan progres-
sion PDS/PG. Structural abnormalities are associated with
PDS, but whether they predate the onset of pigment shedding

is unknown. It has previously been proposed that “a gene
affecting some aspect of the development of the middle third
of the eye early in the third trimester of fetal development
may responsible for the structural defect” given the timing
of iris development [22]. However, no such gene has been
discovered and known anterior segment developmental con-
trol genes such as PAX6 [131], FOXC1 [132], and PITX2
[133] are not associated with PDS/PG but are instead causa-
tive of other types of glaucoma [134]. It would be highly
informative to carefully examine the structure of juvenile
eyes, in pedigrees where PDS/PG appears to have a stronger
genetic component, to address this shortfall.

An IPE dysfunction model of PDS/PG has the possibility
to address the shortcomings of the structural model and
has several interesting implications. Most notably, IPE
dysfunction is best supported by the existing animal litera-
ture on iris pigment dispersion, iris atrophy, and pigmentary
glaucoma. Consistently, mouse models of these phenotypes
have been determined to be caused by genes controlling
melanin synthesis, melanosome integrity, and melanocyte
health [77, 82]. Although these models are not perfect ana-
logues to PDS/PG, the theoretical model of IPE dysfunction
provides a reasonable causal relationship between a genetic

Primarily structural defect

Melanin synthesis
intermediate cytotoxicity

Primarily IPE dysfunction

IOP

Figure 1: Schematic representation of PDS/PG models. In patients with PDS, pigment liberated from the posterior surface of the iris (green)
circulates into the anterior chamber following the flow of aqueous humor where it deposits into the cornea and trabecular meshwork (black
dots). High IOP can maintain iris bowing (red arrows) due to the reverse pupillary block in which the lens and iris act together in a ball-valve
pressure system which normally acts to maintain unidirectional aqueous humor flow. There are twomodels of PDS/PG which differ in respect
to the origin of pigment dispersion from the ciliary body to the trabecular meshwork. The structural model of PDS/PG proposes that posterior
iris bowing creates inappropriate iridozonular contacts (black arrowhead, top circle) and that mechanical rubbing between the iris, zonules,
and lens is responsible for liberating pigment from the IPE (asterisks, top circle). Although these structural features are well established, it still
remains unclear if they predate pigment dispersion as the underlying mechanism. Animal models support IPE dysfunction as the primary
driver of this dispersion. In this model, pigmented melanocytes die and/or detach from the IPE (bottom right circle) due to release of
cytotoxic melanin synthesis intermediates from dysfunctional melanosomes (bumpy ovals, bottom left circle).
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component and the observed clinical features of PDS. IPE
dysfunction at the melanocyte level may be mediated by the
inappropriate release of cytotoxic melanin synthesis interme-
diates or impaired response to cellular stresses as pigmenta-
tion is inherently a stressful process, and the iris undergoes
continuous melanogenesis [85, 92, 135]. Melanocytes
impaired in this way may die or detach constituting the liber-
ated pigmented material (Figure 1). It is currently unknown if
this material is comprised of melanin granules, melanosomes,
or whole cellular debris, but resultantmelanocyte cell death in
the IPE is well established [11, 13, 25]. A melanocyte focused
model has the added benefit of providing a reasonable theoret-
ical basis for the involvement of the RPE in the pathophysiol-
ogy of PDS/PG given that both structures are pigmented. The
differential involvement of the tissues may be a consequence
of active melanogenesis in iris melanocytes versus retinal
melanocytes which seem to undergo a burst of melanosome
biogenesis in development that is then retained for the
patient’s lifetime [135, 136]. Careful consideration thus
should be given to pigmentation and/or melanocyte genes in
future investigations into the genetic aetiology of PDS/PG.

7. Conclusion

Recent studies describing the clinical characteristics of PDS
and PG and the improved understanding of the role of genes
implicated in animal models of PDS/PG are calling into ques-
tion classical models of the basis of this important causes of
blindness. As such, we critically need new research into the
fundamental basis of PDS, PG, and the relationship between
these two presentations. We believe there are several impor-
tant questions which researchers could investigate to better
understand PDS/PG. Firstly, it would be highly informative
to better describe the natural history of PDS/PG in the
preclinical phase to better understand the state of the eye
proceeding PDS. Large families with high incidence of PDS
exist which could be worked with to address whether a struc-
tural feature of the iris proceeds PDS and what variability
exists in the age of onset. Animal studies have also
highlighted a vastly understudied immune component to
PDS/PG. Although histologic evidence for immune involve-
ment in PDS existed as early as 1974, human studies have
not focused on this component. A better understanding if
and how the immune system impacts PDS/PG onset/pro-
gression in humans as it does in DBA/2J mice may yield
novel insights into the pathology of this disease. Better
understanding the nature of pigment loss from the IPE may
also be important to ultimately identify the underlying cause
of PDS. Although unhealthy/dying melanosomes have been
observed histologically, it is unknown if this cell death is
the primary mode of pigment loss. As melanosomes are
transferred between cells, it is possible that some pigment
shedding may be due to inappropriate export of pigmented
particles and that melanocyte death is a secondary pheno-
type. Identifying the composition of the shed pigmented
material may assist in determining if shed pigment is com-
prised purely of melanosomes or also contain additional cell
fragments. Finally, as reported conversion rates have varied
greatly between ethnic groups, it is possible that these

differences in genetic background may be leveraged to iden-
tify important haplotypes associated with conversion risk.
Large-scale GWAS style genetic analyses may be able to iden-
tify these important risk factors and provide novel insight
into genetic risks for conversion. However, this will require
large-scale cohorts and rigorous phenotyping to undertake
successfully. Together, answering these questions with the
significant advances in genetic screening technologies and
laboratory techniques will yield new insights into the genetic
causes of PDS and PG, advancing our understanding of the
underlying mechanisms and hopefully leading to new treat-
ment paradigms for this common form of blindness.
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