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Pediatric percentiles for
transient elastography
measurements - effects
of age, sex, weight status
and pubertal stage
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Melanie Penke1, Susanne Gaul1,2, Nico Grafe3, Thomas Karlas4,
Wieland Kiess1,3, Gunter Flemming1‡ and Mandy Vogel1,3*‡

1Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig, Germany,
2Clinic and Polyclinic for Cardiology, Leipzig University Medical Center, Leipzig, Germany, 3Leipzig
Research Center for Civilization Diseases, LIFE Child, Leipzig, Germany, 4Department of Medicine II,
Division of Gastroenterology, Leipzig University Medical Center, Leipzig, Germany
Background and aims: Transient Elastography is a non-invasive, cost-efficient,

non-ionizing, observer-independent and reliable method to detect liver

fibrosis using Liver Stiffness Measurement (LSM) and the degree of fat

accumulation in the liver using Controlled Attenuation Parameter (CAP). This

study aims to derive reference values for both measures from healthy children

and adolescents. Further, we aim to assess the potential influence of age, sex,

puberty, and BMI-SDS on CAP and LSM.

Methods: Within the LIFE Child study, amongst others, anthropometric data

and pubertal status were assessed. Transient Elastography (TE) was performed

using the FibroScan
®
device in a population-based cohort at 982 study visits of

482 healthy children aged between 10 and 18 years. Percentiles for LSM and

CAP were estimated, and the effects of age, sex, puberty and weight status

were assessed through hierarchical regression models.

Results: Therewas a strong age dependency for LSMwith higher values for older

children, most pronounced in the upper percentiles in boys. Contrarily, CAP was

relatively stable across the age span without considerable difference between

boys and girls. We found a significant positive correlation between BMI-SDS and

both CAP and LSM for BMI-SDS >1.28. For BMI-SDS < 1.28, the association was

also positive but reached statistical significance only for CAP. Further, the

association between BMI-SDS and CAP was significantly stronger in younger

than in older children. There was no association between pubertal status and

CAP. For LSM, we found that children with a high BMI-SDS but not children with

normal weight had significantly higher LSM values in Tanner stage 4.

Conclusions: Age, sex, pubertal status and weight status should be considered

when interpreting LSM and CAP in pediatric patients to facilitate and improve
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early detection of abnormal liver function, which is associated with common

pathologies, such as NAFLD.
KEYWORDS

non-alcoholic fatty liver disease – NAFLD, fibroscan, liver stiffness, reference values,
obesity, pediatrics
Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most

common liver disease in children and adolescents. A recent

systematic review and meta-analysis estimated a global NAFLD

prevalence of 7.6% in children. Moreover, in studies focusing on

children with obesity, the prevalence was as high as 34.2% (1).

Due to its association with obesity, NAFLD has already become a

health issue of pandemic dimensions (2). Considering the

growing number of children and adolescents with obesity

worldwide (3), the impact of NAFLD on public health will

likely increase even further.

NAFLD can lead to liver fibrosis and cirrhosis and increases

the risk of developing hepatocellular carcinoma (HCC) (4, 5).

Moreover, NAFLD is associated with an increased risk of

cardiovascular disease, type 2 diabetes and increased mortality

at adult age (2). Detected at early stages, before the liver is

irreversibly damaged, NAFLD is treatable with lifestyle

modifications, e. g., improved diet, increased physical activity

and weight loss (6). There is a high probability of successful

development of future pharmacological treatment options, since

several drugs for children with NAFLD have been tested in phase

2 trials recently (2). To facilitate successful treatment, detecting

NAFLD in pediatric patients accurately at an early stage

is imperative.

Until today, the gold standard for diagnosing NAFLD is the

histopathological examination of a liver biopsy. However, liver

biopsy in children raises several ethical issues and is therefore

reluctantly performed. Children often need general anesthesia,

which entails a risk for the patient. Additionally, there is the risk

of bleeding or mispuncture. Furthermore, since only a tiny part

of the liver is examined, there is a risk of misdiagnosis due to

sampling bias (7). Hence, reliable non-invasive diagnostic tools

are urgently needed.

Various serum parameters and imaging procedures have

been evaluated in several studies over the last years, but mostly

with rather disappointing results (2, 6, 8–10). Measurement of

alanine transaminase (ALT), for instance, is the most common

serum parameter for screening, but physiological levels are no

reliable predictor for the absence of NAFLD. Moreover, most

imaging procedures bring their own disadvantages. CT detects

fibrosis and steatosis reliably; however, it must not be used
02
regularly in pediatric patients because of radiation burden. MRI,

which works without radiation and is also very sensitive, is

expensive and not widely available, rendering it unsuitable to be

the standard procedure for detecting NAFLD. Regular

ultrasound, on the other hand, is non-ionizing, inexpensive

and widely available, but not reliable in detecting NAFLD (2).

Transient Elastography (TE, by FibroScan ® (Echosens,

Paris, France)) has drawn a high amount of academic interest

since it is a cost-efficient, observer-independent and non-

ionizing method to detect fibrosis and steatosis reliably (11–

18). FibroScan ® provides two different methods to examine the

liver: liver stiffness measurement (LSM) and controlled

attenuation parameter (CAP). While LSM is a parameter to

estimate liver fibrosis, CAP quantifies the percentage of liver fat.

However, to use TE in pediatric practice, reliable reference

values of healthy children - including the potential influence of

age, sex, weight and pubertal status - are needed. By drawing

from a large, longitudinal, deeply characterized cohort of healthy

children, this study aims to provide percentiles for both LSM and

CAP measurement. Moreover, we will examine the potential

influence of sex, age, BMI and pubertal status on these two

parameters. Hereby, we hope to facilitate a better interpretation

of test results and, thus, to make a beneficial contribution to

pediatric practice with regard to detecting and, ideally,

treating NAFLD.
Materials and methods

This article is structured according to the STROBE

(Strengthening the Reporting of Observational studies in

Epidemiology) Statement checklist for cohort studies (19).
Study design

The LIFE Child study is a prospective longitudinal

population-based cohort study with a life course approach to

health and disease (20). As a part of LIFE, a research project

conducted at the Leipzig Research Center for Civilization

Diseases, LIFE Child aims to monitor healthy child

development from birth to adulthood and to understand the
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development of non-communicable diseases such as obesity

(21). The study was designed in accordance with the

Declaration of Helsinki (22). The Ethics Committee of the

Medical Faculty of the University of Leipzig approved the

study (Reg. No. 26410-19042010), which is registered with

ClinicalTrials.gov under the clinical trial number NCT02550236.
Setting

Fully informed and written consent was obtained from all

participants (from the age of twelve) and their parents. Each

study visit contained age-customized interviews, medical

examinations, standardized tests, questionnaires and the

collection of biological samples, as well as the implementation

of FibroScan® measurements (20, 21).
Participants

Children from Leipzig or neighboring municipalities in

Germany were recruited via advertisement at different

institutions, by media or by word of mouth. The children were

primarily healthy, without severe disorders like malignancies,

syndromal diseases or diabetes. Accordingly, the acquired test

results are qualified for generating reference values. Height was

measured using a stadiometer (“Prof. Keller”; Längenmesstechnik

GmbH Limbach, Limbach-Oberfrohna, Germany, measurement

accuracy 0.10 cm). Participants were weighed with the “Seca701”

scale (seca GmbH & Co.KG, Hamburg, Germany, accurate to 50

g). BMI was calculated and transformed into standard deviation

scores (SDS) according to the guidelines of the German Obesity

Association (23, 24). Overweight and obesity were defined

according to the same guidelines (23, 24) as 1.28 < BMI-SDS <

1.88 and BMI-SDS ≥ 1.88, respectively. Pubertal stage was

assessed according to Tanner (25, 26) by specially trained and

regularly instructed investigators.
Study size

Data from 1491 visits provided by 698 individuals from the

LIFE Child cohort with a complete data set (CAP, LSM, sex, age,

pubertal stage, and BMI) were available. In N=249 cases, we

performed double measurements.

Our exclusion criteria were:
Fron
1. Measurements from participants younger than 10 years

and older than 18 years of age were excluded (N=71

visits and 41 children), due to the small number of

measurements below and above that age.

2. Participants with the intake of at least 1 of 92 potentially

hepatotoxic drugs (listed in Supplementary Table 1) at
tiers in Endocrinology 03
the time of measurement were excluded, N= 62 visits

and 10 children.
The remaining visits N=1358 from 647 children were used

for the assessment of influence factors (sex, age, BMI-SDS,

pubertal status).

For the calculation of LSM and CAP percentiles, we

excluded 165 participants (231 visits) with a BMI-SDS < 3rd

and >97th percentile (BMI-SDS < -1.88 and BMI-SDS>1.88),

resulting in data from 982 visits from 482 individuals.

Glucose and insulin measurements were available from 625

visits from 196 individuals.
Transient elastography measurement

The examination was carried out after an overnight fast by

specially trained and regularly re-certified examiners. The

participants were asked to lie on the back, the right arm

maximally abducted, and to stay immobile during the

examination. Those participants who were designated for dual

measurements were asked to stay in the same position after the

first measurement, and the second measurement was performed

by the same examiner immediately afterwards.

LSM and CAP values were measured using the FibroScan®

device with the M probe (25 - 65 mmmeasurement depth) or XL

probe (35 - 75 mmmeasurement depth). The FibroScan® device

includes the Automatic Probe Selection (APS) tool, which

indicates which of the two probes should be used for

measurement. LSM measures the propagation of produced

shear waves, and the results are displayed in kilopascals (kPa).

CAP measures the attenuation of the above-mentioned shear

wave propagation, producing results in decibels per meter (dB/

m). The measurement was successful when 10 valid data points

could be measured.
Laboratory parameters

Blood samples were taken from the participants after an

overnight fast. Serum glucose concentrations were measured by

the photometric method (Roche, Basel, Switzerland). Serum

insulin concentrations were measured using a quantitative

electrochemiluminescence method (Roche) (27). Homeostasis

model assessment for insulin resistance (HOMA-IR) was

calculated as described in Matthews et al. (28).
Statistical analyses

Descriptive statistics are given as mean and standard

deviations for continuous and counts and percentages for

categorical variables.
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References for LSM and CAP were estimated as a continuous

function of age, stratified by sex using the LMS method as

implemented in the package gamlss (29). We corrected for

multiple measurements per person by setting weights on the

observations accordingly. Subsequently, CAP and LSM

measurements were transformed to standard deviation scores

applying the new references.

Associations between LSM and CAP as outcome and the

assumed predictors (sex, age, BMI-SDS, and pubertal stage) were

assessed using hierarchical regression analysis. To assess the

effect of puberty, raw measurements of LSM and CAP were used

because of the strong dependency between age and puberty; in

all other models, the age- and sex-adjusted SDS were used as

outcome. All models were adjusted for multiple measurements

per subject by adding the subject as random effect. The nature of

associations was investigated using non-parametrical

generalized additive models. The association between LSM and

BMI-SDS required polynomial modeling (3rd degree).

Otherwise, linear approximation yielded a sufficient fit. We

tested for relevant interactions between predictors. Model

terms were only kept if they were necessary. In addition,

models were tested for variance inflation. Results were

reported as (non-standardized) coefficients and the respective

95%-confidence interval.

To assess intraobserver reliability, we calculated the overall

concordance correlation coefficient (OCCC) (30, 31). In

addition, we report the components overall precision

(OPREC) and overall accuracy (OACCU) and present the

respective Bland-Altman plots. The chosen strength-of-

agreement categories are orientated to those of the Pearson

product-moment correlation: CCC ≥ 0.9 (“excellent”); < 0.9 and

≥ 0.7 (“good”); < 0.7 and ≥ 0.5 (“moderate”); and < 0.5 (“low”).

The mediating effect of hepatic insulin resistance was

assessed by mediation analyses using HOMA-IR implemented

via a structural equation model.

Analyses and visualization were performed using the

packages gamlss (29), lme4 (32) (version 1.1.30) and ggplot2

(3.3.6) in R (version 4.2.1; R Foundation for Statistical

Computing, Vienna, Austria) (33).
Results

Participants

We used the data of 482 (252 male, 231 female) healthy

individuals, aged between 10 and 18 years with a BMI-SDS

between 3rd and 97th percentile, who were examined between

December 2013 and June 2022 in the context of the Leipzig

Research Centre for Civilization Diseases (LIFE). Since LIFE

Child is a longitudinal study, some participants were measured

more than once over the period of 8 years, resulting in a total of
Frontiers in Endocrinology 04
982 (624 male, 587 female) visits for the calculation of the

percentiles. Dual measurements for the evaluation of

FibroScan® validity were performed in 249 individuals. The

population characteristics for the entire study population

(N=1358) are listed in Table 1.
Reproducibility/FibroScan ® validity

For both LSM and CAP, we could show an “excellent”

OACCU. OCCC and OPREC were “good” for LSM and

“moderate” for CAP. The results are shown in Table 2 and

Figures 1A, B.
Percentiles for LSM and CAP are
influenced by sex and age

The 3rd, 10th, 50th, 90th and 97th percentile curves for LSM

and CAP are shown for boys and girls in Figures 2A, B. The

respective parameter values are shown in Supplementary

Tables 2 (A)-(D).

LSM percentiles show increasing values for both sexes with,

in general, higher values for boys, which becomes more

pronounced in the upper percentiles (e.g., 16.5 years p50:

girls=4.6kPa boys=5.1kPa; p97: girls=7.2kPa boys=8.5kPa).

Also, the curve shapes differ from each other with regard to

sex: The curves for girls ascend for the first 1.5 years, then

slightly flatten for about 1.5 years, after which they ascend again

until they reach their peak at about 16.5 years (P50 5.95kPa)

which is followed by another slight drop in the 3rd, 10th and 50th

percentile. The curves P50, P90 and P97 for boys, on the other

hand, show continuous slopes until reaching their peaks,

followed by a slight flattening. The age at which boys reach

the highest values is comparable with that of girls (about 16.5

years) in P50, 90 and 97. In the lower percentiles, however, the

highest values were measured at 18 years.

CAP percentiles show similarly shaped curves for boys and

girls. The reference values are comparable as well. Comparing

the reference values at the age of ten and 18 years, the lower

percentiles show a tendency to descend slightly while the higher

percentiles tend to ascend slightly, reaching their peaks at about

14 years. P50 depicts rather stable values during the eight years

(boys: 200dB/m at age 11 and 15 years and 198db/m at age 18

years; girls: 188dB/m at age 11 years and 197dB/m from age 14.5

– 18 years).

The parameter tables are provided as part of the R package

childs (version 0.8.0). The package also contains functions to

transform measurement values into SDS and to create percentile

curves. It is available from CRAN (https://cran.r-project.org/

package=childsds).
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Influence of BMI-SDS on LSM and CAP

After establishing percentiles, we assessed the association

between weight status and both LSM and CAP values. In

children with a BMI-SDS <1.28, there was a slightly positive

association between LSM-SDS and BMI-SDS. However, it did

not reach statistical significance (beta=0.07, p=0.48). In children

with overweight and obesity, the respective effect size was three

times as high, and the association became significantly positive

(beta=0.26, p=0.025) (see Figure 3A). The two slopes were not

significantly different from each other (betaInteraction=0.19,

p=0.289). The effects of weight status on LSM were not

different, regardless of age and sex.

In children with a BMI-SDS <1.28, we found a significant

positive association between CAP-SDS and BMI-SDS

(beta=0.15, p<0.001). In children with a BMI-SDS >1.28, the

effect size was six times as high (beta=0.95, p<0.001) (see

Figure 3B). The two slopes were significantly different from

each other (betainteraction=0.85, p<0.001). In addition, the effect

varied significantly with age, having the strongest effect for

younger children (beta10years=1.6, p<0.001) and the weakest
Frontiers in Endocrinology 05
effect for older adolescents (beta18years=0.6, p<0.001). The

effect of weight status on CAP did not differ between sexes.
Influence of pubertal status on LSM

LSM increased significantly with advancing puberty in boys.

The values were significantly higher in Tanner stage (TS) 3

(beta=1.1, p=0.029), TS 4 (beta=1.2, p=0.004), and TS 5

(beta=1.5, p<0.001) than in TS 1. In girls, there was no such

distinct pattern. Considering weight status, there was a

significant interaction between Tanner stage and BMI-SDS:

While we found no effect of puberty in children with a BMI-

SDS around or below 0, we found significantly higher LSM

values for children with BMI-SDS of 1.88 or higher in TS 4 and

5. The effects were remarkably stronger in TS 4 (beta3BMI-

SDS=4.3, p<0.001; beta2.6BMI-SDS=2.6, p<0.001; beta2BMI-SDS=1.5,

p=0.005) than in TS 5 (beta3BMI-SDS=1.3, p=0.14; beta2.5BMI-

SDS=1.5, p=0.004; beta2BMI-SDS=1.5, p=0.001) (see Figure 4). The

association did not differ between sexes. The association of LSM

with Tanner stage 4-5 was partly (approximately 1/3, p = 0.047)
TABLE 2 Results of the calculation of the OCCC, the OPREC and the OACCU for LSM and CAP of N=249 dual measurements.

OCCC OPREC OACCU

LSM 0.74 0.76 0.97

CAP 0.66 0.66 1.0
fron
OCCC, overall concordance correlation coefficient; OPREC, overall precision; OACCU, overall accuracy; LSM, Liver Stiffness Measurement; CAP, Controlled Attenuation Parameter.
Results were classified as ≥ 0.9 “excellent”; < 0.9 and ≥ 0.7 “good”; < 0.7 and ≥ 0.5 “moderate”; and < 0.5 “low”.
TABLE 1 Baseline characteristics of the study population.

[ALL] N = 1358 male N = 692 female N = 666 p.overall

Sex:

male 692 (51.0%)

female 666 (49.0%)

Age (years) 14.0 (2.81) 13.9 (2.87) 14.1 (2.74) 0.432

Pubertal Stage: <0.001

1 154 (15.3%) 91 (20.5%) 63 (11.2%)

2 146 (14.5%) 77 (17.3%) 69 (12.2%)

3 111 (11.0%) 42 (9.46%) 69 (12.2%)

4 170 (16.8%) 73 (16.4%) 97 (17.2%)

5 428 (42.4%) 161 (36.3%) 267 (47.3%)

Weight status: 0.421

underweight/normal
weight

885 (65.3%) 455 (65.8%) 430 (64.8%)

overweight 129 (9.51%) 71 (10.3%) 58 (8.73%)

obese 342 (25.2%) 166 (24.0%) 176 (26.5%)

BMI-SDS 0.71 (1.39) 0.64 (1.33) 0.78 (1.45) 0.055
Values are given as mean and standard deviations for continuous and counts and percentages for categorical variables.
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explained by hepatic insulin resistance, which we measured as

Homeostatic Model Assessment of Insulin Resistance

(HOMA-IR).
Influence of pubertal status on CAP

There was no significant association between CAP results

and puberty. Moreover, the association between BMI-SDS and

CAP did not differ between Tanner stages. Values were, on

average, 10 kPa higher for males than for females (p=0.012).

There was no interaction between sex and Tanner stage or

BMI-SDS.
Discussion

Considering the rising prevalence of obesity and

concomitant liver diseases, especially NAFLD, in children and

adolescents, non-invasive diagnostic tools to accurately detect
Frontiers in Endocrinology 06
liver pathologies in pediatric patients are urgently needed.

Transient Elastography has been used extensively to aid the

diagnosis of fatty liver disease and fibrosis in the adult

population for which TE reference values are available (34–

36). Several studies have already postulated the need for reliable

TE reference values for children, respectively the necessity of

further detailed research on TE measurement in the pediatric

context (6, 37).

With the aim to close this knowledge gap, this study

provides pediatric reference values and presents the respective

percentiles for the Transient Elastography measurements LSM

and CAP, based on our investigation of a large and well-

characterized cohort of healthy children and adolescents. We

decided to include children with overweight when estimating

percentiles because our analyses revealed that the influence of

BMI-SDS was similar as in children with normal weight. In

contrast, increasing BMI-SDS had considerably stronger effects

on LSM and CAP for children with obesity (Figure 3).

Furthermore, we analyzed the influence of age, sex, weight

and pubertal status on LSM and CAP. Thereby, we enable
A B

FIGURE 2

Age- and sex-related percentiles of (A) LSM (kPa) and (B) CAP (dB/m) values. Smoothed percentile curves are shown separately for females and
males in relationship to age (10 – 18 years), based on a normal weight reference population from a LIFE Child study sample (N =982 cases (624
male, 587 female) of 482 (252 male, 231 female) healthy individuals). The 3rd (P3), 10th (P10), 50th (P50, median), 90th (P90) and 97th (P97)
percentile are shown.
A B

FIGURE 1

Dual measurements of (A) LSM and (B) CAP to calculate the overall concordance correlation coefficient (OCCC), the overall precision (OPREC)
and the overall accuracy (OACCU). Delta values are plotted in relationship to mean values (Bland-Altman Plots). N=249 cases.
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examiners and practitioners to interpret LSM and CAP test

results in children more accurately, having appropriate reference

values at hand.

Our research has shown that LSM is age-dependent, and

LSM test results tend to increase with age in the pediatric

context. Our reference values for LSM are generally in line

with findings of other recent studies examining healthy

children (38–43). Likewise, the increase over age was also

observed in other studies (38–42). Contrary to this, Ramirez

et al., who investigated a cohort of 462 healthy children and

provided reference values as well, found no effect of age on LSM

(43). Potential reasons for this inconsistency include a different

age range (12 – 20 years) as well as a different ethnic and

geographic background of the cohort. A recent meta-analysis

with 1702 participants, on the other hand, also found that values

increase with age (40). Zeng et al. (44) provided reference values
Frontiers in Endocrinology 07
for five-year-olds based on a very large cohort. The reference

values they established were remarkably lower than ours. Since

we included participants starting at age 10 who, from the start,

showed higher values compared to those of five-year-olds (Zeng

2019: LSM5years median 3.2 kPa vs. Brunnert 2022: LSM10years

median 3.9 kPa), we regard their study results, taken together

with ours, as strongly supporting the validity of the assumption

that pediatric LSM values increase with age. However, Mjelle

et al. (39) state that there is about the same number of studies

indicating an age-dependency of LSM values as there is for age-

independency. This clearly highlights the need to further

investigate the age-dependency of LSM values in the pediatric

context. In our study, LSM values peak at 14.5 years and stay

more or less stable afterwards. This leads to the assumption that

after age 18 no further increase in LSM values will occur. This

assumption is in line with the so far published studies of the
FIGURE 4

Effect of pubertal status on LSM. Children with overweight/obesity (BMI-SDS ≥ 2) but not with normal weight had significantly higher LSM values
in Tanner stage 4 and 5. Regression estimates including 95% confidence interval are shown.
A B

FIGURE 3

Effect of weight status on LSM and CAP. Linear regression curves including a 95%-confidence band are shown for the association of (A) LSM-
SDS and BMI-SDS and (B) CAP-SDS and BMI-SDS. N = 1358 from 647 children.
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adult population stating that LSM results show no age-

dependency (45, 46).

Moreover, our research has shown that LSM test results are

higher for boys. This is also confirmed by results from other

relevant recent studies (38, 39, 42). Tokuhara et al., on the other

hand, could not find any influence of sex on LSM results (41).

Likewise, the above-mentioned study by Ramirez et al. (43) did

not find sex-dependent alterations of LSM. Since our study

clearly shows the sex-dependency of LSM test results, we

expect that future research will further validate this outcome.

We could not identify any correlation between age, sex and

CAP. With regard to pediatric CAP measurements, there are

only a few published studies providing reference values. Ramirez

et al. (43) presented stable, age- and sex-independent CAP

values from the ages 12 to 20. Their findings are in line with

our observation that CAP values are neither age- nor sex-

dependent. This was also shown by a recent study by Ferraioli

et al. (47). However, Zeng et al. (44) identified a median CAP

value of 171db/m for five-year-olds, so there might be a tendency

for lower CAP values at younger ages, if we take into account

that our values for older children and adolescents are remarkably

higher (median LSM at age 15: 197dB/m for girls, 200dB/m for

boys). Since we only analyzed results of children aged 10 years

and older, our study could not add further insights on the

question of whether CAP values increase below age 10.

We found a positive correlation between weight status and

LSM as well as CAP test results, also found by Zeng et al. (44). In

addition, Ferraioli et al. (47) examined CAP values of children

categorized as ‘normal weight’, ‘overweight’ and ‘obese’. They,

too, found a significant positive association between CAP and

weight status (30). Lee et al. evaluated LSM in children with

obesity. Values were remarkably higher (16) than in our

reference population, which further supports our finding of a

considerable impact of weight status on LSM values.

Furthermore, we found that LSM but not CAP values differ

across puberty. To our knowledge, we present the first

examination of the impact of pubertal status on TE

measurements. Partly, the effect might be explained by the

increasing hepatic insulin resistance during puberty (48) as

our results suggest. Another reason for increased hepatic

insulin resistance is obesity (49). Accordingly, we found that

adolescents with obesity had significantly higher LSM, especially

in Tanner stage 4 and 5. The underlying mechanisms of this

phenomenon are unclear and should be subject to

future research.

Evaluating dual measurements, we could show that TE is a

method with medium reproducibility. Our findings are in line

with results of other studies investigating the reproducibility of

TE measurements: Ferraioli et al. reported a concordance

correlation coefficient (CCC) for CAP of 0.82 for children

with normal weight and 0.6 for children with obesity (17).

Rowland et al. reported a CCC for LSM of 0.85 (50). We
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would, therefore, suggest the implementation of a second

measurement in case of borderline TE results, to improve the

reliability of the results.

There are some limitations to our study. We only used data

from a single study center with limited access to subjects with

diverse ethnic background. Thus, our results are not necessarily

representative of pediatric patients worldwide. Furthermore,

families participating in the LIFE Child research project

generally have a socio-economic status above average (51)

which could also render our findings less representative with

regard to both the global pediatric population as well as the

general pediatric population of a particular state or region. In

addition, the HOMA-IR was only available for a subpopulation

(n = 196) which led to less power in the related analyses.

Moreover, for evident ethical reasons, we did not perform liver

biopsies to validate our test results.

Nevertheless, our study has several strengths. To our

knowledge, this paper is the first to provide reference values

for both LSM and CAP based on a large pediatric cohort from 10

to 18 years. Additionally, we established that age, sex, BMI-SDS

and pubertal status have an impact on TE test results and, thus,

should be considered when evaluating LSM and CAP values.

Accordingly, we suggest our sex- and age-adapted reference

values to interpret TE results in pediatric practice. There are

numerous studies evaluating the usefulness and feasibility of TE

for pediatric subjects, but most of them only examine patients

with NAFLD or obesity. However, in pediatric practice, we need

reference values guiding us in our endeavor to identify potential

risks or existing diseases in patients. Thus, the reference values

and percentiles we present in this paper can help us to red-flag

conspicuous test results.

Given the already high and, most likely, further increasing

prevalence of liver diseases such as NAFLD, it is paramount to

detect potential diseases at an early stage. Our paper attempts to

make a valuable contribution to this endeavor in terms of

research as well as practice.
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