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Abstract: Background and objective: Although nodal and distant metastasis is rare in T1 lung
adenocarcinoma, it is related to poor clinical prognosis. Association between galectin-3 (Gal-3)
expression level, and clinical outcome of T1 lung adenocarcinoma has not been clarified. Methods:
From January 2009 to December 2014, 74 patients with surgically resected T1 lung adenocarcinoma
were enrolled in this retrospective cohort study. Patient outcomes were followed up until
December 2019. Gal-3 expression level in primary tumors was assessed immunohistochemically and
evaluated based on the staining intensity and percentage. Patient characteristics and correlation
between Gal-3 expression level and clinical outcomes were reviewed. Results: Low Gal-3 expression
was associated with increased metastatic events (p = 0.03), especially distant metastasis (p = 0.007),
and mortality rate (p = 0.04). Kaplan–Meier analysis revealed that high Gal-3 expression level was
associated with favorable recurrence-free survival in T1 lung adenocarcinoma (log-rank p = 0.048)
and T1a (≤ 2 cm, American Joint Committee on Cancer (AJCC) 7th edition) lung adenocarcinoma
(log-rank p = 0.043). Gal-3 expression along with tumor size showed a larger area under curve
(AUC) than tumor size alone for predicting metastatic events (AUC = 0.747 vs. 0.681) and recurrence
(AUC = 0.813 vs. 0.766) in T1a lung adenocarcinoma in the receiver-operating characteristic curve.
Conclusion: Low Gal-3 expression level in primary tumors was remarkably associated with increased
metastatic events and reduced recurrence-free survival in T1 lung adenocarcinoma. We suggest that
Gal-3 expression level in addition to tumor size may potentially be stronger than tumor size alone in
predicting metastasis in T1a lung adenocarcinoma patients.
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1. Introduction

Lung cancer is one of the most common malignant neoplasms worldwide and its metastasis results
in poor outcomes. Lung cancer cases with larger tumor size are associated with a higher metastatic rate
and worse prognosis than those with small tumors [1]. However, in clinical practice, some metastases
have been observed while the tumor size was in the T1 (tumor size ≤ 3 cm) category. Ye et al. [2]
reported 651 consecutive patients with clinical stage IA lung cancer and found that 69 patients (10.6%)
had lymph node metastasis, including 6.6% with N1 and 4% with N2 metastasis. The study based on
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the surveillance, epidemiology and end results (SEER) database by Yuan et al. [3] showed that 21.6%
of the patients with T1 (≤ 3 cm) non-small cell lung cancer (NSCLC) and 16.6% of the T1a (≤ 2 cm)
patients were diagnosed with lymph node metastasis. In addition, 7.8% T1 patients and 5.5% T1a
patients were diagnosed with distant metastases. These data imply that the tumor size may not be
enough to predict metastasis in T1 NSCLC.

Galectin-3 (Gal-3), a member of β-galactoside-binding lectins, is a chimeric glycoprotein encoded
by a single gene, LGALS3, in humans, and plays multiple roles in cancer initiation, adhesion, progression,
metastasis, angiogenesis, and adaptation in tumor microenvironments [4–7]. Some studies reported
that Gal-3 expression level was negatively correlated with clinical outcome in lung cancer patients;
however, these studies investigated different cell types and T grades of NSCLC [8–11].

Hence, the role of Gal-3 expression in T1 lung adenocarcinoma is still unclear. In this study,
we examined the Gal-3 expression level and determined its association with metastasis in T1
lung adenocarcinoma.

2. Materials and Methods

2.1. Patients and Study Design

We retrospectively reviewed all patients with T1 lung adenocarcinoma diagnosed between
January 1999 and December 2014 from the prospectively maintained lung cancer registry database
of E-Da Hospital, a tertiary referral center in southern Taiwan. To reduce the bias that would result
from intratumoral heterogeneity, only those patients who underwent tumor resection were included.
Although genomic analysis is considered much better than the conventional criteria for identifying
the origin of multiple lesions, [12,13] it has not been universally used in our clinical practices yet.
To prevent probable arguments on distinguishing multiple primary lesions from metastatic lesions,
we excluded patients who had only multiple ground-glass nodules. Patients′ survival statuses were
followed up until December 2019. Any pathological or radiological evidence of involvement in lymph
nodes, pleura (pleural seeding or malignant pleural effusion), and distant organs during follow-ups
were considered as metastasis. The consort diagram of patient enrollment and exclusion is shown
in Figure 1. This study was approved by the institutional review board of E-Da Hospital (approval
number: EMRP-106-045).
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Figure 1. Consort diagram. NSCLC: non-small cell lung cancer; cT1: clinical stage T1; pT1: 
pathological stage T1. 

2.2. Immunohistochemical Staining 

Immunostaining for Gal-3 was performed on the fully automated Bond-Max system (Leica 
Microsystems, Wetzlar, Germany). Slides carrying tissue slices cut from paraffin-embedded, 
formalin-fixed sections were dried for 30 min at 60 °C. These slides were then covered by Bond 
Universal Covertiles (Leica Microsystems, Wetzlar, Germany) and placed into the Bond-Max 
instrument. All the subsequent steps were performed by the automated instrument according 
to the manufacturer’s instructions as follows: (1) deparaffinization of the tissue on the slides by 
rinsing with Bond Dewax Solution (Leica Microsystems, Wetzlar, Germany) at 72 °C; (2) heat-
induced epitope retrieval (antigen unmasking) with Bond Epitope Retrieval Solution (Leica 
Microsystems, Wetzlar, Germany) 2 for 20 min at 100 °C; (3) peroxide block placement on the 
slides for 5 min at room temperature; (4) incubation with mouse monoclonal anti-galectin-3 
antibody (Leica Biosystems, Newcastle, UK) at a dilution of 1:200 for 20 min at room 
temperature; (5) Bond Polymer (Leica Microsystems, Wetzlar, Germany) placement on the 
slides for 8 min at room temperature; (6) color development with DAB (3,3′-diaminobenzidine 
tetrahydrochloride) as a chromogen for 5 min at room temperature; and (7) hematoxylin 
counterstaining for 5 min, followed by mounting of the slides and examination by light 
microscopy.  

Figure 1. Consort diagram. NSCLC: non-small cell lung cancer; cT1: clinical stage T1; pT1: pathological
stage T1.

2.2. Immunohistochemical Staining

Immunostaining for Gal-3 was performed on the fully automated Bond-Max system (Leica
Microsystems, Wetzlar, Germany). Slides carrying tissue slices cut from paraffin-embedded,
formalin-fixed sections were dried for 30 min at 60 ◦C. These slides were then covered by Bond Universal
Covertiles (Leica Microsystems, Wetzlar, Germany) and placed into the Bond-Max instrument. All the
subsequent steps were performed by the automated instrument according to the manufacturer’s
instructions as follows: (1) deparaffinization of the tissue on the slides by rinsing with Bond Dewax
Solution (Leica Microsystems, Wetzlar, Germany) at 72 ◦C; (2) heat-induced epitope retrieval (antigen
unmasking) with Bond Epitope Retrieval Solution 2 (Leica Microsystems, Wetzlar, Germany) for 20 min
at 100 ◦C; (3) peroxide block placement on the slides for 5 min at room temperature; (4) incubation with
mouse monoclonal anti-galectin-3 antibody (Leica Biosystems, Newcastle, UK) at a dilution of 1:200
for 20 min at room temperature; (5) Bond Polymer placement (Leica Microsystems, Wetzlar, Germany)
on the slides for 8 min at room temperature; (6) color development with DAB (3,3′-diaminobenzidine
tetrahydrochloride) as a chromogen for 5 min at room temperature; and (7) hematoxylin counterstaining
for 5 min, followed by mounting of the slides and examination by light microscopy.

2.3. Scoring for Gal-3 Expression Level

The sections were assessed and evaluated by two independent board-reviewed pathologists
(Su-Y.C. and Liang-P.I.) who were blind to the clinical profiles and outcomes of all the patients. Gal-3
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expression level was assessed by the appearance of brown particles in the cytoplasm and/or nucleus.
The discordant cases were all discussed by two pathologists in order to reach the consensus results.

Immunoreactivity of Gal-3 was evaluated by a scoring system based on the intensity and percentage
as described by Mathieu et al. [10]. The intensity (I) score was determined by the strength of cell
staining that was graded from 0 to 2 (0: no coloration; 1: weakly positive; 2: strongly positive).
The percentage (P) score was determined by the quantity of stained cells in one visual field and was
graded from 0 to 2 (0: 0%; 1: 1–50%; 2: > 50%). The intensity percentage (IP) score was calculated by
multiplying the intensity and percentage (I × P) values and scoring them from 0 to 4. An IP score of
< 2 was considered to signify low Gal-3 expression level (Figure 2A,B), while high expression level was
signified by an IP score of ≥ 2 (Figure 2C,D).

J. Clin. Med. 2020, 9, x FOR PEER REVIEW  4 of 11 

2.3. Scoring for Gal-3 Expression Level 

The sections were assessed and evaluated by two independent board-reviewed 
pathologists (Su-Y.C. and Liang-P.I.) who were blind to the clinical profiles and outcomes of 
all the patients. Gal-3 expression level was assessed by the appearance of brown particles in 
the cytoplasm and/or nucleus. The discordant cases were all discussed by two pathologists in 
order to reach the consensus results. 

Immunoreactivity of Gal-3 was evaluated by a scoring system based on the intensity and 
percentage as described by Mathieu et al. [10] The intensity (I) score was determined by the 
strength of cell staining that was graded from 0 to 2 (0: no coloration; 1: weakly positive; 2: 
strongly positive). The percentage (P) score was determined by the quantity of stained cells in 
one visual field and was graded from 0 to 2 (0: 0%; 1: 1–50%; 2: > 50%). The intensity percentage 
(IP) score was calculated by multiplying the intensity and percentage (I × P) values and scoring 
them from 0 to 4. An IP score of < 2 was considered to signify low Gal-3 expression level 
(Figure 2A,B), while high expression level was signified by an IP score of ≥ 2 (Figure 2C,D). 

 
Figure 2. Galectin-3 expression: (A) low, 100 ×; (B) low, 400 ×; (C) high, 100 ×; (D) high, 400 ×. 

2.4. Data Collection and Statistical Analysis 

From the institution’s prospectively maintained medical database, the demographic data, 
pathological stage, and clinical outcomes of all the patients were retrieved and reviewed. The 
pathological stage was classified based on the 7th edition of the American Joint Committee on 
Cancer (AJCC) staging system. [14] The tumor subtypes of each patient were quantified by a 
scoring system introduced by Sica et al. based on subtype grading. [15,16] Minimally invasive 
or lepidic predominant adenocarcinoma was graded 1; acinar or papillary predominant 
adenocarcinoma was graded 2; and micropapillary or solid predominant adenocarcinoma was 
graded 3. The subtype score was the sum of the two most prominent grades. If there was only 
one subtype identified, the score would be doubling the grade (e.g., a tumor with a purely 
acinar subtype was scored 4). 

Figure 2. Galectin-3 expression: (A) low, 100 ×; (B) low, 400 ×; (C) high, 100 ×; (D) high, 400 ×.

2.4. Data Collection and Statistical Analysis

From the institution’s prospectively maintained medical database, the demographic data,
pathological stage, and clinical outcomes of all the patients were retrieved and reviewed.
The pathological stage was classified based on the 7th edition of the American Joint Committee
on Cancer (AJCC) staging system [14]. The tumor subtypes of each patient were quantified by a scoring
system introduced by Sica et al. based on subtype grading [15,16]. Minimally invasive or lepidic
predominant adenocarcinoma was graded 1; acinar or papillary predominant adenocarcinoma was
graded 2; and micropapillary or solid predominant adenocarcinoma was graded 3. The subtype score
was the sum of the two most prominent grades. If there was only one subtype identified, the score
would be doubling the grade (e.g., a tumor with a purely acinar subtype was scored 4).

The index day was when the patients received first-line treatment (e.g., radical resection for
resectable disease or systemic treatment for unresectable disease). Overall survival (OS) was defined
as the interval between the index day and the patient′s death. Recurrence-free survival (RFS) was
defined as the interval between the index day and the day when tumor recurrence was detected.

Pearson’s χ2 test was used for categorical data and Mann–Whitney U test for continuous
data analysis. Kaplan–Meier analysis with log-rank test was used to compare the survival curves.
Cox-regression model was used for univariable and multivariable analyses of patient survival to obtain
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the hazard ratio. The significance was tested two-sidedly, and a p-value of < 0.05 was considered
statistically significant. Statistical analyses were performed using IBM SPSS Statistics for Windows,
version 22 (IBM Corp., Armonk, NY, USA).

3. Results

Seventy-four patients were included in this study. Gal-3 expression levels were noted for the
specimens obtained from all the patients. Analysis of the correlation between Gal-3 expression level in
the primary tumors and the patients′ clinicopathological features revealed no remarkable association
between Gal-3 expression and age, gender, T stage, tumor subtype, and lymphovascular invasion
(Table 1). Low Gal-3 expression level was significantly associated with metastatic events and death
(p = 0.03, and p = 0.04, respectively). Considering the site of metastasis, low Gal-3 expression level was
remarkably associated with distant metastasis (p = 0.007). We also tested the nuclear Gal-3 expression
and found that there was no significant association with metastatic events (42.9% in positive tumors vs.
53.8% in negative tumors, p = 0.363).

Table 1. Patient characteristics by galectin-3 expression.

Galectin-3 Expression Low
n = 48

High
n = 26 p-Value

Age (Year) 63 (55–70) 62.5 (57.5–69.5) 0.738

Gender, Female 26 (54.2) 20 (76.9) 0.079

T Stage * 0.132

T1a (≤ 2 cm) 28 (58.3) 20 (76.9)

T1b (2–3 cm) 20 (41.7) 6 (23.1)

Subtype Score 4 (3–7.5) 4 (3–4) 0.924

Lymphovascular
Invasion 9 (18.8) 2 (7.7) 0.309

Outcomes

Metastasis, All Kinds 28 (58.3) 8 (30.8) 0.03

Metastasis, Nodal 15 (31.3) 5 (19.2) 0.411

Metastasis, Distant 25 (52.1) 5 (19.2) 0.007

Recurrence 24 (50) 7 (26.7) 0.084

Mortality 14 (29.2) 2 (7.7) 0.04

Data are presented as number (%) or median (interquartile range). * The T stage is according to the 7th edition of
American Joint Committee on Cancer (AJCC) staging system.

Kaplan–Meier analysis of low versus high Gal-3 expression revealed that low Gal-3 expression
level was significantly correlated with poorer RFS (log-rank p = 0.048) and potentially with OS (log-rank
p = 0.051) in T1 lung adenocarcinoma (Figure 3A). This correlation with RFS was also remarkable in
T1a (≤ 2 cm) tumors (log-rank p = 0.043, Figure 3B).

In the univariable Cox regression model, Gal-3 expression was a significant prognostic factor of
RFS (hazard ratio = 0.441, 95% confidence interval: 0.2–0.97, p = 0.042) (Table 2). In multivariable
analysis, Gal-3 was also a significant prognostic factor of OS (hazard ratio = 0.193, 95% confidence
interval: 0.038–0.975, p = 0.047).
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Table 2. Univariable and multivariable analysis for overall survival and recurrence-free survival.

Univariable Analysis Overall Survival Recurrence-Free Survival

Variables Hazard
Ratio

95% Confidence
Interval p-Value Hazard

Ratio
95% Confidence

Interval p-Value

Age (Year) 1.036 0.986–1.089 0.159 1.002 0.970–1.035 0.91

Gender (Male vs. Female) 8.473 2.412–29.765 0.001 3.201 1.562–6.562 0.001

T Stage (T1b vs. T1a) * 6.229 2.123–18.275 0.001 7.822 3.542–17.274 <0.0001

Subtype Score 1.897 1.234–2.917 0.004 1.478 1.063–2.054 0.02

Lymphovascular Invasion
(Yes vs. No) 17.162 5.778–50.972 <0.0001 3.476 1.533–7.884 0.003

Galectin-3 (High vs. Low) 0.254 0.057–1.122 0.071 0.441 0.2–0.97 0.042

Multivariable Analysis Overall Survival Recurrence-Free Survival

Variables Hazard
Ratio

95% Confidence
Interval p-Value Hazard

Ratio
95% Confidence

Interval p-Value

Gender (Male vs. Female) 2.563 0.608–10.798 0.200 2.346 1.034–5.324 0.041

T Stage (T1b vs. T1a) * 2.641 0.719–9.704 0.143 6.884 2.735–17.324 <0.0001

Subtype Score 1.845 1.052–3.233 0.032 0.888 0.581–1.357 0.583

Lymphovascular Invasion
(Yes vs. No) 23.934 4.882–117.344 <0.0001 1.493 0.608–3.664 0.382

Galectin-3 (High vs. Low) 0.193 0.038–0.975 0.047 0.794 0.330–1.908 0.606

* The T stage is according to the 7th edition of the American Joint Committee on Cancer (AJCC) staging system.

Lastly, we investigated the value of Gal-3 expression in predicting the clinical outcomes in T1a
lung adenocarcinoma. Using receiver operating characteristic (ROC) curve, adding Gal-3 expression
to the tumor size (tumor size minuses Gal-3 expression level) showed a larger area under the curve
(AUC) than tumor size alone in both predicting events of metastasis (AUC = 0.747 vs. 0.681, Figure 4A)
and recurrence (AUC = 0.813 vs. 0.766, Figure 4B).
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4. Discussion

Gal-3 is a multifunctional signaling molecule involved in tumor development and cell-cell
interactions in the tumor microenvironment [17]. Although many studies have indicated that Gal-3
promotes cancer progression, there have also been several evidences showing its dual activities. Based
on its location, Gal-3 supports or suppresses tumor progression in prostate cancer [18,19]. Via different
pathways, Gal-3 plays distinct roles in melanoma metastasis and leads to reverse correlations with
disease prognosis [20,21].

In lung cancer, Gal-3 was previously shown to promote cancer aggressiveness in vitro [7]. However,
the association between Gal-3 expression and patient survival is still disputable. Szöke et al. [8] studied
94 lung cancer patients and found that cytoplasmic Gal-3 expression level indicated poor prognosis in
patients with stage II NSCLC. Two independent studies by Puglisi et al. [9] and Mathieu et al. [10]
showed that nuclear Gal-3 expression level, and not cytoplasmic expression, was significantly correlated
with poor survival in NSCLC patients. In contrast, Jeong et al. [22] suggested that a high Gal-3 expression
level was not associated with poor survival in NSCLC patients. There are possible explanations for
this phenomenon. First, Gal-3 expression is totally different in adenocarcinoma and squamous cell
carcinoma [10,23]. Gal-3 expression in 2D monolayer cultures is also distinct from that in 3D cultures
or in vivo assays [24]. Hence, studies including multiple cell types or in vitro experiments may present
different results. Second, intratumoral heterogeneity may result in misleading information on the real
Gal-3 expression level, especially if the tissue source is minimal, such as that obtained by needle biopsy.
Our experience showed that Gal-3 expression level could be heterogeneous in one tumor (see Figure S1).
Third, Gal-3 may play multiple roles during lung cancer progression, leading to distinct expressions at
each stage. Unlike the in vitro studies that were generally designed around Gal-3 knockout models,
we noted that all primary tumors in our cohorts expressed Gal-3 in the cytoplasm but at different levels.
This suggested us to investigate Gal-3 expression level in a manner of “high or low” rather than “yes
or no”.

Literature review indicates that low Gal-3 expression level may be probably beneficial for cancer
metastasis in some conditions. Gal-3 down-regulation in primary tumors could promote cancer
progression and metastasis in human breast cancers and melanomas [21,25,26]. Decreased ability for
DNA repair, susceptibility to DNA damage, and uncontrolled proliferation are important hallmarks of
cancer development. Kosacka et al. [27] examined the expression levels of Gal-3 and cyclin D1 in 47
NSCLC tissues and reported a negative correlation with lung adenocarcinoma, wherein they reported
higher cyclin D1 expression in low Gal-3 tumors. Carvalho et al. [28] exposed different DNA damaging
agents to human cells to investigate the role of Gal-3 in DNA damage repair pathways. They found
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that, in the absence of Gal-3, there was a delayed activation of DNA repair response and decrease
in the gap 2-to-mitosis (G2/M) cell cycle checkpoint arrest. These studies suggested that low Gal-3
expression may be associated with a decreased ability of DNA repair and increased proliferation in
lung cancer cells, which could promote tumor aggressiveness.

In addition to deregulated cell proliferation, immune escape is vital for cancer metastasis. Gal-3
has been reported to act as an alarmin and a novel chemo-attractant for monocytes, macrophages
and neutrophils, thereby facilitating the release of proinflammatory cytokines [29–33]. Reduced Gal-3
expression was shown to decrease inflammatory responses [34,35]. In the tumor microenvironment,
regulatory T cells (Tregs) and M2 macrophages are involved in the process of immune escape. Gal-3
was found to inhibit differentiation of naive T cells into Tregs and polarize macrophages toward an
M1 phenotype [36]. Putting this information together, a higher Gal-3 expression probably induces
a stronger inflammatory response than lower Gal-3 expression, which may not be good for a small
tumor to disseminate from the primary site.

In our study, we enrolled patients with resected T1 lung adenocarcinoma. This criterion facilitated
complete review of whole primary tumors and prevented the bias from intratumoral heterogeneity
and different cell types. All patients have been followed for at least 5 years to avoid bias from occult
or delayed metastasis, which may be seen in a cross-sectional study. This approach provided solid
evidence of the relationship between Gal-3 expression level and patient outcomes. To the best of
our knowledge, our study is the first to report on Gal-3 expression level in T1 lung adenocarcinoma
and its association with metastatic events and patient survival. We found that low Gal-3 expression
level in the primary tumor was significantly associated with increased metastasis events and reduced
RFS. We also noted that Gal-3 expression level could be of value in predicting metastasis in T1a lung
adenocarcinoma patients.

There were some limitations to our study. First, although we tried our best to search for all
candidates from the medical record database, there could still have been some sample losses because
of the retrospective design. The small sample size limited the multivariate analysis, leading to
insignificant results. Next, we selected resected lung adenocarcinoma to decline bias from intratumoral
heterogeneity but we also increased the selection bias. We also excluded patients who only had
multiple lung ground-glass nodules because we were unable to confirm the etiology. The data from
our study should be validated in patients who only have lung-to-lung metastasis and in large-scale
retrospective cohorts and prospective cohorts to achieve precise evaluations for clinical utility [37].

In conclusion, we found that low Gal-3 expression level in primary tumors was remarkably
associated with increased metastasis events and reduced RFS in T1 lung adenocarcinoma. Our study
findings implicate that using Gal-3 expression levels in addition to tumor size would be more beneficial
than using tumor size alone for the prediction of metastatic events in T1a lung adenocarcinoma.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/6/1990/s1,
Figure S1: Intratumoral heterogeneity of galectin-3 expression, 40 ×.
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