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The objective was to use caffeine and Soluplus� to improve the dissolution rate and to maintain a con-
centration of BCS Class II rosuvastatin calcium that exceeds its solubility. Caffeine and Soluplus� together
substantially improved the dissolution rate and the extent of rosuvastatin release. Formulations for direct
compression tablets included Formulation F1, a control with drug but with neither caffeine nor Soluplus�

present; F2 with drug-caffeine complex; F3 with drug and Soluplus� and F4 with drug-caffeine complex
and Soluplus�. Each formulation blend provided satisfactory flow properties. Tablets were comparable in
mass, hardness and friability. A marked decrease in disintegration time occurred when the hydrotropic or
micellar agent was included in the formulation. Assay (98–100%) and content uniformity (99–100%)
results met requirements. Release studies in pH 1.2, 6.6, and 6.8 buffers revealed the superiority of F4.
At 45 min sampling time, F3 and F4 tablets each provided a cumulative drug release greater than 70%
in each medium. F2 tablets exhibited compliance to official standards in pH 6.6 and 6.8 buffers but not
in pH 1.2 buffer, whereas tablets based on F1 failed in each medium. Two-factor ANOVA of the release
data revealed a statistical difference across the four formulations in each release medium. Pairwise com-
parison of release profiles demonstrated that, of the four formulations, F4 provided the most effectively
enhanced dissolution rate, improvement to the extent of drug release and support of a concentration
higher than the solubility of rosuvastatin calcium.
� 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Approximately 40% of the drugs in the market and 90% of the
drugs in the development stage are considered poorly soluble in
water (Fridgeirsdottir et al., 2016). New drug development gener-
ally fails due to the poor solubility of the drug candidate that often-
times leads to low bioavailability (Kalepu and Nekkanti, 2015) and
ultimately therapeutic failure (Liu, 2018). Drug permeability is
acknowledged as the second important property that affects oral
bioavailability (Stegemann et al., 2007). The emerging trends in
Combinatorial Chemistry and drug design have led to the develop-
ment of drug candidates with greater lipophilicity, higher molecu-
lar weight and the resultant poor solubility in water leading to
problems with poor oral absorption (Shekhawat and Pokharker,
2017; Carr and Hann, 2002; Lipinski, 2000).

According to ‘‘The Biopharmaceutics Classification System (BCS)
Guidance from the Food and Drug Administration” (U.S. Food &
Drug Administration, 2016), a drug is considered highly soluble
when the highest dose administered is soluble in 250 ml or less
of aqueous media over the pH range 1.0–7.5. A drug is considered
highly permeable when the extent of intestinal absorption is
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determined to be 90% or higher, based on mass-balance or in com-
parison to an intravenous reference dose. The Biopharmaceutics
Classification System (Amidon et al., 1995) has provided a scientific
framework for correlating in vitro drug dissolution with in vivo
bioavailability (Shargel et al., 2012). Drugs have been divided into
four classes based on their solubility and permeability characteris-
tics. Those drugs that demonstrate low solubility and high perme-
ability appear in Class II. For these drugs, poor solubility is a major
obstacle in their formulation and product development (Yasir et al.,
2010). Poor solubility limits drug dissolution and absorption rates.
However, high permeability offers advantages that might compen-
sate to some extent for the disadvantages stemming from low sol-
ubility. For this reason, researchers have focused their attention on
this class of drugs in an attempt to improve their oral bioavailabil-
ity by enhancing the concentration and dissolution rate of these
drugs using different approaches (Shekhawat and Pokharker,
2017; Kumar and Anil, 2013; Kumar and Singh, 2013; Onoue
et al., 2012; Urbanetz, 2006).

Rosuvastatin calcium (Fig. 1a), a BCS Class II drug, is used to
reduce LDL cholesterol, apolipoprotein B and triglycerides, and to
increase HDL cholesterol in the management of hyperlipidaemia
as well as in patients with homozygous familial hypercholestero-
laemia. It may be used to reduce the progression of atherosclerosis
and for the primary prevention of cardiovascular disease
(Sweetman, 2009; Nissen et al., 2006; Lennernas and Fager,
1997). Due to its low solubility in water, reported as 0.33 mg/ml
(Alshora et al., 2016; Kulkarni et al., 2015), rosuvastatin exhibits
poor solubility in gastrointestinal fluids and, with extensive first-
pass metabolism, its oral bioavailability is limited to about 20%
(Rohini et al., 2014; Scott et al., 2004).

In several published studies, formulation scientists have devel-
oped products that are able to improve the dissolution rate and
oral bioavailability of rosuvastatin, but with some disadvantages.
As with many poorly soluble drugs, complexation with cyclodex-
trin has been pursued to provide a drug containing-complex within
an aqueous medium that can hold the rosuvastatin in the core,
Fig. 1. Chemical structure of (a) rosuvastatin calcium, (b) caffeine, and (c)
Soluplus�.
readily available for release into the physiological fluid as free drug
is absorbed (Kuhad, 2017; Venkatesh et al., 2014). Polymerization
of cyclodextrins with other polymers or monomers can enhance
their ability to improve the dissolution rate and oral bioavailability
(Sarfraz et al., 2017). b-cyclodextrin-g-AMPS hydrogel particles
were prepared by a polymeric graft onto b-cyclodextrin through
aqueous free radical polymerization with ammonium persulfate
as the initiator and N,N0-methylene bisacrylamide as the crosslink-
ing agent (Sarfraz et al., 2017). pH-independent swelling of these
rosuvastatin calcium-containing hydrogels is offered by the pres-
ence of 2-acrylamido-2-methylpropane sulfonic acid (AMPS)
grafted onto the cyclodextrin. In pH 6.8 buffer, 92% of drug was
released within 1 h from the hydrogel particles, whereas only
44% of drug was released in 3 h by the marketed rosuvastatin cal-
cium tablet, RovistaTM (Getz Pharma, Karachi, Pakistan). In addition,
solubility improved by 10.66-fold at pH 6.8, which maintained a
higher drug concentration in the small intestine and improved
rosuvastatin oral bioavailability in albino rabbits by 1.45-fold.

An elaborate nanosponge delivery system for rosuvastatin was
developed to improve its oral bioavailability (Gabr et al., 2018).
The nanosponges were developed by crosslinking b-CD molecules
with pyromellitic dianhydride at different molar ratios. Rosuvas-
tatin was added to the nanosponge-containing aqueous medium
and lyophilization was used to prepare the dried particles. Oral
administration of the particles to Sprague Dawley rats revealed a
profound improvement in oral bioavailability when compared to
a suspension and marketed tablets (Gabr et al., 2018). At issue is
that cyclodextrins are expensive (Khinchi et al., 2011; Laza-
Knoerr et al., 2010; Szejtli, 1997; Szejtli, 2004) and the permeabil-
ity and toxicity of some cyclodextrins are a major deterrent for
their use in pharmaceutical applications (Loftsson and Duchene,
2007). Chemical modifications of cyclodextrins can be compli-
cated, expensive and involve toxic reagents (Szejtli, 1997; Szejtli,
2004), although cyclodextrins themselves have proved to be
nontoxic (Szejtli, 2004).

Immediate release tablets of rosuvastatin calcium were pre-
pared by a wet granulation method using various superdisinte-
grants (Velivela et al., 2016). The compressed tablets
demonstrated acceptable mechanical strength with a hardness of
4–6 kg that yet disintegrated rapidly (0.72–1.8 min). A formulation
containing 1.5% of the superdisintegrant Polyplasdone XL 10 or XL
100 provided 100% drug release in 45 min in pH 6.8 phosphate buf-
fer. Orally disintegrating tablets of rosuvastatin calcium were fab-
ricated by kneading the drug with b-cyclodextrin and
superdisintegrants including sodium starch glycolate, crospovi-
done and croscarmellose. Cyclodextrin complexation with the
addition of superdisintegrants provided rapid dissolution,
enhanced drug concentrations and achieved a cumulative drug
release of 99.4% in 45 min in simulated gastric fluid (Kapse Vidya
et al., 2016). However, these are expensive excipients (Dass and
Mazumdar, 2013; Goel et al., 2010).

Amphiphilic lipid vesicular systems called pharmacosomes
with drug loading of 90–94% w/v were investigated for their ability
to enhance dissolution and systemic availability of rosuvastatin
calcium (Kumar et al., 2016). The concentration of drug achieved
via pharmacosomes was found to be higher, compared to that of
pure drug. Maximum drug released was 67% and maximum drug
permeation through egg membrane was 49.5% (Kumar et al.,
2016). When rosuvastatin was delivered using chitosan nanoparti-
cles prepared by ionic-gelation, rapid dissolution and concentra-
tions in excess of the solubility of rosuvastatin were observed. A
1:1 drug to polymer ratio provided high entrapment efficiency
and drug loading (Ponnuraj et al., 2015). Nanocrystal technology
for dissolution rate enhancement of rosuvastain calcium formula-
tions was also pursued (Palani et al., 2015). Rosuvastatin calcium
nanocrystals were formulated using sodium lauryl sulfate, hydrox-
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ypropyl methylcellulose, poloxamer 188, Tween 80 or poly
(vinylpyrrolidone). The in vitro release studies revealed a 36%
increase in the dissolution profile while the in vivo studies showed
about 1.87 fold increases in the bioavailability of rosuvastatin cal-
cium (Palani et al., 2015). Liquisolid technology was investigated
for the enhancement of the dissolution rate and concentration of
rosuvastatin calcium (Lennernas and Fager, 1997). Tablets were
prepared that contained 15–25% w/v drug in a liquisolid form. Avi-
cel pH 102 and Aerosil 200 were used as the carrier and coating
material, respectively. Results of the in vitro release study revealed
enhanced drug release from liquisolid compacts in comparison to
the directly compressed marketed tablet of rosuvastatin. The liqui-
solid compacts contain a solution of the drug in PEG 200 where
PEG not only facilitates the wetting of drug particle by decreasing
the interfacial tension between the particle surface and the
dissolution medium (Kamble et al., 2014) but also increases the
concentration of the drug in aqueous medium by acting as a cosol-
vent. A nanoemulsifying delivery system (Kamel and Mahmoud,
2013; Balakumar et al., 2013) and a microemulsifying drug deliv-
ery system (Kapure et al., 2013) successfully achieved solubiliza-
tion of rosuvastatin. However, most novel techniques require
expensive excipients and they can be complex in nature and
time-consuming.

It has been reported that hydrotropy and micelle formation
have individually been able to solubilize rosuvastatin (Nainwal
et al., 2011). The hydrotropes were sodium acetate, sodium ben-
zoate, and sodium salicylate. At a high concentration, hydrotropes
accomplish solubilization by forming a weak association with the
poorly soluble solute as a complex in solution (Behera et al.,
2010). Sodium benzoate was the prototype hydrotropic salt
(Nidhi et al., 2011; Neuberg, 1916) and the three hydrotropes in
that study followed its pattern of an anionic functional group
and an aromatic ring or other hydrophobic functional group to
achieve success as a hydrotrope. In that same study, cetrimide,
sodium lauryl sulfate and Tween 80 provided a cationic, an anionic
and a neutral micelle-forming surfactant, respectively. It was dis-
covered that the hydrotropes at 2.0 M allowed more rosuvastatin
to dissolve in the medium than did 1.0% w/v of the micelle-
forming surfactants.

Because caffeine (Fig. 1b) can act as a hydrotrope (Hodgon and
Kaler, 2007; Evstigneev et al., 2006; Roy and Moulik, 2003), it has
been used to enhance the dissolution rate and concentration in
solution of poorly soluble drugs. This is attributed to the fact that
caffeine forms soluble complexes, with 1:1 and 1:2 drug:caffeine
ratios reported (Linglei et al., 2014; Tsutsumi, 2012; Fouad et al.,
2010; Shakeel and Faisal, 2010; Lim and Go, 2000). In addition, caf-
feine offers the potential to improve oral bioavailability (He at al.,
2017; Renner et al., 2007) and duration of pharmacological effect
(Renner et al., 2007).

Soluplus� is a polyvinylcaprolactam-polyvinyl acetate-
polyethylene glycol graft copolymer (Fig. 1c) designed for the man-
ufacture of solid solutions (Sambath et al., 2013; Shamma and
Basha, 2013). It has been used successfully with polyvinylpyrroli-
done (PVP), b-cyclodextrin and other excipients to further enhance
solubility of poorly soluble drugs such as carvedilol (Shamma and
Basha, 2013), gliclazide (Sambath et al., 2013), efavirenz (Shankar
and Chowdary, 2013), and meloxicam (Noor et al., 2017). The
enhanced concentration of carvedilol in solution was attributed
to the ability of Soluplus� to form micelles (Shamma and Basha,
2013). Indeed, Soluplus� is reported to form micelles in aqueous
media at a very low concentration of 7.6 lg/ml (Yu et al., 2013).
Soluplus� was more effective than b-cyclodextrin at improving
the dissolution rate and concentration of efavirenz in solution
(Shankar and Chowdary, 2013).

The role of complexing agents in combination with micelle-
forming excipients for solubilization of rosuvastatin calcium has
not yet been reported. However, synergistic effects in terms of sol-
ubilization have been observed when hydrotropes were added to
surfactant or polymer solutions (Hodgon and Kaler, 2007) where
micelle formation was expected. The objective of the present work
was to study the role of caffeine as a hydrotrope alone or in com-
bination with the micelle-forming Soluplus� for the enhancement
of the concentration achieved by rosuvastatin in physiological flu-
ids. What is expected is that caffeine will enhance the dissolution
rate and concentration of rosuvastatin in solution when the drug is
released in the gastrointestinal tract; rosuvastatin in excess of
what can complex with caffeine will be found primarily in the core
of the Soluplus� micelles. Drug in the core of the Soluplus�

micelles will act as a depot reserve of readily available rosuvastatin
as free drug is being absorbed.
2. Methods

2.1. Materials

Rosuvastatin calcium BP was kindly provided by Searle Pharma-
ceuticals (Pvt.) Ltd. (Karachi, Pakistan) and the graft copolymer
Soluplus� by BASF SE (Ludwigshafen, Germany). Avicel pH 102,
sodium starch glycolate, lactose, talc, methanol, sodium citrate
dihydrate, citric acid anhydrous, potassium phosphate monobasic,
sodium hydroxide, potassium chloride, hydrochloric acid, lead
acetate, chloroform, and sulfuric acid were purchased from Merck
KGaA (Darmstadt, Germany). Tea was purchased from a local mar-
ket in Karachi, Pakistan.

2.2. Caffeine extraction

Caffeine was extracted from tea leaves using a modified litera-
ture method ((Shakeel and Faisal, 2010; Murray and Hanssen,
1995). Briefly, 25 g of tea leaves were boiled for 10–15 min in
200 ml of distilled water and filtered through a muslin cloth. The
process was repeated twice using the filtered tea instead of dis-
tilled water. A 50 ml sample of 5% w/v lead acetate solution was
added to the collected tea extract. The acetate raises the pH and
the lead precipitates tannins that can accompany the caffeine
(Hammp, 1996). The mixture was boiled for an additional
10 min, filtered, and poured into a separatory funnel. A few drops
of sulfuric acid and 20 ml of chloroform were added to the separa-
tory funnel and the contents shaken thoroughly. The chloroform
layer was collected and evaporated at room temperature. The
crude caffeine thus obtained was purified by sublimation at
170 �C (O’Neil, 1985; Shakeel and Faisal, 2010). The melting point
of the purified caffeine, 237 �C, determined using a capillary melt-
ing point apparatus, agrees with the reported 236 �C melting point
(Haynes, 2013; Rosin, 1946).

2.3. Preparation of rosuvastatin-caffeine complex

A molecular complex of caffeine and rosuvastatin was pre-
pared by a solvent evaporation method to allow use of the com-
plex as a replacement powder for rosuvastatin calcium in the
manufacture of tablets (Fouad et al, 2010; Shakeel and Faisal,
2010). An accurately weighed 1 g (5.15 mmoles) of caffeine was
dissolved in 100 ml of distilled water, and 1 g (1.00 mmoles) of
rosuvastatin calcium was dissolved in 100 ml of methanol. The
caffeine solution was added to the rosuvastatin solution with
stirring to maintain the highest level of methanol in the solvent
system as the mixing occurred. The mixture was then heated
on a water bath at 50 �C until the solvents were evaporated.
The residue provided the molecular complex of caffeine and
rosuvastatin.
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2.4. Rosuvastatin tablet formulation

A 10 mg quantity of rosuvastatin calcium was placed in a porce-
lain mortar, and a pestle was used to triturate it well with the
required quantity of lactose (see Table 1). The resulting mixture
was then passed through a United States Standard Sieve No. 30.
Avicel PH 102, sodium starch glycolate, and the rosuvastatin-
lactose mixture matching formulation F1 were tumbled in a poly-
ethylene bag for 10 min. Talc previously passed through Sieve No.
80 was added to the polyethylene bag and the powder mixture was
further blended for 5 min. The same procedure was adopted for the
remaining formulations with modification of factor levels based on
formulation composition. In F2, the rosuvastatin-caffeine complex
was used instead of the rosuvastatin calcium; in F3, Soluplus� was
used with rosuvastatin calcium whereas in F4 the rosuvastatin-
caffeine complex and Soluplus� were used in combination
(Table 1). Tablets were produced by direct compression using a
Korsch EKO single station press (Erweka, Frankfurt, Germany) with
a 9 mm circular, standard concave punch and die set.
2.5. Evaluation of precompression powder blends

2.5.1. Characterization of powder blends
The Angle of Repose, Carr’s Compressibility Index, and the

Hausner ratio were determined by data generated using the fixed
funnel method. Briefly, a funnel was fixed perpendicular to the
bench top so that the tip of the funnel was 1 cm above a sheet of
graph paper. The formulation blends were each poured through
the funnel and the height and the radius of the powder circle were
measured for the Angle of Repose, h, calculated using tan h = h/r.
Approximately 2 g of a powder blend was poured into a 10 ml
graduated cylinder. The initial volume was noted as the bulk vol-
ume, Vb, with subsequent tapping until no further change in the
powder volume occurred. The final volume was recorded as the
tapped volume, Vt. Calculations are as follows.

Carr0s Compressibility Index ¼ 100 � ðVb � VtÞ=Vt ð1Þ
Hausner Ratio ¼ Vb=Vt ð2Þ
2.5.2. Evaluation of physicochemical properties of compressed tablets
Ten tablets were randomly selected for evaluation of specific

properties and to observe any tableting problems that occured dur-
ing compression. Variation in mass, thickness, diameter and
parameters ascertaining the mechanical strength of the tablets
(hardness and friability) were determined to ensure compliance
of trial formulations with standard specifications (United States
Pharmacopoeia, 2007). Hardness was measured using a Fujiwara,
Seisakusho hardness tester (Ogawa Seiki Co., Ltd., Tokyo, Japan)
and friability using an Erweka GmbH (Heusenstamm, Germany)
TA 200. The disintegration test was carried out in 800 ml distilled
Table 1
Composition of tablet formulations F1-F4 in mg per tablet.

Ingredient F1 F2 F3 F4

Rosuvastatin Calcium 10 – 10 –
Rosuvastatin-Caffeine Complex* – 20 – 20
Soluplus� – – 3 3
Lactose 134 124 131 121
Avicel PH102 50 50 50 50
Sodium Starch Glycolate 4 4 4 4
Talc 2 2 2 2

* 20 mg of the complex provides 10 mg of rosuvastatin calcium and 10 mg of
caffeine.
water at 37 ± 2 �C using a basket rack assembly (British
Pharmacopoeia, 2009).

Drug assay and content uniformity were evaluated as described
before (Gupta et al., 2009). Briefly, 100 mg of rosuvastatin calcium
was dissolved with shaking in 20 ml methanol in a 100 ml volu-
metric flask. The volume was diluted with methanol to achieve a
rosuvastatin calcium concentration of 14 mg/ml that was then ana-
lyzed at 244 nm using a Shimadzu model 1800 UV-Vis spectropho-
tometer. For sample preparation, 5 tablets were powdered in a
mortar and pestle. Powder equivalent to 50 mg rosuvastatin cal-
cium was transferred to a 50 ml volumetric flask and the API was
dissolved in some methanol. The resulting solution was filtered
through a Whatman No. 1 filter and transferred to a 50 ml volu-
metric flask. The solution was then made up to volume with
methanol. This was serially diluted to arrive at a solution equiva-
lent to 14 mg/ml that was analyzed at 244 nm. Eq. (3) was used
for assay calculation.

Assay %ð Þ ¼ Absorbance of sample=Absorbance of standardð Þ � 100%
ð3Þ

For content uniformity, 10 tablets of rosuvastatin calcium were
chosen randomly. Each of the tablets was weighed and tested indi-
vidually by the procedure described above. Content uniformity was
calculated using Eq. (4).

Content uniformity %ð Þ
¼ Absorbance of sample=Absorbance of standardð Þ � 100%

ð4Þ
2.5.3. Drug release studies
The in-vitro release study was carried out using an Erweka

DT600 USP apparatus II with 900 ml of three different degassed
media, including 0.1 N HCl buffer (pH 1.2), 0.05 M sodium citrate
buffer (pH 6.6), and 0.05 M phosphate buffer (pH 6.8). The HCl
and phosphate buffers mimic the stomach and small intestine con-
ditions, respectively, whereas the citrate buffer is recommended
for dissolution studies of rosuvastatin calcium by the United States
Food and Drug Administration (FDA, 2015). The temperature of the
dissolution medium was maintained at 37.0 ± 0.5 �C. One tablet
from a particular batch was placed in each of six vessels and the
paddle operated at 50 rpm. Aliquots of 10 ml were drawn at 5,
10, 15, 30, 45, and 60 min and fresh medium was added to main-
tain a constant volume of dissolution medium. The concentrations
were accommodated mathematically to deal with the dilution
occurring with each dissolution medium addition. Samples were
filtered through 0.45 mm Whatman filter paper and analyzed by
spectrophotometry at 244 nm (sodium citrate and HCl buffer sam-
ples) or 241 nm (phosphate buffer samples) against their respec-
tive medium to determine drug release using the following
formula:

% Drug released
¼ Absorbance of sample=Absorbance of standardð Þ � 100%

ð5Þ
where the standard was at the concentration representing 100%
drug released.

3. Results and discussion

3.1. Caffeine as a complexing agent

Caffeine can improve the concentration of certain poorly sol-
uble chemicals by formation of a complex that can exist in solution
(Hodgon and Kaler, 2007; Evstigneev et al., 2006; Roy and Moulik,
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2003). A neutral xanthine derivative that cannot become ionized at
physiological pH (Dean, 1985), caffeine can still form soluble com-
plexes with poorly soluble rosuvastatin by multiple types of inter-
molecular forces. Permanent dipoles in caffeine and rosuvastatin
can lead to Keesom and Debye forces of attraction and the
uncharged carboxylic acid and the alcohol groups on rosuvastatin
can be donors for hydrogen bonds with the dipoles of caffeine.
When the aromatic rings of the two chemicals approach each other
intimately due to their planarity, short-range electrostatic effects
can influence the strength of attraction between the two mole-
cules. In particular, the imidazole ring of caffeine is aromatic
(Gibson and Fowler, 2014) and this can lead to a charge-transfer
complex due to the formation of p-bonds between an aromatic
ring of caffeine and an aromatic ring in the drug molecule.

An increase in the concentration of caffeine enhances the con-
centration of rosuvastatin in solution, but a plateau is observed
beginning near 8.2 mM caffeine (Fig. 2). Such a plateau is expected
when the complex reaches its solubility (Chen et al., 1994).
Although 1:1 and 2:1 caffeine:rosuvastatin complexes could be
formed, data analysis of the curved portion of the data in Fig. 2
indicates that the 2:1 complex dominates to the extent that the
1:1 association constant cannot be calculated even if the 1:1 com-
plex did exist. This is not surprising since stacking of caffeine with
itself is considered its primary hydrotropic effect, and incorpora-
tion of the poorly soluble drug into that complex is considered
the secondary effect (Cui, 2010; Higuchi and Kristiansen, 1970)
such that the 1:1 complex might indeed not exist to a measurable
extent. Caffeine in aqueous media is known to form dimers and tet-
ramers in equilibrium with discrete caffeine molecules (Higuchi
and Kristiansen, 1970; Guttman and Higuchi, 1957). The dimer is
reported to appear at caffeine concentrations as low as 0.050 M,
but the tetramer does not reveal itself until the caffeine concentra-
tion exceeds about 0.20 M (Guttman and Higuchi, 1957). It has
been suggested that the dimerization of a hydrotrope occurs prior
to the association with the individual poorly soluble drug (Higuchi
and Kristiansen, 1970). Eq. (6) describes the curved portion of Fig. 2
data:

Rosuvastatin concentration mMð Þ
¼ 4:68þ 0:0257 caffeine mM concentrationð Þ2 ð6Þ
This quadratic relationship between rosuvastatin and caffeine

in the complex describes the stoichiometric relationship and sup-
ports formation of a 2:1 complex. Efforts to increase the chemical
concentration by further increases in the caffeine concentration
result in the complex coming out of solution (Hadkar, 2007;
Zughul and Badwan, 1997; Chen et al., 1994), although higher
order soluble complexes might appear if higher caffeine concentra-
tions were used (Hadkar, 2007).
Fig. 2. Solubility of rosuvastatin in aqueous caffeine solutions.
With the almost 5:1 molar ratio of caffeine to rosuvastatin in
the mixture to prepare the complex with rosuvastatin, the 2:1
complex is expected to exceed its solubility in water. Since the
1:1 methanol/water solvent system does not form an azeotrope
(Griswold and Dinwiddie, 1942), the higher vapor pressure of
methanol allows it to evaporate earlier, leaving water as the end
solvent. The 2:1 caffeine:rosuvastatin complex will eventually
exceed its solubility as the methanol concentration lowers
(Fig. 2) and nuclei will form that lead to the precipitation of the
2:1 complex.

Analysis of the rosuvastatin-caffeine complex was possible
using FTIR. The spectrum for rosuvastatin calcium (Fig. 3) reveals
certain characteristic peaks at 1550, 1507, 1390, 1330, 1229,
1066, 840 and 771 cm�1 that are confirmed in the literature
(Mostafa et al., 2014). These peaks are representative of the C@N
stretch (1550), the CAC stretch in an aromatic ring and the NAH
bending (1507), the CAN stretch and the symmetric bending of
the CH3 group (1390), the asymmetric vibration of S@O (1330),
the �C@O stretch in a carboxylic acid group (1229), the S@O
stretch (1066), the CAF stretch (8 4 0) and the CAH out of plane
bending for aromatic rings (7 7 1), respectively (Mostafa et al.,
2014; Salih et al., 2013; Siriwardane and Woodruff, 1995). Fig. 4
presents the FTIR spectrum of caffeine with its identifying peaks
at 1699, 1638, 1540, 1360, 1229 and 745 cm�1 that are confirmed
in the literature (Rajam et al., 2013; Paradkar and Irudayaraj,
2002). In addition to the sources for the peaks identified above,
the caffeine peaks at 1699 and 1638 cm�1 correspond to the C@O
stretch in cyclic hydrocarbons and the C@N stretch in cyclic hydro-
carbons, respectively (Silverstein et al., 1981). The spectrum for the
rosuvastatin-caffeine complex (Fig. 5) supports the existence of
intermolecular interactions between rosuvastatin and caffeine
since peaks associated with rosuvastatin or caffeine alone have
shifted. The low magnitude of the peak shift in most cases indi-
cates that the interactions are not strong, a desirable property since
the complex should be disrupted to readily release rosuvastatin
in vivo. These shifts can be increases or decreases in the wavenum-
ber, depending on the influence of the type of interaction (Ryu,
et al., 2010; Kolhe and Kannan, 2003). Alterations to the spectra
include the shift of the 1699 peak to 1707 and the 1638 peak to
1654 cm�1 for caffeine, with the 1507 peak of rosuvastatin
increased to 1511, the 1390 peak reduced to 1372, the 1229 peak
increased to 1233, the 840 peak increased to 845 and the 771 peak
reduced to 743 cm�1. Shifts in these peaks indicate interactions of
caffeine with rosuvastatin at its aromatic ring with the fluoride
substituent and at the heterocyclic ring with its adjacent methyl
groups.
3.2. Precompression studies on powders and powder blends

3.2.1. Flow properties of the drug-caffeine complex and formulation
blends

Comparable micromeritic parameters were observed for the
drug-caffeine complex and for the formulation blends. This indi-
cates that the drug-caffeine complex alone or in combination with
the formulation excipients possessed an excellent or good flow
property (Table 2) and thus created no problem in the consolida-
tion and compression of formulation blends.
3.3. Postcompression physicochemical evaluation

The compressed tablets were white with a smooth surface. No
tableting problems were detected during postcompression studies.
Comparable mass across the tablets was found with each trial for-
mulation, thus they complied with United States Pharmacopeia
standards for weight variation, namely ±7.5 mg for tablets



Fig. 3. FTIR spectrum for rosuvastatin calcium.

Fig. 4. FTIR spectrum for caffeine.
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compressed to a target mass of 200 mg. This indicates that a rea-
sonably uniform die fill occurred during compression that led to
a minimal weight variation. These results were expected since
the formulation blends demonstrated good or excellent flow in
the precompression studies. As with mass variation, consistent val-
ues are observed for the thickness and diameter of the compressed
tablets (Table 3).
Most of the tablets were compressed to a hardness of 5 kg
(Table 3) which is regarded as a satisfactory hardness for com-
pressed tablets. Oral disintegrating tablets of rosuvastatin formu-
lated in a previous study were compressed to a lower hardness
(4.00–4.65 kg) [Rohini et al., 2014; Rohini 2013]. This might be
deliberate due to the nature and rapid disintegration purpose of
the tablets. Formulations F2 and F4 provided higher friability



Fig. 5. FTIR spectrum for the rosuvastatin-caffeine complex.
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Fig. 6. Drug release profiles in pH 1.2, 0.1 N HCl, (circle (F1), square (F2), diamond
(F3) and triangle (F4) consistently in release profiles).
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values compared to F1 and F3. The higher friability might be due to
lower tablet hardness that indicates weaker bonds within the
tablet.

Nevertheless, each of the trial formulations of rosuvastatin cal-
cium possessed friability values that lie within the official limits.
Velivela et al. (2016) reported lower tablet friability values
(0.17–0.23%) that might be due to the use of a wet granulation
method. Rohini (2013) reported orally disintegrating tablets of
Table 2
Flow properties of drug-caffeine complex and trial formulations of rosuvastatin.

Formulation code Angle of repose (deg) Carr’s com

Drug-Caffeine Complex 29.4 7.46
F1 34.0 14.0
F2 33.0 12.0
F3 29.3 9.85
F4 26.9 9.00
rosuvastatin with friability in the 0.227–0.449% range, well within
the official limits.

Tablets from each of the four formulations demonstrated BP
compliance with the Assay and Content Uniformity tests (Table 3).
It appears that the preblending and post blending of the API with
excipients provided randommixing within the formulation blends.
Tablets from each of the trial formulations disintegrated within
2.5 min and thus complied with BP standards set for disintegration
tests and were similar to what has been reported for other
rosuvastatin dosage forms (Rohini et al., 2014; Venkatesh et al.,
2014). The tablet disintegration times in ascending order were
F4 < F3 < F2 < F1 (Table 3), suggesting the same order should exist
for faster drug release from the greater surface area afforded by
disintegrated tablets that resulted in a burst release of drug at early
times.

In the drug release profiles, the variability in the rosuvastatin
concentration in samples drawn at a particular time for a particular
type of tablet was low such that, when the standard deviation is
presented using y-error bars, the error bar is hidden under the mar-
ker for each data point. In the pH 6.6 sodium citrate buffer, tablets
based on formulation F4 that contained drug-caffeine complex and
Soluplus� provided the highest cumulative drug release of 98.3%,
followed by F3-based tablets with drug and Soluplus�, F2 with
the drug-caffeine complex, and F1 with drug only (Fig. 8). A similar
ranking in cumulative release was found in pH 6.8 phosphate buffer
where the performance of tablets based on formulation F4 again
pressibility index (%) Hausner ratio Flow property

1.08 Excellent
1.15 Good
1.12 Good
1.00 Excellent
1.04 Excellent



Table 3
Physicochemical parameters of rosuvastatin tablets produced with different formulations.

Parameter F1 F2 F3 F4

Average Mass (mg) 200 ± 2.76* 200 ± 2.20 200 ± 3.07 200 ± 3.87
Thickness (mm) 3.55 ± 0.29 3.90 ± 0.26 3.51 ± 0.45 3.61 ± 0.32
Diameter (mm) 8.43 ± 0.25 8.34 ± 0.23 8.35 ± 0.26 8.33 ± 0.24
Hardness (kg) 5.03 ± 0.76 5.60 ± 0.70 5.82 ± 0.88 4.92 ± 0.83
Friability (%) 0.46 ± 0.03 0.76 ± 0.02 0.51 ± 0.05 0.91 ± 0.01
Disintegration Time (min) 2.26 ± 0.10 1.48 ± 0.08 1.19 ± 0.05 1.04 ± 0.04
Assay (%) 98.1 ± 0.69 100 ± 0.89 99.9 ± 0.45 99.3 ± 0.40
Content Uniformity (%) 99.0 ± 0.66 99.0 ± 1.18 99.1 ± 1.82 100 ± 1.13

* Mean ± s.d.
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superceded that of all other formulations (Fig. 7). With pH 1.2 HCl
buffer, formulation F4 maintained its superior influence with the
highest cumulative drug release (see Fig. 6), although release pro-
files for each tablet from formulations F2 and F3 were reduced in
hydrochloric acid buffer when compared to results in sodium
citrate or phosphate buffer due to the pH-dependent poor solubility
of rosuvastatin itself, leading to a lower free rosuvastatin concen-
tration in acidic media (Satyanarayana and Someshwar, 2006).
When comparing the release profile for tablets produced using
formulation F1 to the corresponding release profiles for tablets pro-
duced using formulation F2 the improvement in the rate and extent
of drug release accomplished in each of the threemedia due to prior
complexation of rosuvastatin with caffeine becomes evident.
Likewise, inclusion of Soluplus� in the formulation F3 enhanced
release from tablets and supported a higher concentration of rosu-
vastatin in each medium. Formulation F4 that contained both the
rosuvastatin-caffeine complex and Soluplus� provided tablets with
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Fig. 8. Drug release profiles in pH 6.6 N, 0.05 M citrate buffer (symbols as described
for Fig. 6).
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Fig. 7. Drug release profiles in pH 6.8, 0.05 M phosphate buffer (symbols as
described for Fig. 3).
the ability to outperform tablets from any of the other formulations
in any of the three media.

Release profiles were examined using Two-factor ANOVA that
revealed at least one statistically different release profile for each
of the three release media. Dissolution data at multiple time points
in different media were analyzed by One Way ANOVA followed by
a posthoc Tukey’s test at the 0.05 level of significance. At most of
the sampling times, a significant difference (p < 0.05) was detected
in release profiles of trial formulations that were further confirmed
by Tukey’s test. Acknowledging a burst release of drug in the pro-
file in Fig. 6 for drug release from a tablet based on F1, represented
by b in the following equation, an appropriate fit of the Higuchi
model (Paramita and Kasapis, 2019; Siepmann and Peppas, 2001;
Ritger and Peppas, 1987):

Mt=M1 ¼ kH tð Þ1=2 þ b ð7Þ
to the release data was possible that reveals drug release by diffu-
sion of fluid into the solid dosage form, dissolution of the drug,
and then diffusion of dissolved drug through an essentially intact
matrix to accomplish release. The fitted model equation gives the
following equation:

Mt=M1 ¼ 2:38 tð Þ1=2 þ 31:7 ð8Þ
that provides a good description of the data (R2 = 0.9933) and
reveals a burst release of 31.7% of the rosuvastatin load in the tablet.
Other profiles can also be described by this square root of time rela-
tionship, suggesting that diffusion is the release mechanism for
rosuvastatin from tablets from each of the formulations. It is appar-
ent that drug release profiles for tablets based on formulation F4
appear to be similar across the three media. Use of the dissimilarity
factor, f1, and the similarity factor, f2, as often calculated to deter-
mine the similarity of release profiles, is accomplished using the fol-
lowing equations (Anderson et al., 1998):

f1 ¼ 100 � ðRjRt � TtjÞ=ðRRtÞ ð9Þ

f2 ¼ 50 � logf100=½1þ 1=nð Þ � RðRt � TtÞ2�g ð10Þ
where Rt refers to the fraction released in a reference profile at a
particular time, t, and T refers to a second profile considered a test
profile with Tt at each time point for comparison. The profile for
tablets based on formulation F4 at pH 6.8 was considered the Refer-
ence release profile. Comparison to the profile for tablets at pH 6.6
revealed an f1 = 2.27 and an f2 = 99.9; whereas comparison to the
profile for tablets at pH 1.2 revealed an f1 = 1.96 and an f2 = 99.9.
Since an f1 in the range 0–15 and an f2 of 50–100 indicate similar
profiles (Freitag, 2001; Sathe et al., 1996), in each case, the test pro-
file is similar to the reference profile. The release profile for tablets
produced using formulation F4 are similar in the three release
media.

Although rosuvastatin calcium has a low solubility in water, as a
BCS Class II drug it is acknowledged to experience a high perme-
ability. Rosuvastatin complexed with caffeine can leave that
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complex to replace dissolved drug that undergoes absorption from
the gastrointestinal tract by readily re-establishing the equilibrium
between free and complexed rosuvastatin. The saturated solution
of free rosuvastatin in a physiological medium will be maintained
by the equilibrium between free drug, complexed drug, and drug
located in the micelles, as opposed to a permeability rate reduced
by slow dissolution of the poorly soluble form of the solid drug.
Therefore, dissolution of the poorly soluble drug is not required
for re-establishment of the equilibrium with free drug that is then
available for absorption.

4. Conclusions

The easily formed drug-caffeine complex using inexpensive caf-
feine complemented by Soluplus� that can form micelles at a very
low concentration effectively provided 94.9–98.0% release within
60 min in fluids that mimic physiological fluids. A cost-effective
tablet form of rosuvastatin was thus fabricated by a direct com-
pression method that might be beneficial for patients and the phar-
maceutical industry alike. The role that Soluplus� plays in the
presence of caffeine has been explored to further highlight the
importance of this amphiphilic agent that might provide new
insights for future formulation work. Thus, in the present work,
an improved dissolution rate and concentration of rosuvastatin in
solution with the added benefit of a high percentage released
within one hour were successfully accomplished by a simple and
cost-effective complexation approach.
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