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ABSTRACT

Objective: Substance use screening in adolescence is unstandardized and often documented in clinical notes,

rather than in structured electronic health records (EHRs). The objective of this study was to integrate logic rules

with state-of-the-art natural language processing (NLP) and machine learning technologies to detect substance

use information from both structured and unstructured EHR data.

Materials and Methods: Pediatric patients (10-20 years of age) with any encounter between July 1, 2012, and

October 31, 2017, were included (n ¼ 3890 patients; 19 478 encounters). EHR data were extracted at each en-

counter, manually reviewed for substance use (alcohol, tobacco, marijuana, opiate, any use), and coded as life-

time use, current use, or family use. Logic rules mapped structured EHR indicators to screening results. A

knowledge-based NLP system and a deep learning model detected substance use information from unstruc-

tured clinical narratives. System performance was evaluated using positive predictive value, sensitivity, nega-

tive predictive value, specificity, and area under the receiver-operating characteristic curve (AUC).

Results: The dataset included 17 235 structured indicators and 27 141 clinical narratives. Manual review of clini-

cal narratives captured 94.0% of positive screening results, while structured EHR data captured 22.0%. Logic

rules detected screening results from structured data with 1.0 and 0.99 for sensitivity and specificity, respec-

tively. The knowledge-based system detected substance use information from clinical narratives with 0.86, 0.79,

and 0.88 for AUC, sensitivity, and specificity, respectively. The deep learning model further improved detection

capacity, achieving 0.88, 0.81, and 0.85 for AUC, sensitivity, and specificity, respectively. Finally, integrating pre-

dictions from structured and unstructured data achieved high detection capacity across all cases (0.96, 0.85,

and 0.87 for AUC, sensitivity, and specificity, respectively).

Conclusions: It is feasible to detect substance use screening and results among pediatric patients using logic

rules, NLP, and machine learning technologies.
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INTRODUCTION
Background and significance
Substance use and related morbidity and mortality contribute to

25% of all deaths in the United States and an annual cost of $740

billion.1,2 Research examining substance use (eg, prevalence, initia-

tion age) using nationally representative survey methodology has

consistently demonstrated that initiation occurs during adolescence

and use increases into early adulthood.3,4 Therefore, adolescence is

an important stage for prevention. Pediatric healthcare providers

play a critical role in identifying substance use initiation, monitoring

substance use over time, and providing referrals to treatment when

necessary.5,6 The Centers for Medicare and Medicaid Services recog-

nize the need for targeted screening, prevention, and intervention

programs in clinical settings and has incentivized implementing

strategies for doing so.7 However, implementation in healthcare sys-

tems is fragmented. Studies of pediatric healthcare systems have sug-

gested that substance use screening with adolescents is occurring,

but documentation in patients’ electronic health records (EHRs) is

often unstandardized and exists in unstructured clinical notes, rather

than in structured data fields.8–10 The complexity and intensity of

retrieving substance use screening information from unstructured

data has limited healthcare systems in supporting providers as they

monitor substance use over time.8,11,12 Some studies have proposed

incorporating standardized screening protocols to streamline docu-

mentation,6,13 which, however, does not entirely address the chal-

lenges of modifying pediatrician behavior,14 documentation,8 or

outcomes.15 With a lack of widespread adoption of standardized

substance use screening and documentation in pediatric settings,16

there is a critical need to develop an efficient and cost-effective ap-

proach to transform substance use information from EHRs to a re-

usable format that can be accessed and reviewed across providers

and tracked over time.17

Decision support capabilities built on modern artificial intelli-

gence (technologies such as natural language processing (NLP) and

machine learning have promised great benefits to different aspects

of healthcare delivery. NLP is a hybrid technology that utilizes lin-

guistic knowledge (eg, substance-related lexicon) in computerized

algorithms to identify relevant information (eg, substance use) from

human language input, while machine learning employs algorithmic

models to analyze the extracted information and make data-driven

predictions (eg, results of substance use screening). The technolo-

gies, when combined, have shown to significantly improve predic-

tive performance in detecting clinical conditions such as signs and

symptoms, diseases, and adverse drug events from unstructured clin-

ical narratives.18–22 Nevertheless, few studies have used NLP and

machine learning for identifying substance use information from

clinical notes. Wang et al23 developed a knowledge-based NLP sys-

tem that used a predefined lexicon to detect substance use (alcohol,

drug, nicotine use) information from unstructured notes. Despite its

encouraging performance, the study focused on analyzing social his-

tory sections from physical and history notes that did not represent

the complexity and variation of language used in clinical data.

Hylan et al24 enriched a knowledge-based NLP system with regular

expressions to identify indicators of problematic opioid use from

clinical notes. Specifically, the authors looked for phrases indicative

of a diagnosis or assessment of prescription opioid overuse, misuse,

abuse, or addiction. The study used NLP-generated indicators only

to facilitate manual validation of problematic opioid use; therefore,

the detection performance of the system was not reported. Dligach

et al25 developed a convolutional neural network–based deep learn-

ing model to analyze clinical notes and extract information relevant

to specific billing codes (eg, International Classification of Diseases

codes related to alcohol use disorders), which was then fed into ma-

chine learning classifiers for predicting substance use disorder. Lim-

ited by the data available, the study only applied the model to

predict alcohol and opioid use disorder, and the work did not con-

sider temporality (past or current use).

It is worth noting that all the studies focused on analyzing clini-

cal notes in adult settings. Although terms for describing substance

use behaviors (eg, alcohol use, smoker) are similar, findings from

these studies may not generalize well to pediatric settings. First, rates

of substance use disorder in adolescents are generally lower than in

adults,4 resulting in a difference in frequency with which diagnostic

and billing codes can be reliably used. Consequently, the utility of

structured and unstructured data in identifying substance use infor-

mation could be different in pediatric and adult settings. Second,

screening for substance use is encouraged but often not required in

pediatric settings, and hence data may be sparse compared with

adult settings. The paucity of positive indicators in clinical notes

might hinder the development of complex models such as deep

learning algorithms. Finally, family history of substance use is more

likely to be reviewed, discussed, and documented (as an indicator of

child safety) in pediatric settings than in adult settings. Family sub-

stance use is associated with increased risk for adolescent substance

use. As such, this meaningful indicator should be captured and

shared with pediatricians in a way that would be different from

adult settings. Importantly, the mixed mentions of substance use

among patients and their families make automated detection more

challenging, as additional disambiguation is needed to distinguish

which subject is the substance user. For these reasons, additional

study is required to fill the gap in knowledge in pediatric settings, in

which the opportunity to prevent substance use is greatest.

OBJECTIVES

This study represents the first step toward developing an accurate and

scalable informatics-based solution to minimize existing technology

and workflow barriers to support substance use screening. By inte-

grating logic rules with NLP and machine learning techniques, we de-

veloped an automated substance use detection system (ASUDS) that

analyzed both structured EHR data and unstructured clinical notes to

identify substance use information in pediatric settings. We hypothe-

sized that (1) automated algorithms exploiting clinical notes would

capture more substance use information than structured EHR data,

based on the lack of consistency with which substance use screening is

documented; and (2) with using state-of-the-art informatics technolo-

gies, the ASUDS could detect substance use information for individual

patients with high sensitivity and specificity, given the evidence in

literature for adult settings.23,25 Creation of such a system would al-

low current provider-led preferences and practices in substance use

documentation to continue while simultaneously improving access to

documented information. As such, our research has the potential to

aid in long-term efforts to target prevention and intervention in

adolescence, where substance use behaviors often emerge.26

MATERIALS AND METHODS

Participants
Pediatric patients (10-20 years of age) with any encounter at the

freestanding pediatric children’s hospital where the study occurred

between July 1, 2012, and October 31, 2017, may have been eligible
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for inclusion. Data were collected as part of a larger study to under-

stand the emergence of substance use among adolescents in foster

care.27 Therefore, participants were either in foster care (eligible: n

¼ 2787) or demographically matched to foster youths(eligible: n ¼
2787) based on sex, birthdate within 6 months, race, ethnicity, and

public insurance status. The dataset for this study included 3890

participants (58.3% foster youths; 41.7% matched youths) who had

at least 1 substance use screening during the study period. There

were 121 656 patient visits, of which 19 478 (16.0%) encounters

contained screening documentation. Approval for this study was

given by the institutional review board where the study occurred (In-

stitutional Review Board: 2017-4747) and the county child welfare

agency who holds custody of foster youths. A written waiver of con-

sent was authorized.

Substance use–related indicators from EHRs
All substance use–related indicators from structured EHR data, in-

cluding patient social histories, encounter diagnoses, substance and

chemical abuse assessments, and laboratory results, were extracted

along with all unstructured clinical notes created during encounters.

A comprehensive list of substance-related key phrases was applied

to identify paragraphs containing potential substance use mentions

from the notes. The process generated 130 998 free-text paragraphs

from 26 931 notes. Removing duplicated paragraphs resulted in a

set of 27 141 (of 130 998) unique paragraphs. Table 1 summarizes

the substance use–related indicators collected by the study. The

complete list of structured indicators is presented in the Supplemen-

tary Appendix file. The list of substance-related key phrases is pre-

sented in Supplementary Appendix A.

Gold-standard substance use screening results
We applied 2 distinct processes to extract substance use information

for all 19 478 encounters containing screening documentation. First,

substance use information was manually annotated from all 27 141

narrative paragraphs using a double annotation schema.28 Two data

analysts manually reviewed each narrative to identify 5 categories of

substance use: alcohol, tobacco, marijuana, opiate, and any use (ie,

all categories in Supplementary Appendix Table A.1). If a positive

mention was detected, the analysts further classified the behavior

into 3 assertions—lifetime(past or current use), current (use within

the past 12 months), or family use (referred to substance use by a

family member)—to be consistent with other surveillance studies of

adolescent substance use.29,30 Differences between the annotators’

decisions were resolved by adjudication and the interannotator

agreement was assessed using Cohen’s kappa.31 For structured data,

manual review was performed on all collected records to derive sub-

stance use categories and assertions. Finally, the results from struc-

tured and unstructured data were merged for each encounter and

served as a gold-standard set to evaluate automated approaches.

Automated substance use detection
Figure 1 diagrams an overview of ASUDS. Encounters without

structured indicators or potential mentions of substance use in clini-

cal notes were classified as encounters without screening (process 1

in Figure 1). For remaining encounters, a logic-based rule matcher

(LRM) was developed to classify structured indicators into screening

results (process 2). An NLP- and machine learning–based substance

information screener (SIS) was developed to detect substance use

categories and assertions from unstructured narratives (process 3).

The results were merged as a final prediction of whether substance

use screening occurred and the associated results for each encounter

(process 4).

Logic-based rule matcher

The LRM utilized logic rules to map structured indicators to screen-

ing results. For descriptive indicators (eg, social histories), regular

expressions were developed to determine substance use categories

and assertions. For example, given the description “Tobacco use:

Table 1. The substance use–related indicators collected from the electronic health records

Indicators Description Example Format

Diagnoses A patient’s substance use–related

diagnoses documented in an en-

counter.

Alcohol abuse; alcohol intoxica-

tion; tobacco dependence; can-

nabis dependence, unspecified.

S: Descriptive

Laboratory results Substance use–related laboratory

results documented in an en-

counter.

Opioid mass spec: opioid interp—

not detected.

S: Quantitative and descriptive

Alcohol screen: ethanol level—104

mg/dL.

Nicotine mass spec: cotinine—10

ng/mL.

Social history flowsheet A patient’s social histories (alcohol,

tobacco, drug use (documented

in an encounter.

Tobacco use: never. Drug/alcohol

use: current (within past month).

If current use, what? Alcohol,

marijuana, cocaine, other.

S: Descriptive

Substance and chemical

abuse assessment

A structured questionnaire per-

formed in an encounter to evalu-

ate a patient’s substance use

behaviors.

Have you ever used any of the fol-

lowing substances or chemicals?

Yes, alcohol, marijuana, pills.

How used? Oral/ingest. Last

used? Over a month ago.

S: Descriptive

Clinical notes Clinical notes with potential men-

tions of substance use.

Brother has history of heroin ad-

diction, and another adult

brother has a history of opioid

pill addiction.

U: 27 141 unique narratives

S: structured electronic health record data field; U: unstructured electronic health record data field.
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past” in a social history flowsheet, the LRM classified tobacco use

with a lifetime assertion as positive and a current assertion as nega-

tive. For quantitative indicators (eg, laboratory results), any detected

value was classified as positive for both lifetime use and current use.

For instance, a detected value of �3.0 mg/dL for “ethanol level” in

an “ethanol-only blood alcohol screen” indicated lifetime and cur-

rent alcohol use. A descriptive overview of the LRM including the

numbers of rules developed for each indicator is available in

Supplementary Appendix B. The logic rules were coded in Java.

Substance information screener

The SIS consisted of 2 modules (Figure 2). The first module was a

knowledge-based NLP system developed in our earlier study to

extract medical information from clinical narratives (module 1 in

Figure 2).18,20,32,33 Details of the system can be found in our earlier

publications.20 To summarize, the system first tokenized and lemm-

atized clinical narratives. Concept identification was then applied to

detect substance use–related words/phrases (eg, alcohol, marijuana)

using clinical terminologies including concept unique identifiers

from the UMLS (Unified Medical Language System), SNOMED CT

(Systematized Nomenclature of Medicine Clinical Terms) codes,

and normalized names for clinical drugs (RxNorm).34,35 Finally, as-

sertion detection determined negation (absence of findings), tempo-

rality (historical findings), and experiencer (object of a finding)

expressions from the context and converted the detected terms to

the corresponding format. For example, the word heroin in “patient

has history of heroin addiction” would be converted to a temporal

format “HISTORY-heroin” at word level and “HISTORY-

C0011892” at concept level. The processes represented each narra-

Figure 1. An overview of the automated substance use screening system. C: current; EHR: electronic health record; F: family use; L: lifetime; NLP: natural lan-

guage processing.

Figure 2. An overview of the substance information screener. C: current; CUI: concept unique identifier; F: family use; L: lifetime; LSTM: long-short term memory;

RxNorm: normalized names for clinical drugs; SNOMED: Systematized Nomenclature of Medicine Clinical Terms; UMLS: Unified Medical Language System.
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tive by a vector of substance use findings. A search query was then

built for each substance use category and assertion (eg, HISTORY-

opiate representing historical opiate use) based on the keyword list

described in Supplementary Table A.1 and matched with the narra-

tive vectors to classify screening results. The knowledge-based NLP

system was coded in house in Java.

Although knowledge-based systems with well-defined rules re-

main an effective approach to NLP, data-driven machine learning

techniques such as deep learning have been adopted to improve in-

formation retrieval from free-text narratives.36 To achieve the best

detection capacity, we also implemented a deep learning model to

analyze clinical narratives and classify screening results (module 2 in

Figure 2). After tokenization and lemmatization, unique words from

the clinical narratives were grouped into 100 clusters using the word

embedding technique, in which each word was represented by a

100-dimensional numeric vector such that words with similar se-

mantic and syntactic patterns were close to each other in this Euclid-

ean space.37 The prediction process then involved aggregating

information from the word vector sequence of a narrative to make a

binary decision (yes/no) for each substance use category and asser-

tion. A deep learning model based on bidirectional long-short term

memory (LSTM) networks (the dashed box in Figure 2) was imple-

mented.38 A descriptive illustration of the LSTM network and its

training strategy is available in Supplementary Appendix C. Differ-

ent from the deep learning frameworks used in the literature,25 this

model aggregated information from a word sequence forward and

backward to capture local and global semantic and syntactic con-

nections between words. The bidirectional LSTM model was

implemented with the TensorFlow library in Python.39

Experiments
Experiment setup

A retrospective evaluation of substance use detection on structured

and unstructured EHR data individually and in combination was

performed. LRM predictions were compared against manual review

of structured indicators at each encounter. SIS predictions from the

knowledge-based NLP system and the deep learning model were

compared against gold-standard annotations of clinical narratives.

The deep learning model required a training set to tune its parame-

ters and a nested 10-fold cross-validation was applied to avoid over-

fitting.40 A descriptive illustration of the cross-validation process is

available in Supplementary Appendix C. The approach randomly

split the dataset into 10 rotating subsets—9 for model training and

hyperparameter tuning and 1 for testing at each run. At the end of

cross-validation, predictions for each test set were combined to re-

store predictions for the entire dataset. Finally, all note predictions

from the best model in SIS were aggregated at the encounter level us-

ing sum aggregation. The predictions were merged with those from

LRM and compared against the gold-standard results at the encoun-

ter level as the final performance of ASUDS.

Evaluation metrics

System performance was assessed with 5 customary evaluation met-

rics: positive predictive value, sensitivity, negative predictive value,

specificity, and area under the receiver-operating characteristic

curve (AUC).41–43 We adopted AUC as the primary measure and

reported the evaluation metrics with optimal cutoffs maximizing

sensitivity and specificity in the receiver-operating characteristic

analysis.44 The significance of performance differences was assessed

with 95% confidence intervals.45 The evaluation metrics and 95%

confidence intervals were calculated with the pROC library in R.46

The LRM generated determinate classification rather than probabil-

istic predictions; therefore, we did not report AUCs in its evaluation.

RESULTS

Descriptive statistics of the dataset
Among the 121 656 encounters in EHRs, 19 478 (16.0%) encoun-

ters had screening information and 11 063 (9.1%) encounters had

documented substance use information. Whether a screening oc-

curred at a given encounter differed by sex (v2
1 ¼ 16.03, P < .001),

in which a higher proportion of females were screened (16.2% fe-

male vs 15.4% male). The screening rate also differed for partici-

pants who were non-Hispanic White compared with Black,

indigenous, or person of color (BIPOC) (v2
1 ¼ 8.78, P ¼ .003), in

which a higher proportion of BIPOC participants were screened

(16.1% BIPOC vs 15.5% White). For the 19 478 encounters with

screening information, whether a screening outcome was positive

did not differ by gender (v2
1 ¼ 0.99, P ¼0.319) but did differ be-

tween participants who were non-Hispanic White and BIPOC (v2
1

¼ 4.31, P ¼0.038), in which a higher proportion of BIPOC partici-

pants were identified as having a lifetime or current substance use

(33.3% BIPOC vs 31.9% White). While the differences were statisti-

cally significant in part due to the large sample size, proportional

differences were small.

Table 2 presents descriptive statistics of the substance use infor-

mation documented in the EHRs. There were 17 235 substance use–

related structured records, including 567 encounter diagnoses, 13

585 laboratory orders, 2095 social history flowsheets, and 988 sub-

stance and chemical abuse assessments. The average number of non-

punctuation tokens (eg, words, numbers) in the clinical narratives

was 39 (minimum and maximum tokens ¼ 2 and 425 tokens, re-

spectively). Manual annotation with clinical narratives captured

94.0% (n ¼ 37 448 of 39 849) of positive screening results across

the substance use categories and assertions, while structured EHR

data captured 22.0% (n ¼ 8753 of 39 849). The overall IAAs

(Cohen’s kappa) between the data analysts and the consensus were

0.921 and 0.922, respectively, indicating good reliability of annota-

tion. Sensitivities for capturing substance use information using

structured indicators and clinical narratives are available in Supple-

mentary Appendix D.

Performance of the LRM in classifying structured

indicators
Figure 3 shows the performance of LRM in classifying the 17 235

structured indicators. By analyzing structured data, the logic rules

achieved 100% sensitivity and over 99.8% specificity across all sub-

stance use categories and assertions.

Performance of the SIS in analyzing clinical narratives
Figures 4 and 5 present the system performances in detecting sub-

stance use information from the 27 141 clinical narratives. The

knowledge-based NLP system achieved over 0.858 AUCs on detect-

ing specific categories including alcohol, marijuana, opiates, and to-

bacco, with sensitivity �78.5% and specificity �87.6%. Its

performances were lower on detecting any lifetime or current sub-

stance use. The deep learning model achieved over 0.959 AUCs on

most substance use categories and assertions, with sensitivity

�87.5% and specificity �89.0%. Its performances were lower in

detecting opiates use, with over 0.882 AUC, sensitivity �81.0%,
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and specificity �85.0%. The deep learning model outperformed the

knowledge-based system statistically significantly for all assertions

except opiates (P ¼0.05). Given its superior performances, the deep

learning model was selected to implement the SIS.

Integrated performance of the ASUDS
Table 3 presents the performance of ASUDS, in which LRM and SIS

predictions were integrated at the encounter level. The system

achieved over 0.957 AUCs across all categories and assertions at a

significance level of 0.05, with sensitivity �84.6% and specificity

�87.2%. SIS outperformed LRM statistically significantly on all

cases (P ¼ .05) (see Supplementary Appendix E for all performance

details).

Error analysis
The confusion matrices of LRM and SIS are presented in Supple-

mentary Appendix F. The LRM made 13 false positives on 5

encounters, all owing to conflicting EHR records (eg, an encounter

with 2 social history flowsheets, one indicating current tobacco use

and the other indicating no substance use). Data analysts screened

additional EHR information in these instances (eg, record overriding

logs), which were not available to the LRM. The SIS made 26 696

Table 2. Numbers of encounters with substance use information documented in structured indicators and clinical notes

Category Structured indicators Clinical notes Total

Lifetime Current Family Lifetime Current Family Lifetime Current Family

Alcohol 434 311 0a 1740 1315 3702 1817 1387 3702

Marijuana 1108 916 0a 3406 2765 264 3596 2953 264

Opiates 67 61 0 123 99 164 171 145 164

Tobacco 1015 858 0 2729 2234 796 3094 2605 796

Any use 2143 1840 0 5881 5095 7135 6402 5618 7135

Total 4767 3986 0 13 879 11 508 12 061 15 080 12 708 12 061

a16 (0.4%) subjects had indicators of fetal drug exposure (fetal alcohol syndrome, neonatal abstinence syndrome) in structured problem lists, indicating poten-

tial maternal drug use. These indications were patient/family reported and were not companied by any encounter diagnoses made by clinicians. For that reason,

they were excluded from the analysis.

Figure 3. Performance of the logic-based rule matcher in classifying structured indicators. Note that the structured indicators did not contain assertion of family

use. The logic-based rule matcher generated determinate classification rather than probabilistic predictions; therefore, we did not report area under the receiver-

operating characteristic curve in the evaluation. NPV: negative predictive value; PPV: positive predictive value.
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false positives and 3134 false negatives across the substance use cat-

egories and assertions. To identify its limitations, we stratified the

data, sampled 10% (n ¼ 2983) of the errors based on the categories

and assertions, and performed an error analysis. The causes were

grouped into 11 categories, which are presented in Table 4.

DISCUSSION

This study developed an ASUDS to identify substance use informa-

tion using structured EHR data and unstructured clinical narratives

from a pediatric population and setting. Detecting screening results

from the structured data using LRM achieved close to perfect per-

formance (100% sensitivities; �99.8% specificities). Although rules

might need customization when applied to additional institutions,

implementation effort is likely minimal given the limited number of

rules required (see Supplementary Appendix B). However, our anal-

ysis suggested that structured EHR data only documented 22.0% of

screening results, consistent with the literature.8–10 Despite its high

performance, LRM alone was unable to capture substance use infor-

mation comprehensively.

Using NLP and machine learning technologies, the SIS showed

good capability in detecting substance use information from un-

structured narratives. The knowledge-based NLP system achieved

over 0.858 AUCs in detecting specific substance uses, but it per-

formed lowest when detecting any use due to variation in keywords

or phrases (Figure 4). By learning linguistic patterns from clinical

narratives, the deep learning model further improved detection ca-

pacity, with over 0.882 AUCs across all substance use categories

and assertions (Figure 5). Compared with the knowledge-based sys-

tem, the deep learning model achieved significantly better perfor-

mance in most cases. This illustrates the advantage of machine

learning technologies over knowledge-driven rules by learning latent

patterns from human language. However, deep learning was less ad-

vantageous when there was paucity of data (eg, opiates), revealing a

major limitation of machine learning–based models.47 The SIS

achieved significantly better performance than the LRM (P ¼ .05)

(Supplementary Appendix E), confirming our hypothesis that auto-

mated algorithms exploiting clinical notes would capture more sub-

stance use information than structured EHR data. By integrating the

predictions from SIS (unstructured clinical notes) and LRM (struc-

tured EHR data), the ASUDS achieved over 0.957 AUC across all

Figure 4. Performance of the knowledge-based natural language processing system in detecting substance use categories and assertions on individual clinical

narratives. Error bars indicate 95% confidence intervals. AUC: area under the receiver-operating characteristic curve; NPV: negative predictive value; PPV: posi-

tive predictive value.
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substance use categories and assertions, with sensitivity �84.6%

and specificity �87.2% at a significance level of .05.

The results and findings demonstrate a significant advance to the

field of substance use research in pediatric settings. Performance us-

ing NLP and machine learning was consistent with the best results

reported in the literature for alcohol and nicotine detection (91.8%

and 96.6% for sensitivity, respectively),23 and opioid and alcohol

detection (0.951 and 0.730 for AUC, respectively).25 Importantly,

our results cover more comprehensive substance use categories and

examine a pediatric population, in which rates of substance use dis-

order are generally lower than in adults.4 In addition, screening in

pediatric settings often involve discussion of family substance use

(Table 2), which have not been investigated in previous studies.

Detecting family use and distinguishing it from subject use in this

study demonstrates feasibility and fills a gap in knowledge that is

unique to pediatrics. Finally, integration of evidence-based screening

(eg, SBIRT [Screening, Brief Intervention and Referral to Treat-

ment], CRAFFT)48 requires providers to modify how they document

screening results to be effective, which has been identified as a bar-

rier to implementation in pediatric settings.16 The promising perfor-

mance achieved by the ASUDS suggests potential for technology to

support implementation of evidence-based screening without the

need to modify clinician behavior around documentation, address-

ing a critical first barrier to the delivery of substance use prevention

and intervention.49,50 For instance, the computerized system could

assemble a report of historic substance use information before an en-

counter, presenting both predictions regarding previous screening

results and supportive evidence (eg, sentences mentioning substance

use in notes, values of laboratory results) to facilitate clinician re-

view, assist with determining change over time in substance use, and

inform decisions about intervention during the encounter. Further,

creation of such a system would improve secondary analysis of sub-

stance use information in EHRs, which could facilitate the dissemi-

nation of screening results to external institutions or to researchers

interested in understanding substance use onset and risk.51

Error analysis
Despite high performance, false positives from LRM suggested that

additional rules were needed to address conflicting records in the

EHRs. Future studies of rule-based approaches could examine

whether ordering records chronologically and using most recent

record(s) reduces false positives. The error analysis on SIS also un-

covered several areas of improvement. The majority of errors were

Figure 5. Performance of the deep learning model in detecting substance use categories and assertions on individual clinical narratives. Error bars indicate 95%

confidence intervals. AUC: area under the receiver-operating characteristic curve; NPV: negative predictive value; PPV: positive predictive value.
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caused by omitting semantic information including experiencer (cat-

egory 1; 24.28%), negation (category 2; 16.86%), temporality (cate-

gory 6; 7.27%), and hypothetical statement (category 8; 4.59%).

The errors suggested limitations of word-embedding features that

were not sensitive to granularity of semantic meanings. For instance,

the words month and year had similar vector values and the granu-

larity of these timestamps was omitted. Incorporating meaningful

linguistic features provided by knowledge-based NLP systems, in-

cluding negation (for converting negated terms), temporal expres-

sions (for capturing timestamps), and experiencer expressions (for

identifying appropriate objects) might alleviate this problem and

should be evaluated in future studies.18–20 In addition, over 10% of

errors (category 3) were attributed to ambiguous content (eg, confu-

sion of pronouns in object clauses) that required reasoning in the

context. For example, “she discovered he began drinking alcohol”

might imply mother found her son drinking (subject substance use)

or daughter found her father drinking (family substance use).

Enriching the feature set with syntax-based pronoun disambiguation

should be explored in future studies to mitigate this issue.52 Another

9.65% of errors (category 4) was due to confusion between sub-

stance use categories, which often occurred when 2 substances had

similar activities (eg, smoking tobacco vs marijuana). Likewise, the

SIS confused between substance use and medication use because of

similar content in a sentence (category 7; 5.94%). These issues could

potentially be addressed by n-grams and syntactic n-grams that capture

contextual information and may contribute to better performance.53,54

Finally, a notable portion of false positive errors was triggered by sub-

stance description that implied potential use (category 5), which may be

important to capture as an indicated need for screening or close moni-

toring and could be explored as an additional classification in future

studies. Similarly, substance use secondary to another concern (category

10), including instances in which youths reported (eg, forcible use of

substances, substance use as a method of suicide) are important to cap-

ture and relevant for clinical evaluation but represent a departure from

the goals of this ASUDS.

Limitations
While this study makes an important contribution to advancing

methods to extract substance use information from EHRs, there are

limitations to be considered. First, system performance is based on

one specific population (ie, youths 10 years of age and older, all en-

rolled in Medicaid, 50% in foster care) at a single institution. Addi-

tional evaluation is required to assess generalizability with diverse

patient populations (eg, adult patients, private pediatric practices),

institutions, and clinical settings. Effort to customize the LRM for

other patient populations and settings may be minimal, and dissemi-

nating these findings is an important first step for advancing that

work. In addition, NLP and machine learning techniques support

retraining the SIS when new data become available. As such, if gen-

eralizability is not satisfactory, appropriate active learning

Table 3. Performance of the automated substance use detection system in detecting substance use categories and assertions on individual

encounters

Category

PPV (%) SEN (%) NPV (%) SPEC (%) AUC

Assertion (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

Alcohol Lifetime 70.78 91.19 99.07 96.13 0.979

(69.33-74.07) (89.82-92.52) (98.92-99.20) (95.85-96.72) (0.977-0.982)

Current 41.63 97.84 99.82 89.48 0.969

(40.59-42.70) (97.04-98.56) (99.75-99.88) (89.03-89.92) (0.966-0.973)

Family 89.58 98.22 99.57 97.32 0.991

(87.13-91.18) (97.73-98.92) (99.46-99.74) (96.58-97.78) (0.990-0.992)

Marijuana Lifetime 89.66 98.89 99.74 97.42 0.993

(88.16-91.22) (98.47-99.28) (99.65-99.83) (96.98-97.85) (0.992-0.994)

Current 83.01 97.46 99.53 96.44 0.990

(76.93-83.99) (97.16-99.12) (99.48-99.83) (94.70-96.68) (0.989-0.991)

Family 19.36 91.29 99.87 94.77 0.972

(12.59-20.50) (88.64-95.83) (99.84-99.94) (91.04-95.10) (0.961-0.982)

Opiates Lifetime 9.95 90.06 99.91 92.79 0.960

(6.34-31.06) (84.63-93.74) (99.85-99.95) (87.82-98.30) (0.941-0.980)

Current 8.48 91.03 99.93 92.63 0.963

(6.22-20.10) (84.83-95.86) (99.88-99.97) (89.53-97.36) (0.944-0.981)

Family 7.95 93.29 99.94 90.83 0.971

(7.61-21.84) (86.59-96.34) (99.88-99.97) (90.48-97.32) (0.957-0.985)

Tobacco Lifetime 58.83 97.12 99.38 87.16 0.966

(57.55-60.81) (96.06-97.83) (99.16-99.53) (86.42-88.28) (0.964-0.969)

Current 82.32 94.40 99.11 96.87 0.983

(80.25-83.81) (93.55-95.36) (98.98-99.26) (96.40-97.18) (0.980-0.985)

Family 36.55 87.06 99.41 93.56 0.967

(25.41-41.06) (85.05-92.09) (99.33-99.62) (88.58-94.69) (0.962-0.973)

Any use Lifetime 80.00 91.11 95.33 88.85 0.959

(79.21-80.75) (90.44-91.80) (94.99-95.67) (88.29-89.37) (0.957-0.962)

Current 83.84 91.03 96.23 92.89 0.963

(83.00-84.71) (90.25-91.78) (95.92-96.53) (92.45-93.33) (0.960-0.966)

Family 88.41 96.61 97.93 92.68 0.976

(87.80-90.89) (94.77-97.02) (96.90-98.18) (92.24-94.49) (0.975-0.978)

AUC: area under the receiver-operating characteristic curve; CI: confidence interval; NPV: negative predictive value; PPV: positive predictive value; SEN: sensi-

tivity; SPEC: specificity.
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approaches could be implemented to retune the disseminated system

automatically as new data become available.55 Second, these analy-

ses were restricted to retrospective data. Once reliability and gener-

alizability are established, the ASUDS can be transferred to a

production environment to adequately assess its usability and utility

with prospective data in future studies. Finally, published studies

have suggested that certain substance use screenings (eg, blood and

urine test) are used more frequently in underserved adult popula-

tions such as in African Americans.56,57 To mitigate screening bias,

the ASUDS did not only rely on structured indicators such as blood

and urine testing to determine if screening had occurred or the

screening results. It utilized a comprehensive analysis of clinical

data, in which predictions were only made using descriptive lan-

guage and structured indicators associated with substance use.

Across all screening data, a similar effect was found in the current

study, in which BIPOC participants were slightly more likely to be

screened and identified as using substances than would non-His-

panic White youths. Whether an ASUDS trained on the dataset

would propagate screening bias or help reduce bias in provider-

documented substance use screening warrants systematic investiga-

tion and will be a focus of our future work.

CONCLUSION

By integrating logic rules with NLP and machine learning, we devel-

oped an ASUDS to identify substance use information from both

structured EHR data and unstructured clinical notes among

pediatric patients. In a double-annotated, gold-standard–based eval-

uation of pediatric clinical data, the computerized system showed

Table 4. Categorization and distribution of errors made by the substance information screener

ID Category Subcategory Example Rate (%)

1 Wrong experiencer (24.28%) Misclassified substance use by family

members as subject use

Patient had in utero exposure to

drugs and alcohol.

15.59

Misclassified substance use by the

subject as family use

Mom found marijuana in patient’s

pocket tonight.

7.30

Substance use by the third person

(eg, friends, neighbors)

The patient was hanging out with

kids that were doing drugs.

1.39

2 Missing negation (16.86%) Omitting negation expression in the

context

She denies marijuana and tobacco

use, and she reports that she

drinks beer occasionally.

16.86

3 Ambiguous content (11.45%) Required reasoning based on the

context to determine the user

She discovered he began drinking al-

cohol, using marijuana and smok-

ing. (she: patient; he: patient’s

father)

8.63

Failed in capturing subtle implica-

tions in the context

Patient is exposed to secondhand

smoke outside the home. (no sub-

stance use for both subject and

family)

1.43

Two substance categories were pre-

sented in the same sentence

Drug and EtOH counseling is recom-

mended. (could not infer if it was

drug use or alcohol use)

1.39

4 Wrong category (9.65%) The system captured the substance

use behavior but categorized it

into wrong category

Patient smoke 8 joints total. 9.65

5 Potential use (8.39%) The context implied substance use

such as drug possession and traf-

ficking, drug screening, and in-

struction

He has been in temporary custody

due to drug trafficking in home.

8.39

6 Missing temporality (7.27%) Failed in capturing and reasoning

dates in the context

She reported that she has not smoked

marijuana since May 2015.

3.13

Failed in reasoning vague temporal

expression in the context

Patient has tested positive for mari-

juana in the past, per chart review.

4.14

7 No substance (5.94%) The triggered terms were not related

to substance use

She is needing increased pain control

with opiates.

5.94

8 Hypothetical statement (4.59%) Failed in detecting hypothetical state-

ments or awareness

Mom reported to social worker that

she suspects the client has been

drinking alcohol.

4.59

9 Rare expressions (3.97%) Errors caused by rare phrases such as

concatenated words, rare semantic

expressions or conflict findings

Drug abusesister. (The words abuse

and sister were concatenated)

Patient has said many things about

drugs but is not clear about use.

3.97

10 Substance use secondary to

another concern (1.83%)

Use of substance only in specific cir-

cumstance (forced use, suicidal

attempts)

Suicidal description: patient over-

dosed today with alcohol, mari-

juana, and pills.

1.83

11 Unknown (5.77%) Errors with unidentified reasons N/A 5.77

N/A: No representative examples.
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good capacity for detecting substance use screening occurrences and

results. The ASUDS achieved AUCs �0.957 across 15 substance cat-

egories and assertions, with sensitivity �84.6% and specificity

�87.2% at a significance level of .05. In addition to demonstrating

feasibility and rigor, this work confirmed the value of NLP and ma-

chine learning for detecting family substance use, a unique screening

characteristic in pediatric settings. Validating the system’s generaliz-

ability and utility across patient populations and clinical settings is a

logical next step. Given its high performance in this stage of devel-

opment, ASUDS holds great potential to facilitate research and

healthcare delivery addressing substance use screening in adoles-

cence and, ultimately, when combined with prevention and interven-

tion, reduce risk of substance use disorders across the lifespan.
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