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Abstract

AMP-activated protein kinase (AMPK) is a cellular gauge that is activated under conditions, such as low energy,
increasing energy production and reducing energy waste. Centrally, the AMPK pathway is a canonical route
regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal
networks. Current evidence links hypothalamic AMPK with feeding, brown adipose tissue (BAT) thermogenesis and
browning of white adipose tissue (WAT), as well as muscle metabolism, hepatic function and glucose homeostasis.
The relevance of these data is interesting from a therapeutic point of view as several agents with potential anti-
obesity and/or antidiabetic effects, some currently in clinical use, such as nicotine, metformin and liraglutide are
known to act through AMPK, either peripherally or centrally. Furthermore, the orexigenic and weight-gaining effects
of the worldwide use of antipsychotic drugs (APDs), such as olanzapine, are also mediated by hypothalamic AMPK.
Overall, this evidence makes hypothalamic AMPK signaling an interesting target for the drug development, with its
potential for controlling both sides of the energy balance equation, namely feeding and energy expenditure through
defined metabolic pathways.
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Living organisms need to sense energy

The survival of living organisms is due to their
continuous exchange of energy with the environment.
Intracellularly, there are thousands of different metabolic
processes that underlie energy production and utilization.
Heterotrophs, such as mammals, obtain energy from
organic compounds, mainly carbohydrates, fats and
proteins, which are oxidized to release energy that is
then stored as ATP. Indeed, every living cell can be
considered to contain an energy-storing ‘battery’, the
main components being ATP and ADDP, interconverted
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by the reaction ATP« ADP+P. Discharging the battery
therefore leads to an increase in intracellular ADP levels.
As the reaction is reversible (2ADP < ATP+AMP), AMP
levels rise markedly when the ADP:ATP ratio increases
during the energy consumption. Thus, under conditions
of insufficient intracellular energy, there is an associated
rise in AMP levels. An efficient evolutionary criterion for
a functional intracellular energy gauge would therefore be
necessary to sense the ratio of either ADP:ATP or AMP:ATP
(1,2,3,4).
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Figure 1
Structure, regulation and the role of AMPK. AMP-activated
protein kinase (AMPK) is a heterotrimer complex consisting of

Energy production
(i.e. food intake)

a catalytic o subunit and two regulatory subunits,  and y.
AMPK is the downstream component of a kinase cascade that
acts as a gauge of cellular energy levels, being activated
through increased phosphorylation of Thr172 within the
catalytic o subunit by upstream liver kinase B1 (LKB1) and
Ca2+/calmodulin-dependent protein kinase kinase
(CaMKKGp). In addition to activation by phosphorylation, AMPK
is allosterically activated by AMP, which induces
phosphorylation at Thr172 by LKB1 and CaMKK§p and also
inhibits dephosphorylation by protein phosphatases such as
protein phosphatase 2C alpha (PP2C«x). Other upstream factors
modulate AMPK activity (see main text) but have been
omitted to simplify the figure. AMPK is a counter-regulatory
intracellular switch, switching off (red lines) ATP-consuming
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AMPK and the regulation of cellular
energy metabolism

In 1987, David Carling and Grahame Hardie first
demonstrated that apparently two different protein
kinases that inhibited enzymes involved in de novo fatty
acid and cholesterol synthesis (acetyl-CoA carboxylase and
hydroxymethylglutaryl-CoA reductase respectively) were
in fact the same protein (5). As each enzyme had formerly
been shown to be activated by AMP (6, 7), they re-named
them both as AMP-activated protein kinase (AMPK) (8).
AMPK is now established as the principal energy sensor
in eukaryotic cells and is unquestionably one of the most
important discoveries in biomedical sciences in the last
30 years. In fact, 3 decades later, AMPK is considered the
principal (and probably sole) energy sensor in eukaryotic
cells, a concept that has been extended to a more global
view in which AMPK has a wide range of effects at the
cellular and whole-body levels, regulating, besides
metabolism, cell growth, mitosis, apoptosis, cell polarity,
autophagy, inflammation, immune function and cancer
4,9, 10, 11).

AMPK: the master energy sensor

AMPK is a highly conserved serine/threonine kinase;
certainly, orthologs of AMPK subunits have been found
in all eukaryotic kingdoms, including protists, fungi,
plants and animals (1, 9). AMPK is a heterotrimer
complex comprising a catalytic o (a1, a2) subunit with a
conventional serine/threonine protein kinase domain and
two regulatory subunits, § (B1, p2) and y (y1, y2, y3) (Fig. 1),
encoded by different genes (1, 4, 9, 12, 13). Briefly, AMPK is
activated by phosphorylation of Thr172 of the a subunit,
a process that can be allosterically induced by AMP (but
not ADP) (14) and catalyzed by several upstream kinases,

processes, while switching on (green arrows) catabolic
processes that produce ATP. In several brain areas, such as the
hypothalamus, AMPK acts to monitor nutritional and
hormonal signals and consequently to regulate energy
balance at the whole-body level. Thus, activation of AMPK
increases energy (food) intake and decreases energy
expenditure (thermogenesis). Red and green lettering
represents inhibitory and stimulatory stimuli respectively.
AgRP, agouti-related peptide; BMP8B, bone morphogenetic
protein 8B; CCK, cholecystokinin; CNTF, ciliary neurotrophic
factor; GLP-1, glucagon-like peptide-1; T3,
3,3',5-triiodothyronine.
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such as liver kinase B1 (LKB1) (15, 16), the pseudokinase
STRAD, the scaffold protein mouse protein-25 (MO25)
(17, 18, 19), and calmodulin-dependent kinase kinases
(CaMKKs), especially CaMKKp (20, 21, 22). AMP and
ADP not only facilitate phosphorylation at Thr172
by LKB1 and CaMKKp (14, 15, 16, 23), but also inhibit
dephosphorylation by protein phosphatases, such as
protein phosphatase 2C alpha (PP2Ca; with AMP being
10-fold more potent than ADP and both being antagonized
by ATP) (13, 24, 25). Ca2+-dependent and AMP-
dependent pathways occur independently. Thus, a rise in
Ca2+ leads to the activation of CaMKKp, which increases
Thr172 phosphorylation and activation of AMPK (26).
Finally, a mechanism modulating AMPK independent of
AMP and phosphorylation/dephosphorylation processes
has been proposed. Cell-death-inducing like-effector A
(CIDEA) forms a complex with the p subunit of AMPK,
which elicits an ubiquitination-mediated degradation of
AMPK, reducing its activity (27) (Fig. 1). A more detailed
description of AMPK structure and regulation is beyond
the scope of the present review but has been excellently
reviewed elsewhere (1, 4, 9, 28, 29, 30).

AMPK is activated in situations that lead to a reduction
in intracellular energy levels, such as hypoxia and
hypoglycemia, or to those that increase ATP utilization,
such as muscle contraction or food deprivation (1, 2, 3,
4, 29, 30). As a result of changes in the ratio of adenine
nucleotides, AMPK is phosphorylated leading to ATP-
consuming processes, such as fatty acid synthesis being
switched off and catabolic processes, such as fatty acid
oxidation being switched on. The overall effect of AMPK
activation is therefore to produce ATP and restore AMP:ATP
and ADP:ATP, allowing balanced rates of catabolism
and ATP usage and thus maintaining cellular energy
homeostasis (1, 2, 3, 4, 29, 30). Catabolic processes such as
mitochondrial biogenesis and autophagy (mitophagy) are
turned on (31, 32, 33, 34). AMPK also regulates anabolic
processes, with AMPK switching off all anabolic pathways
virtually, such as the biosynthesis of lipids, carbohydrates,
proteins and ribosomal RNA, when the cellular energy
status is diminished (1, 2, 3, 4, 29, 30).

Hypothalamic AMPK and regulation of
food intake

The first evidence implicating hypothalamic AMPK in
the modulation of energy balance was demonstrated by
David Carling and Caroline Small groups stating that
AMPK played a role in the regulation of feeding (35).
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In their seminal paper, they showed that key hormones
controlling food intake, such as leptin and ghrelin,
modulated hypothalamic AMPK and that activation of
AMPK at this level increased appetite (35). Parallel work by
Barbara Kahn and colleagues showed that AMPK is highly
expressed in the arcuate (ARC), dorsomedial (DMH),
paraventricular (PVH), and ventromedial (VMH) nuclei,
as well as in the lateral hypothalamic area (LHA) (36);
importantly, they also demonstrated that modulation of
hypothalamic AMPK formed part of an adaptive change
in the physiological regulation of feeding (36). Thus,
fasting increases but refeeding inhibits the AMPK activity
in many hypothalamic regions (35, 36, 37). Moreover, at
the whole-body level, activation of hypothalamic AMPK
leads to increased feeding and weight gain, whereas its
inhibition leads to hypophagia and weight loss (36).

In keeping with this physiological evidence, genetic
models have demonstrated a key role for hypothalamic
AMPK in the modulation of feeding. Initially, it was
shown that inhibition of hypothalamic AMPK with
AMPK dominant negative (AMPK-DN) isoforms decreases
mRNA expression of the orexigenic neuropeptides
agouti-related peptide (AgRP) and neuropeptide Y (NPY)
in the ARC. However, over-expression of an AMPK
constitutively active (AMPK-CA) isoform elevates the
fasting-induced expression of AgRP and NPY in the ARC
as well as expression of melanin-concentrating hormone
(MCH) in the LHA (36). It has been currently reported
that AMPK modulates the expression of NPY and pro-
opiomelanocortin (POMC) by regulating autophagy
(38). These data were taken to suggest that AMPK exerts
nucleus-specific effects on feeding control, an idea that
was subsequently confirmed by the generation of mice
with a conditional deletion of the catalytic subunit of
AMPKa2 specifically in POMC or AgRP neurons of the
ARC. Interestingly, both mouse models display divergent
phenotypes in terms of energy balance; while AMPKa2-
POMC KO mice developed obesity due to hyperphagia,
AMPKa2-AgRP KO mice developed an age-dependent lean
phenotype (39). However, despite the unquestionable
role of AMPK in the regulation of feeding, several lines of
evidence suggest that the chronic effects of hypothalamic
AMPK manipulation on body mass are more closely
related to altered energy expenditure than to food intake
(see below) (40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50).

Notably, most actions of AMPK in the hypothalamus
relate to mediation of hormonal effects. Both orexigenic
and anorexigenic hormones converge on hypothalamic
AMPK to modulate appetite. The consensus view is that
while the main anorexigenic factors inhibit hypothalamic
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Figure 2

Brain AMPK is a canonical regulator of energy balance. AMP-activated protein kinase (AMPK) acts in the hypothalamus to modulate
whole-body energy homeostasis and body weight. AMPK senses several nutritional and hormonal stimuli to regulate food intake,
hepatic glucose and possibly lipid metabolism, brown adipose tissue (BAT) thermogenesis, browning of white adipose tissue (WAT),
glucose homeostasis and lipid and glycogen synthesis in skeletal muscle. The actions of hypothalamic AMPK on peripheral tissues/
organs are mediated by specific regulation of the sympathetic (SNS) and parasympathetic nervous systems (PSNS). The fact that
inhibition of hypothalamic AMPK leads to anorexia and increased thermogenesis (and therefore elevated energy expenditure)
makes it an interesting target for drug development, with its potential for controlling both sides of the energy balance equation. 3V,
third ventricle; AgRP, agouti-related peptide; ARC, arcuate nucleus of the hypothalamus; BMP8B, bone morphogenetic protein 8B;
DMH, dorsomedial nucleus of the hypothalamus; GLP-1, glucagon-like peptide-1; LHA, lateral hypothalamic area; NPY, neuropeptide
Y; PVH, paraventricular nucleus of the hypothalamus; T3, 3,3’,5-triiodothyronine; VMH, ventromedial nucleus of the hypothalamus.
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AMPXK, the vast majority of orexigenic hormones activate it
(40,41,42,43,44,45,46,47,48) (Figs 1 and 2). For example,
physiological appetite inhibitors such as leptin (35, 36,
51), insulin (36, 52), glucagon-like peptide-1 (GLP-1) (46,
53), estradiol (E2) (45, 54) and ciliary neurotrophic factor
(CNTF) (585), inhibit hypothalamic AMPK. In contrast,
activation of hypothalamic AMPK is caused by orexigenic
signals such as adiponectin (56, 57), glucocorticoids (58),
ghrelin (35, 37, 59, 60, 61, 62), cannabinoids (59, 63) and
AgRP (36). Resistin (RSTN), despite its anorectic effect,
activates hypothalamic AMPK (64).

The fact that hypothalamic AMPK has emerged as a
key modulator of food intake is of interest because several
pharmacological factors with well-established impacts on
feeding, such as melanocortin receptor agonists (including
melanotan II; MTII) and nicotine, exert their actions by
inhibiting hypothalamic AMPK (36, 44, 65). In contrast,
antipsychotic drugs (APDs), such as olanzapine, well
known for their orexigenic and obesity-prone properties,
activate hypothalamic AMPK (66, 67, 68, 69). Overall, the
evidence suggest that central AMPK is a potential target
for the treatment of obesity, an idea that is reinforced by
AMPK’s effects on energy expenditure (40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50) (see below).

Hypothalamic AMPK and regulation
of thermogenesis

The hypothalamus also plays a major role in the
regulation of brown adipose tissue (BAT) thermogenesis
through the sympathetic nervous system (SNS). BAT is
activated by increased firing of sympathetic neurons,
leading to release of noradrenaline and activation on f3-
adrenergic receptors (B3-AR) (70, 71, 72, 73, 74). Within
the hypothalamus, the VMH was the first hypothalamic
location to be identified as important in BAT thermogenic
activity (75). The VMH is connected to other brainstem
regions linked to the regulation of BAT, such as raphe
pallidus (RPa) and the inferior olive (I0), which control
sympathetic activation of BAT (70, 71, 72, 73).

Recent evidence has demonstrated that hypothalamic
AMPK is a major regulator of BAT thermogenesis through
its modulation of the SNS. By analyzing the central effects
of thyroid hormones (THs) on energy homeostasis, we
demonstrated that central specific administration of
3,3’,5-triiodothyronine (T3) within the VMH (but not in
the ARC) promotes a profound thermogenic response that
is associated with decreased AMPK activity in the VMH
and, importantly, elevated sympathetic firing in brown
fat (41, 49, 76, 77). Notably, targeted administration
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of adenoviruses harboring AMPK-CA isoforms to the
VMH reduced the activation of BAT and prevented the
weight loss, which is usually associated with central T3
action, in a feeding-independent but uncoupling protein
1-dependent manner (41, 49). The significant aspect of
such an integrative mechanism is that it constitutes
a canonical circuit that is non-exclusive for THs and
mediates the effects of other thermogenic molecules.
For example, central administration of E2 inhibits AMPK
through estrogen receptor alpha (ERa), selectively in the
VMH (but notin the ARC), leading to feeding-independent
activation of thermogenesis in brown fat through the
SNS (45, 78). Again, virogenetic activation of AMPK in
the VMH (but not in the ARC) prevented an E2-induced
increase in BAT-mediated thermogenesis and weight loss
(45). Notably, fluctuations in E2 levels during the estrous
cycle and pregnancy also modulate this integrated AMPK
network, indicating its physiological relevance (45, 78).
Current evidence shows that bone morphogenetic protein
8B (BMP8B) acts centrally and that its thermogenic effect
is dependent on the activation status of AMPK in the
VMH. In fact, BMP8b-induced thermogenesis can be
completely prevented by AMPK-CA isoforms within the
VMH (43, 50), as well as with pharmacologic antagonist
or genetic deletion of orexin (OX) in the LHA (50). If
OX neurons in the LHA also mediate THs and/or E2 is
currently unknown, but seems likely when considering
the similitude in thermogenic response and the known
neuroanatomical connections.

Together, these findings demonstrate that hormonal
regulation of the VMH AMPK-(LHA OX)-SNS-BAT axis
is an important determinant of energy balance (47, 48)
and suggest that dysregulation of this axis might account
for common changes in energy homeostasis associated
with alterations in thyroid and ovarian status, together
with impaired BMP8B function (41, 43, 45, 78). In this
context, recent data have also indicated that VMH AMPK
could be an interesting target for the treatment of obesity.
For example, nicotine, the main bioactive compound
of tobacco, stimulates thermogenesis and weight loss
through AMPK in the VMH (44, 65). More importantly,
liraglutide, a GLP-1 agonist currently used clinically for
the treatment of type 2 diabetes (T2D), exerts a potent
central thermogenic action, in addition to inducing
browning of WAT, by modulating AMPK specifically in
the VMH among tested hypothalamic sites (46). Again,
that effect is accompanied by significant weight loss (46).
Further studies are necessary to address the sub-cellular
mechanisms and neuronal networks involved in the VMH
AMPK-(LHA OX)-SNS-BAT axis.
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AMPK modulators and metabolic disorders

AMPK has become a potential therapeutic target in
metabolic diseases involving impaired eating behaviors,
including obesity, T2D and lipodystrophies.
Although activation of AMPK can be expected to lead to
a reduction of ectopic lipid storage in liver and muscle
with an improvement in insulin sensitivity, it can also
affect energy homeostasis in a tissue-specific manner.
AICAR (5-aminoimidazole-4-carboxamide ribonucleotide)
was one of the first-described direct activators of AMPK
(79). However, despite its improving glucose tolerance
and reducing circulating triglycerides (TG) and free fatty
acids (FFA) (80), its poor bioavailability and short half-life
make it unlikely to be used in humans (81). Other direct
AMPK activators, such as 991 and A-769662, are more
potent and some studies have found reductions in plasma
glucose and lipid levels (82). However, side effects related
to cell cycle progression (83) also make these direct AMPK
activators unlikely to be used therapeutically.

Reduced ectopic lipid storage and increased insulin
sensitivity can be driven by increasing glucose uptake by
skeletal muscle (33, 84) or inhibiting glucose production
in the liver (85). Various AMPK activators are currently
used to ameliorate high glucose levels in T2D. Metformin,
a synthetic biguanide, activates AMPK indirectly by
inhibiting the mitochondrial respiratory chain (86, 87).
Metformin reduces glycated hemoglobin HbAlc by 2% in
T2D patients, with very few side effects, simultaneously
reducing the risk of cardiovascular diseases (88) and
certain types of cancer (89). Its main action is to inhibit
the hepatic glucose production (90), which appears to be
LKB1 dependent and therefore is mediated by an indirect
activation of AMPK, as LKB1-null animals do not have
reduced levels of glucose (18, 91). Recent reports have
also shown that metformin exerts its AMPK-independent
effects in the liver (92). In contrast, mice with acetyl-
CoA carboxylase (ACC) mutations are refractory to the
lipid and glucose-reducing effects of metformin (93). In
addition to metformin, thiazolidinedione compounds,
such as rosiglitazone and pioglitazone, also produce a
dramatic increase in AMP in skeletal muscle, which results
in a rapid activation of AMPK (94). These drugs also
seem to activate AMPK indirectly, through peroxisome
proliferator-activated receptor-gamma (PPARy), which in
turn stimulates adiponectin secretion (95). Other drugs,
such as liraglutide and exenatide (the synthetic form of
exendin-4), have been designed to mimic the action of
GLP-1 to increase insulin sensitivity (96). Liraglutide has
been reported to have opposing effects on AMPK. Although

some
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it increases AMPK phosphorylation in endothelium
(reducing inflammation) (97, 98), heart (99), liver and
muscle (enhancing insulin sensitivity) (100, 101), and
WAT (102), it decreases AMPK phosphorylation in
pancreatic p cells (leading to their proliferation) (103) and
in the hypothalamus (leading to anorexia and increased
BAT thermogenesis) (46). Exendin increases hepatic AMPK
phosphorylation, thus ameliorating steatosis (104).

As well as these Beside synthetic compounds, there
are naturally occurring molecules that have also been
shown to elicit metabolic benefits through AMPK
activation. Resveratrol, for example, found in the skin of
red grapes, has been shown to activate AMPK indirectly
and increase muscle glucose uptake (105), possibly by
increasing intracellular Ca2+ levels and thus activating
CaMKKp (106). Resveratrol has also been reported to
reduce lipid accumulation in the liver in an AMPK-
dependent manner, as these effects are blunted when
AMPK is genetically blocked (107). Quercetin, the most
abundant flavonoid, is thought to have metabolically
protective roles. Thus, it has been reported to exert an
anti-adipogenic action mediated by activation of AMPK
and its substrate ACC (108). In the same context, there is
evidence to suggest that quercetin positively affects glucose
metabolism in both liver and muscle through an insulin-
independent mechanism involving AMPK activation
(109). Quercetin also appears to have beneficial effects by
protecting against cholesterol-induced neurotoxicity (110,
111). Other plant-derived compounds, such as rooibos
and berberine, improve glucose homeostasis and reduce
cholesterol levels, with these benefits being attributed to
activation of AMPK in liver (112, 113), muscle (114) and
adipose tissue (113, 115).

It is notable that patients with metabolic disorders,
such as T2D, insulin resistance and obesity are at an
increased risk of developing cancer (116). Since AMPK
activation inhibits anabolism leading to cell arrest, it
is logical to speculate that AMPK might prevent tumor
progression. As AMPK mutations leading to tumorigenic
processes are rare, in humans, it seems more likely that
defective upstream effectors or downstream targets of
AMPK will be found to be causative. In this context,
inactivation of LKB1 induces activation of mTORCI,
which promotes cell growth and proliferation (18, 91),
whereas mutations in LKB1 prevent activation of AMPK,
causing Peutz-Jeghers syndrome, which is a risk factor
for developing cancer (18). It has been shown that
inactivation of AMPK enhances the aerobic glycolysis that
is likely to cause activation of oncogenes and inhibition
of tumor suppressors (117). Thus, activation of AMPK has
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been suggested as a possible therapy in cancer. Indeed,
evidence suggests that the AMPK activator metformin
can reduce the tumor size (89). In contrast, high levels
of pACC have been found in prostate cancer cells,
implicating activated AMPK in prostate cancer (118).
Since AMPK activation is inhibited when energy levels are
in a normal fed state, continued AMPK activation might
be essential for the survival of cancer cells. Further studies
are necessary to understand the role of AMPK in the cell
cycle and in the development of cancer. In this context,
very recent evidence shows that AMPK plays a major role
in regulating glycolysis and cell survival in response to
mitophagy during mitotic arrest (11).

Is hypothalamic AMPK a realistic
therapeutic target against obesity?

Obesity causes thousands of deaths per year worldwide,
directly and indirectly due to comorbidities including
cancer, cardiovascular disease and T2D, and yet, it is the
most preventable epidemic (96, 119, 120, 121). However,
despite significant investments in education and public
engagement, government-led policies are relatively
ineffective. This is shown in the World Health Organization
(WHO)’s latest report, which states that globally, 13%
of adults are obese. In healthy individuals, maintaining
normal weight is a matter of lifestyle. However, such
apparent simplicity also necessitates an understanding of
how the body manages what, how, when and why we eat,
as well as how we expend calories. Each of these functions
is carried out by different hormones and peptides that
respond to the various physiological states occurring in
arousal and sleep, with some having circadian rhythms.
Data accrued over the last decade have demonstrated
an unequivocally key role of hypothalamic AMPK in the
regulation of both parts of the energy balance equation, i.e.
feeding and energy expenditure (40, 42, 47, 48). Activation
of AMPK in peripheral organs is one of the mechanisms
of the widely used antidiabetic drug, metformin (for an
extensive review see (87). However, central activation of
AMPK would not give the best outcome in treatment for
obesity as it would increase feeding while decrease BAT
thermogenesis due to its differential regulation in the
periphery (122) and centrally (36, 37, 40, 42, 47, 48).
Inhibition of AMPK in peripheral tissues would also have
deleterious consequences, worsening insulin resistance
and developing diabetes. However, the best strategy would
be to specifically target hypothalamic AMPK that also
looks to be a highly complex task. The use of nanoparticle
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or exosome approaches (123) might be an option, but
directing them to specific hypothalamic populations, e.g.
to AMPK neurons in the VMH (whose inhibition could
promote anorexia, and increase thermogenesis and weight
loss) (Fig. 2), seems challenging. Another alternative
might be optogenetic modulation of hypothalamic AMPK
neurons, which has already been elegantly achieved
in rodents (124). However, the implementation of
optogenetics for hypothalamic intervention in humans
also seems a distant possibility. Perhaps a more realistic
strategy would be to use peptide conjugates (with other
peptides or steroid hormones) (120, 121, 125, 126,
127) in a targeted approach. For example, a chimera
containing GLP-1 plus an estrogen, (125) or glucagon
plus T3 (127), would allow quite a precise targeting of
AMPK neurons in the VMH, although the fact that other
neuronal populations would be affected (128) would
limit specificity.

Overall, such restraints raise some doubts about the
translatability of the data into clinical practice. Even if
hypothalamic AMPK can be specifically targeted, other
questions and potential problems emerge. In my view,
the most relevant issue to address is that of the long-
term consequences of targeting AMPK in the brain.
Considering the central role of AMPK on lipid and glucose
metabolism, how would neurons respond to sustained
AMPK inhibition? Would they survive? In this sense,
recent data have shown that impaired lipid metabolism
in neurons leads to lipotoxicity, endoplasmic reticulum
stress, and leptin and insulin resistance (129, 130, 131,
132, 133, 134, 135), which would be a deleterious side
effect. Would their modulation affect other hypothalamic-
mediated physiological processes such as regulation of
endocrine axes? (61). A substantial amount of work will
be necessary to address these questions and to understand
the molecular and neural mechanisms upstream and
downstream of central AMPK fully, itself a fascinating
endeavor for the years to come.
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