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Phages are viruses that infect bacteria. The phages can be classified into two different
categories based on their lifestyles: temperate and lytic. Now, the metavirome can
generate a large number of fragments from the viral genomic sequences of entire
environmental community, which makes it impossible to determine their lifestyles
through experiments. Thus, there is a need to development computational methods
for annotating phage contigs and making prediction of their lifestyles. Alignment-based
methods for classifying phage lifestyle are limited by incomplete assembled genomes
and nucleotide databases. Alignment-free methods based on the frequencies of k-mers
were widely used for genome and metagenome comparison which did not rely on the
completeness of genome or nucleotide databases. To mimic fragmented metagenomic
sequences, the temperate and lytic phages genomic sequences were split into non-
overlapping fragments with different lengths, then, I comprehensively compared nine
alignment-free dissimilarity measures with a wide range of choices of k-mer length and
Markov orders for predicting the lifestyles of these phage contigs. The dissimilarity
measure, dS

2 , performed better than other dissimilarity measures for classifying the
lifestyles of phages. Thus, I propose that the alignment-free method, dS

2 , can be used
for predicting the lifestyles of phages which derived from the metagenomic data.

Keywords: alignment-free dissimilarity measures, Markov model, lytic phages, contigs, temperate phages

INTRODUCTION

Viruses are distributed in every corner of the earth, and they play important roles in the ecosystem
(Srinivasiah et al., 2008). A virus is a small individual with a simple structure, containing only one
type of nucleic acid (DNA or RNA), and must parasitize and replicate in living cells (Whitman et al.,
1998). Viruses can infect all kinds of organisms, from mammals to bacteria. An important class of
viruses is bacteriophages, which can infect and kill bacterial cells.

The lifestyles of phages can be divided into two different types, temperate and lytic
(Chopin et al., 2001; Knowles et al., 2016). Temperate phages can replicate and spread
by integrating their genetic information into the bacterial genome. However, the lytic
phages replicate themselves in bacterial cells and spread by killing the cells. Bacteriophages
play important roles in microbial community, and identifying their lifestyles is the first
step to understand their functions. Now, the metavirome can generate a large number
of fragments from the viral genomic sequences of entire environmental community,
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which makes it impossible to determine their lifestyles through
experiments. So, developing computational methods is necessary
to predict the lifestyles of phages.

The previous studies of classifying phages using genomic data
were mainly using alignment-based methods (Proux et al., 2002;
Rohwer and Edwards, 2002; Lima-Mendez et al., 2008, 2011).
However, very few studies focus on classifying the lifestyles of
phages. McNair et al., 2012 utilizes a similarity algorithm and
a supervised Random Forest classifier to predict the lifestyle of
a phage (McNair et al., 2012). The similarity algorithm which
creates a training set from phages with known lifestyles based on
the alignment of protein sequences, is used to train a Random
Forest to classify the lifestyle of a phage. Mavrich and Hatfull
(2017) identified the temperate phages as those containing at
least one temperate phage Pham (Mavrich and Hatfull, 2017).
These two methods are based on protein sequence alignment,
thus, the completely assembled phages sequences were needed
before the usage of their methods. Nowadays, metavirome studies
using high throughput sequencing technology can generate
massive amounts of short read sequences from virus genomes
(Lecuit and Eloit, 2013; Wylie et al., 2013; Brum et al., 2015).
However, assembly of these short reads were difficulty for the
highly mosaic organization of virus genomes (Hendrix et al.,
1999). So, metavirome studies could produce large amount of
incomplete of fragments from viral genome which made the
previous alignment-based methods could not been used for
predicting the lifestyles.

Alignment-free methods based on the frequencies of k-mers
(k-words or k-tuples) were widely used for genome and
metagenome comparison as recently reviewed (Song et al.,
2014; Zielezinski et al., 2017; Ren et al., 2018). A k-tuple
is a short base fragment of length k on genomic sequences.
The alignment-free dissimilarity measures, dS2 and d∗2 , were
firstly developed for comparing two long DNA sequences,
and then, successfully applied in many other fields, including
phylogenetic tree construction (Song et al., 2013), the comparison
of metagenomic samples (Jiang et al., 2012; Liao et al., 2016;
Song et al., 2019) and gene regulatory regions (Song et al.,
2013), identification of horizontal gene transfer (Tang et al.,
2018) and virus-host interactions (Ahlgren et al., 2017), and
improving contig binning for metagenomes (Wang et al., 2017).
Also, many other alignment-free methods have been developed
and applicated in many fields, see the reviews (Zielezinski et al.,
2017, 2019; Ren et al., 2018).

In this study, I have conducted a comprehensive evaluation
of nine alignment-free dissimilarity measures over various k-mer
lengths for classifying the lifestyles of phages. To evaluate
prediction accuracy, I used a benchmark dataset of 1,562 phages
genomes available at the National Center for Biotechnology
Information (NCBI) for which the lifestyles were reported. Then,
the 1,225 of the phages identified before 31/12/2013 were used
for constructing the training models. The 337 of the phages
identified between 1/1/2014 and 31/12/2016 were used for testing
different alignment-free methods. Overall, the dS2 dissimilarity
measure performed better than other dissimilarity measures for
classifying the lifestyles of phages. The software is available at
https://github.com/songkai1987/PhagePred.

MATERIALS AND METHODS

Virus Databases
RefSeq genomes of phages infecting bacteria or archaea were
downloaded from NCBI on 20/10/2019. The lifestyles for the
1,562 phages identified before 31/12/2016 were predicted in
Mavrich and Hatfull (2017) (Mavrich and Hatfull, 2017). In the
set of phages with a known lifestyle, there were 463 temperate
phages and 1,099 lytic phages. The 1,225 phages identified
before 31/12/2013 were used for constructing the training models
(Supplementary Table 1). The 337 of the phages identified
between 1/1/2014 and 31/12/2016 were used for testing different
alignment-free dissimilarity measures (Supplementary Table 2).
The 325 phages identified after 1/1/2017 were used for novel
phages for testing (Supplementary Table 3). The lifestyles
of these phages were predicted using the same methods in
(Mavrich and Hatfull, 2017).

To mimic the phage contigs assembly from metagenomic
data sets, the temperate and lytic phages genomic sequences
were split into non-overlapping fragments with length L = 500,
1000, 3000, 5000, and 10,000 bp. Fragments were generated
for phage genomes identified between 1 January 2014 and 31
December 2016 were used as testing sets (Table 1). To generate
the evaluation datasets with the same proportion of temperate
and lytic phage contigs, the same number of contigs were
randomly sampled from the genomic sequences of lytic phage as
the number of contigs from temperate phages.

Alignment-Free Dissimilarity Measures
Several alignment-free dissimilarity measures based on genomic
oligonucleotide frequencies have been developed to infer the
relationship between genomic sequences. Here, I studied nine
alignment-free measures based on two different principles—
those that consider background frequencies of k-mers and those
that do not. First, the k-mer frequencies from the phage genomic
sequences identified before 31 December 2013 were extracted
and merged as two training sets for temperate and lytic phages,
respectively. Then, for a contig, its k-mer frequencies were also
extracted and used for calculating its distance to temperate and
lytic k-mer frequencies for inferring its lifestyle. Several common
methods are used to calculate the distance: Euclidean distance
(Eu), Manhattan distance (Ma), Chebyshev distance (Ch), and
d2 (Blaisdell, 1986). The background normalization methods,
including d∗2 , dS2 (Song et al., 2013), CVTree (Qi et al., 2004a,b),
Teeling (Teeling et al., 2004), and EuF (Pride et al., 2006),

TABLE 1 | The number of fragments generated from the lytic and temperate
phage genomes discovered between 1 January 2014 and 31 December 2016.

Fragment length Lytic Temperate

500 bp 68,815 13,657

1,000 bp 34,298 6,789

3,000 bp 11,278 2,217

5,000 bp 6,663 1,304

10,000 bp 3,217 621
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which compute the expected k-mer frequencies to eliminate
the effect of background and enhance the signal of differences
between the viral sequences. These dissimilarity measures are
described below.

Since a read could be from the forward or reverse strand of a
genome, the read was considered together with its complement
for calculating the occurrences of each k-mer. Thus, for a viral
contig, all possible k-mers were calculated using a finite alphabet
set S = {A,C,G,T}. For a given k-mer w, its occurrence in the
contig is defined as Xw and the relative frequency of this k-mer
is defined as f Xw = Xw

/∑
w Xw. For a given k-mer w for temperate

or lytic phages in training sets, its occurrence is defined as Yw .
Some dissimilarity measures, such as d∗2 and dS2, need an

r-th order Markov model for the background sequence. The
expected number of occurrences of word w = w1w2 · · ·wk,
E(Xw), can be calculated using the Markov model. The transition
probability matrix for the Markov model can be estimated based
on the r-mers and (r-1)-mers, and the estimated probability
of observing the k-mer w1w2 · · ·wr is PM (wr+1|w1w2 · · ·wr) =
Xw1w2···wr+1

/
Xw1w2···wr

. Then, E(Xw) can be calculated as:

E (Xw) = (L− k+ 1)f Xw1w2···wr

k−r∏
n=1

PM (wn+r|wnwn+1 · · ·wn+r−1)

where L is the length of the contig. The difference between the
occurrences of k-mer w and its expected occurrences is defined
X̃w = Xw − E(Xw).

The Euclidean distance is defined as:

Eu =
√∑

w∈Sk
|f Xw − f Yw |2

The Manhattan distance is defined as:

Ma =
∑
w∈Sk

∣∣f Xw − f Yw
∣∣

The Chebyshev distance is defined as:

Ch = max
w∈Sk

∣∣f Xw − f Yw
∣∣

The d2 dissimilarity measure is defined as:

d2 =
1
2

(
1−

∑
w∈Sk XwYw√∑

w∈Sk X2
w
√∑

w∈Sk Y2
w

)
The d∗2 dissimilarity measure is defined as:

d∗2 =
1
2

1−

∑
w

X̃w√
E(Xw)

Ỹw√
E(Yw)√∑

w
X̃2
w

E(Xw)

√∑
w

Ỹ2
w

E(Yw)


The dS2 dissimilarity measure is defined as:

dS2 =
1
2

1−

∑
w∈Sk

X̃wỸw√
X̃2
w+Ỹ2

w√∑
w∈Sk

X̃2
w√

X̃2
w+Ỹ2

w

√∑
w∈Sk

Ỹ2
w√

X̃2
w+Ỹ2

w



The CVTree dissimilarity measure is defined as:

CVTree =
1
2

1−
∑

w∈Sk X̃wỸw√∑
w∈Sk X̃2

w

√∑
w∈Sk Ỹ2

w


where X̃w = Xw

/
E(Xw), E(Xw) is estimated using a (k-2)-th

order Markov model.
The Teeling dissimilarity measure is defined based on the (k-

2)-th order Markov model:

Teeling =
∑
w∈Sk

Xw − E(Xw)
√
var(Xw)

Yw − E(Yw)
√
var(Yw)

where E(Xw) and var(Xw) for w = w1w2 · · ·wk can be calculated
as:

E (Xw) =
X(w1w2 · · ·wk−1)X(w2w3···wk)

X(w2 · · ·wk−1)

var (Xw)

= E (Xw)∗

(X
(
w2 · · ·wk−1

)
− X(w1w2 · · ·wk−1))

(X
(
w2 · · ·wk−1

)
− X (w2w3···wk))

X(w2 · · ·wk−1)
2

The EuF dissimilarity measure is also defined based on the (k-
2)-th order Markov model:

EuF =
1
4k
∑
w∈S4

∣∣X̃w − Ỹw
∣∣

where X̃w = Xw
/
E(Xw), E(Xw) is estimated based on the (k-2)-th

order Markov model as above.

RESULTS

The framework of my method is given in Figure 1. To test the
performance of different alignment-free dissimilarity measures,
two separate sets of temperate and lytic phage sequences
were used for training and testing: temperate and lytic phage
genomes sequenced before 31 December 2013 for training
(Supplementary Table 1), after 1 January 2014 and before 31
December 2016 for testing (Supplementary Table 2). In order
to evaluate the ability of these measures for classifying novel
viruses based on the previous sequenced phage genomes, date was
used for parting the training and testing sequences. To mimic
fragmented metagenomic sequences, phage genomes in testing
sets were split into non-overlapping fragments of various lengths
L = 500, 1000, 3000, 5000, and 10,000 bp (Table 1).

The Effects of k-mer Length, Markov
Order, and Contig Length
I used the temperate and lytic phages genomic sequences
identified before 31 December 2013 to construct two k-mer
frequency vectors, then calculated the distance (dissimilarity
values) between a novel contig with these two k-mer frequency
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FIGURE 1 | The work flow of my approach. First, the k-mer frequencies from two training sets of temperate and lytic phages were extracted, respectively. Then, the
k-mer frequencies for a contig from new phage were extracted and used for calculating its distance to temperate and lytic k-mer frequencies for inferring its lifestyle.

vectors. The ratio between the distance to temperate phages
and to lytic phages which reflected the possibility of the contigs
was temperate or not was calculated. The values lower than
one indicated the contigs closer to the temperate phages and
had higher possibility been from temperate phages. Then, the
receiver operating characteristic (ROC) curves were used to
evaluate d∗2 and dS2’s performances for classification, while high
values of the area under the ROC curves (AUROC) indicate good
performance. For d∗2 and dS2, AUROC values increased as k-mer
length increased (Figure 2 and Supplementary Figure 1). For
contigs with length ≥1,000 bp, AUROC values also increased
as the Markov order of background sequences increased. These
two dissimilarity measures, d∗2 and dS2, had similar performance.
For contigs with length ≥3,000 bp, the AUROC values were
larger than 0.90 when the k-mer length was eight and Markov
order was three. These high AUROC values demonstrate the
strong ability of the d∗2 and dS2 dissimilarity measures to correctly
classifying newly obtained viral sequences. Based on these results,
Markov order three was chosen for subsequent comparison with

other alignment-free dissimilarity measures. To prove the validity
of my proposed method, Supplementary Figure 2 showed
that the distance of newly viral sequences to the temperate
and lytic genomes.

Comparison of These Alignment-Free
Dissimilarity Measures’ Performance
I assessed the ability of the alignment-free dissimilarity
measures, d∗2 and dS2, to correctly classify phage contigs in
comparison to other alignment-free dissimilarity measures. All
these measures were tested using the same set of evaluation
contigs as above: equal numbers of contigs subsampled from
temperate and lytic phage genomes identified after 1 January
2014 and before 31 December 2016. AUROC values were
scored for each of these measures using k-mer lengths from
6 to 10 and contig lengths 500 – 10,000 bp (Table 2 and
Supplementary Table 4). AUROC values generally increased
for all the measures when k-mer length was increased from
6 to 10. For contigs with length ≥1,000 bp, both of d∗2
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FIGURE 2 | The AUROC values of d∗2 and dS
2 for classifying the lifestyles of

phage contigs using k-mer lengths from 6 to 10, Markov order from 0 to 3,
and contig lengths 5,000 bp (a) and 3,000 bp (b).

TABLE 2 | The AUROC values of different dissimilarity measures for classifying the
lifestyles of phage contigs using k-mer lengths from 6 to 10 and contig lengths
3,000 bp and 5,000 bp.

Contig length 3000 bp

K 6 7 8 9 10

d2* 0.811 0.830 0.859 0.892 0.913

d2S 0.740 0.801 0.849 0.884 0.911

d2 0.766 0.784 0.804 0.830 0.855

Hao 0.773 0.721 0.759 0.739 0.735

Manhattan 0.698 0.718 0.794 0.836 0.869

Chebyshev 0.706 0.699 0.688 0.669 0.692

Euclidean 0.773 0.795 0.811 0.836 0.869

Teeling 0.779 0.727 0.756 0.738 0.739

EuF 0.762 0.728 0.810 0.858 0.896

Contig length 5000 bp

K 6 7 8 9 10

d2* 0.835 0.854 0.881 0.911 0.928

d2S 0.782 0.827 0.870 0.904 0.927

d2 0.775 0.794 0.808 0.836 0.865

Hao 0.815 0.759 0.811 0.798 0.781

Manhattan 0.709 0.707 0.786 0.839 0.872

Chebyshev 0.723 0.723 0.710 0.688 0.687

Euclidean 0.779 0.799 0.820 0.841 0.876

Teeling 0.815 0.765 0.809 0.795 0.782

EuF 0.796 0.756 0.831 0.870 0.902

The background sequence Markov orders for d∗2 and dS
2 are fixed to three. The

corresponding tables for cotig lengths 500, 1,000. and 10,000 bp are presented
as Supplementary Table 4. The bold values represent the best results.

and dS2 had highest AUROC values, thus, outperform other
dissimilarity measures. For contigs with length = 500 bp, all
these measures had much lower AUROC values. The measures,

Manhatten, Euclidean and EuF, had similar or a little better
AUROC values as d∗2 and dS2 when the k-mer length 10 for
contig length 500 bp.

Sensitivity of d∗

2 and dS
2 to Mutations

Because of the alignment-free dissimilarity measures relies on
nucleotide k-mer frequency and there are errors in sequencing
technologies, the sensitivity of our newly developed alignment-
free dissimilarity measures, d∗2 and dS2, to mutations were
tested. In Supplementary Figure 3, thirty replicates subsampled
contigs with randomly inserted mutations at three different
rates (0.001, 0.005, and 0.01) were used for comparing the
performance with no mutations. The AUROC values were lower
but not significantly for Markov order 0 and 1 at all the three
different mutation rates. For Markov order 2 and 3, the AUROC
values were only significantly lower at the highest rates of 0.01
mutations per bp (P-value < 0.01, t-test). As the sequencing
error rates of Illumina and 454 platforms are ∼0.001 or 0.01,
respectively (Glenn, 2011), sequencing errors only slightly impact
the performance of the alignment-free dissimilarity measures for
the NGS technologies.

Assessment of the Classification of
Novel Phages
To assess the ability of these alignment-free dissimilarity
measures to classify novel phages, the 136 phages
(Supplementary Table 5) (18 temperate phages and 108 lytic
phages, identified after 1 January 2014 and before 31 December
2016) that had no significant nucleotide similarity (blastn search,
E-values < 10−5) to previously phages genome sequences were
used for testing. I classify these novel phages according to their
distance to the temperate and lytic trained k-mer frequencies.
The True Positive Rates (TPR) for temperate and lytic phages
and the accuracy of classification for these phages were scored
for these alignment-free dissimilarity measures using k-mer
lengths from 6 to 10. I only showed the results that the TPRs for
temperate and lytic phages were both larger than 60%. Table 3
showed that the best classification result was obtained by dS2 using
k-mer length of 10 and Markov order of three. dS2 could correctly
predicted 12 (66.7%) of temperate phages and 95 (87.9%) of lytic
phages. For other alignment-free dissimilarity measures, the best
classification result was obtained by Euclidean (Eu) distance
using k-mer length of 10. Euclidean distance correctly predicted
11 (61.1%) of temperate phages and 91 (84.3%) of lytic phages.

Application to Classification of Phages
Identified After January 2017
The 325 phage genomes identified after 1 January 2017 were
downloaded for analysis (Supplementary Table 3). The lifestyle
of these phages were predicted used the same method in
Mavrich and Hatfull, 2017 (Mavrich and Hatfull, 2017), then 72
temperate phages and 253 lytic phages were identified. These
phages were used for assessing the classification accuracy of
the alignment-free dissimilarity measures. Table 4 showed that
the best classification result was obtained by dS2 using k-mer
length of 10 and Markov order of three. dS2 could correctly
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TABLE 3 | The True Positive Rates (TPR) for classifying the lifestyles for the 108
phages without significant nucleotide similarity to previously phages genome
sequences using different dissimilarity measures.

K Markov order TPR1 TPR2 TPR

d2S 6 0 0.611 0.750 0.730

d2S 6 3 0.778 0.611 0.635

d2S 7 0 0.667 0.769 0.754

d2S 7 1 0.667 0.676 0.675

d2S 7 3 0.611 0.611 0.611

d2S 8 1 0.667 0.722 0.714

d2S 8 2 0.889 0.806 0.817

d2S 8 3 0.722 0.722 0.722

d2S 9 3 0.667 0.778 0.762

d2S 10 3 0.667 0.879 0.849

d2 10 0.722 0.815 0.802

Chebyshev 7 0.889 0.630 0.667

Chebyshev 8 0.833 0.639 0.667

Euclidean 9 0.889 0.759 0.778

Euclidean 10 0.611 0.843 0.810

The TPRs for temperate and lytic phages were both larger than 60% are shown in
the Table. TPR1 is the Ture Positive Rate for temperate phages. TPR2 is the True
Positive Rate for lytic phages. TPR is the Ture Positive Rate for all the phages.

TABLE 4 | The True Positive Rates (TPR) for classifying the lifestyles for the 325
phage genomes identified after 1 January 2017 using different
dissimilarity measures.

K Markov order TPR1 TPR2 TPR

d2S 6 2 0.833 0.704 0.732

d2S 7 2 0.986 0.601 0.686

d2S 7 3 0.903 0.625 0.686

d2S 8 2 0.958 0.660 0.726

d2S 8 3 0.917 0.700 0.748

d2S 9 1 0.736 0.763 0.757

d2S 9 2 0.889 0.676 0.723

d2S 9 3 0.639 0.806 0.769

d2S 10 1 0.736 0.810 0.794

d2S 10 2 0.778 0.787 0.785

d2S 10 3 0.889 0.779 0.803

d2 10 0.972 0.648 0.720

CVTree 7 0.931 0.680 0.735

Teeling 8 0.625 0.802 0.763

Teeling 9 0.875 0.739 0.769

Teeling 10 0.944 0.621 0.692

Euclidean 9 0.944 0.625 0.695

Euclidean 10 0.875 0.735 0.766

The TPRs for temperate and lytic phages were both larger than 60% are shown in
this Table. TPR1 is the Ture Positive Rate for temperate phages. TPR2 is the True
Positive Rate for lytic phages. TPR is the Ture Positive Rate for all the phages.

predicted 64 (88.9%) of temperate phages and 197 (77.9%) of lytic
phages. For other alignment-free dissimilarity measures, the best
classification results were obtained by Teeling and Euclidean (Eu)
using k-mer length of 10. The dissimilarity measure of Teeling
correctly predicted 63 (87.5%) of temperate phages and 187
(73.9%) of lytic phages. Euclidean distance correctly predicted 63
(87.5%) of temperate phages and 186 (73.5%) of lytic phages.

To mimic fragmented metagenomic sequences, these virus
genomes were split into non-overlapping fragments of various
length L = 1000, 3000, and 5000 bp. Table 5 showed that
the best classification result was also obtained by dS2 using
k-mer length of 10 and Markov order of three for contigs with
length = 5000 bp. dS2 could correctly predicted 665 (86.4%)
contigs from temperate phages and 3441 (81.6%) contigs from
lytic phages. For contigs with length = 1000 and 3000 bp, dS2 also
got the best classification results using k-mer length of 10 and
Markov order of 3 (Supplementary Tables 6,7).

DISCUSSION

In this study, I have conducted a comprehensive
evaluation of nine alignment-free dissimilarity measures
over various k-mer lengths for classifying the lifestyles
of phages. For these dissimilarity measures requiring a
background model, different orders of Markov chains
were used for estimating background k-mer frequencies.
These alignment-free dissimilarity measures, with

TABLE 5 | The True Positive Rates (TPR) for classifying the lifestyles for contigs of
5,000 bp from the 325 phage genomes identified after 1 January 2017 using
different dissimilarity measures.

K Markov order TPR1 TPR2 TPR

d2S 6 2 0.701 0.678 0.681

d2S 7 2 0.771 0.681 0.695

d2S 8 2 0.840 0.719 0.738

d2S 8 3 0.718 0.780 0.770

d2S 9 1 0.909 0.689 0.723

d2S 9 2 0.926 0.753 0.779

d2S 9 3 0.638 0.826 0.797

d2S 10 1 0.773 0.826 0.817

d2S 10 2 0.864 0.806 0.815

d2S 10 3 0.851 0.816 0.821

d2 6 0.982 0.661 0.710

d2 7 0.978 0.674 0.721

d2 8 0.978 0.689 0.734

d2 9 0.969 0.717 0.756

d2 10 0.955 0.761 0.791

CVTree 7 0.783 0.708 0.720

Teeling 8 0.619 0.693 0.682

Teeling 9 0.666 0.638 0.642

Manhattan 6 0.975 0.646 0.696

Manhattan 7 0.970 0.698 0.740

Euclidean 6 0.973 0.664 0.712

Euclidean 7 0.962 0.680 0.724

Euclidean 8 0.955 0.707 0.745

Euclidean 9 0.930 0.747 0.775

Euclidean 10 0.848 0.799 0.807

The TPRs for temperate and lytic phage contigs were both larger than 60% are
shown in this Table. TPR1 is the Ture Positive Rate for temperate phage contigs.
TPR2 is the True Positive Rate for lytic phage contigs. TPR is the Ture Positive Rate
for all the phage contigs.

Frontiers in Microbiology | www.frontiersin.org 6 November 2020 | Volume 11 | Article 567769

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-567769 November 7, 2020 Time: 19:35 # 7

Song Classifying the Lifestyles of Phages

a wide range of choices of k-mer length and Markov orders,
were compared using the simulated metagenomic fragments of
different length. The dissimilarity measure, dS2, could obtain
the best performance for classifying the lifestyles of the phages
contigs among these measures.

There are several limitations of the current study. First, for the
dissimilarity measure, d∗2 , could obtain well performance as dS2
using the evaluation of ROC values, however, the performance
for d∗2 to classify novel phage contigs according to the distance
to the temperate and lytic k-mer frequencies was very bad.
The distribution of ratios between the distance to temperate
phages and the distance to lytic phages calculated by d∗2 was
skewed to larger than one which reflect the systematic deviation
in predicting the lifestyles for this dissimilarity measure. The
unequal number of temperate and lytic phage genomes used
in training set maybe cause this deviation for d∗2 . Second,
the performance of these alignment-free dissimilarity measures
depends on the phage genomes chosen in the training sets.
In this study, I used the date as a criterion to split the
phage genomes into training and testing sets. However, only
less than two thousand phage genomes could be used in
the study of these alignment-free measures which limits the
accuracy of these methods. With the high-throughput sequencing
technology widely used in viromics research, the assembled
genomes for phages are becoming increasingly more available
which would facilitate the development and application of
these alignment-free dissimilarity measures. Third, the k-mer
size k and orders of Markov models can markedly impact
the performance of these alignment-free measures. In general,
the k-mer size of 9 or 10 and Markov order of 2 or 3 for
background sequences can give good performance. Since the viral
genomes have great variability and highly mosaic organization,
so longer length of k-mer and higher order of Markov chain
can model the genomic sequences well. More studies are needed
to see if this conclusion is robust for more phage genomes
sequenced in the future.

In this study, I focused on classifying the lifestyles of phage
contigs using alignment-free dissimilarity measures. Compared
to alignment-based methods, the alignment-free methods can
have better performance in classifying short contigs as a few
kilobases without complete gene structure, however, alignment-
free methods cannot give insights about the genome information
responsible for the contigs. From this perspective, I can say
that alignment-free and alignment-based methods for classifying
phage contigs complement each other and should be used
interactively for phage contigs classification.
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