
Editorial
Good reasons for targeting SARS-CoV-2
by engineered extracellular vesicles
The possibility to inhibit pathogens by treatment with neutralizing
antibodies and antibody fragments (passive immunization) has
been discussed to a great extent in the case of SARS-CoV-2, mainly
in the early phases of the pandemic, when a vaccine was not yet avail-
able.1 Apart from sera collected from recovering patients, several
nanobodies were selected. Nanobodies are small antigen-binding
fragments (�15 kDa) that are derived from heavy chain only anti-
bodies present in camelids and cartilaginous fishes.2 Their tiny di-
mensions and elevated structural stability were exploited to prepare
a spray formulation for topical treatment of the upper airways.3–6

InMolecular TherapyMethods & Clinical Development, Scott and col-
leagues illustrate a new application of nanobodies made possible by
the modification of extracellular vesicles (EV).7 In their article “Engi-
neered extracellular vesicles directed to the spike protein inhibit
SARS-CoV-2,” they demonstrate that insertion of an anti-spike-spe-
cific nanobody into a portion of the major extracellular loop of CD63
(VHH72-CD63) enabled the EV (mainly small EV) to target the spike
protein and exert a neutralizing effect on the antigen. This nanobody-
exclusive application indicated that format does matter and raises the
following questions: Do we need EV for passive immunization? Are
there peculiarities of EV that no other macromolecule can provide?

Researchers who have dealt with EV know how cumbersome their pu-
rification and characterization are and how limited their yields usually
are. These conditions render their production much more expensive
than that of nanobodies and probably even monoclonal IgGs. There-
fore, any advantage represented by EV delivery of therapeutics to the
target antigen must compensate for the extra effort necessary for the
preparation of such reagents. Scott and colleagues underline that EV
can be used to transport a combined therapeutic payload. This is an
interesting argument, as this strategy may lead to a curative application
based on the use of multiple agents carried by EV, such as the neutral-
izing binders as well as other bioactive molecules. Phage display and
in vivo biological screening are currently applied to explore the poten-
tial uses of EV to target specific sites. Studies have demonstrated that
therapeutic EV enriched with bioactive ischemic myocardium-target-
ing peptides or cardiomyocyte specific peptides can be delivered to
an inflamed, injured heart in a very precise manner, achieving superior
efficacy outcomes.8–10 Similarly, VHH72-CD63 might be targeted to
the respiratory tract, exploiting synergistic effects of combining the
neutralization effect with an anti-inflammatory “side effect,” consistent
with the pharmacological properties of mesenchymal stem cell-derived
EV in COVID-19 patients.11

A further and conceptually different protective mechanism that
would still require a thorough evaluation could be the possibility of
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obtaining antigen agglutination by means of EV, similar to what
was proposed for nanobody multimers or self-assembling nanopar-
ticles successfully targeting bacterial infections and neutralizing
toxins.12,13 EV are indeed nanoparticles carrying several copies of
the active binder; their multivalent nature might offer the possibility
to simultaneously scavenge several molecules of soluble antigen. This
application might decrease the overall pathogen and/or toxin concen-
trations, while the resulting aggregates could activate phagocytosis
and generate an immune response. Very recently, it has been shown
that small EV improve the survival of mice infected with methicillin-
resistant Staphylococcus aureus (MRSA) by serving as decoys for bac-
terial toxins.14 Transferred small EVprotect host cells in vitro by
serving as scavengers that can bind multiple toxins, and the capability
of EV to specifically bind protein-containing structures has also been
shown for viruses. CD4 molecules displayed on the surface of CD4+
T cell-derived EV can bind to envelope proteins of HIV-1, hindering
virus interactions with target cells. Cocozza et al. suggested that EV
carrying ACE2 are more efficient than soluble ACE2 as decoys for
SARS-CoV-2 S protein-containing lentivirus, leading to a reduction
of infectivity that correlates with the level of ACE2.15 Another aspect
that should be considered is that, apart from the replicative capacity,
small EV share several biophysical and functional features with
enveloped viruses (including the betacoronavirus). Like enveloped vi-
ruses, EV are nano-sized membranous particles consisting of cell-
membrane proteins and lipids.16 They use common cellular mecha-
nisms such as the endosomal system as biogenesis pathways17 and
are very similar in size (small EV size range from 50 to 200 nm; virions
being �100–200 nm) and buoyant density (small EV 1.13–1.18 g/L
versus enveloped viruses 1.16–1.18 g/L).18 The aforementioned pecu-
liarities confer, to small EVs, a similarity to enveloped viruses to such
an extent that they have also been called “non-infectious defective vi-
ruses.”19 Most importantly, like in enveloped viruses, proteins and
lipids expressed on the EV surface can interact with the plasma mem-
brane of target cells, triggering biological functions and endocytosis of
particles.20,21 Thus, circulating EV in body fluids virtually recapitulate
a systemic viral infection that may efficiently stimulate the immune
system.

The latter point, however, should be carefully addressed before at-
tempting to translate such an approach into the clinic. In general,
the results by Scott and colleagues are encouraging, suggesting that
EV may be a suitable tool to target viruses. VHH72-CD63 EV can
effectively neutralize both pseudotyped viral vectors, compared with
relevant controls including RBD-targeting S35 mAbs, recombinant
bivalent VHH72, and COVID-19 convalescent plasma. Most impor-
tantly, they corroborate their data showing effectiveness against
several variants of concern in live-virus assays. A second piece of
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information that warrants further investigation would be optimizing
the site for integrating novel functionality into CD63 tetraspanin.
Indeed, the insertion of an antibody into the specific extracellular
loop 2 (EX2.4) seems to be instrumental also for other virus-specific
targets, such as scFv derived from a broadly neutralizing N6 antibody
targeted to HIV gp160, thus making this specific scaffold a potentially
universal site for EV functionalization.7
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