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Abstract: Sulfated polysaccharides from marine algae have high potential as promising candidates
for marine drug development. In this study, a homogeneous sulfated polysaccharide from the
marine green alga Monostroma nitidum, designated MS-1, was isolated using water extraction and
anion-exchange and size-exclusion chromatography. Results of chemical and spectroscopic analyses
showed that MS-1 mainly consisted of→3)-α-l-Rhap-(1→ and→2)-α-l-Rhap-(1→ residues, with
additional branches consisting of 4-linked β-d-xylose, 4-/6-linked d-glucose, terminal β-d-glucuronic
acid, and 3-/2-linked α-l-rhamnose. Sulfate ester groups substituted mainly at C-2/C-4 of
→3)-α-l-Rhap-(1→ and C-4 of→2)-α-l-Rhap-(1→ residues, slightly at C-2 of terminal β-d-glucuronic
residues. MS-1 exhibited strong anticoagulant activity in vitro and in vivo as evaluated by the
activated partial thromboplastin time and thrombin time assays, and significantly decreased platelet
aggregation. The anticoagulant activity mechanism of MS-1 was mainly attributed to strong
potentiation thrombin by heparin cofactor-II, and it also hastened thrombin and coagulation factor
Xa inhibitions by potentiating antithrombin-III. MS-1 possessed markedly thrombolytic activity
evaluated by plasminogen activator inhibitior-1, fibrin degradation products, and D-dimer levels
using rats plasma, and recanalization rate by FeCl3-induced carotid artery thrombosis in mice. MS-1
exhibited strong antithrombotic activity in vitro and in vivo evaluated by the wet weighs and lengths
of thrombus, and thrombus occlusion time by electrically-induced carotid artery thrombosis in rats.
These results suggested that MS-1 could be a promising marine drug for prevention and therapy of
thromboembolic disease.

Keywords: marine green algae; sulfated polysaccharide; structural characteristics; anticoagulant
property; antithrombotic activity

1. Introduction

Thrombus usually occurs in vessels with severe atherosclerotic disease and may embolize to cause
transient ischemic attacks and cerebral infarctions [1]. Thrombosis is a result of an activation process
of thrombin that converts fibrinogen into fibrin, eventually resulting in insoluble fibrin polymer or
clot [2]. The Global Burden of Disease Study 2010 reported that the ischemic heart disease and stroke
collectively caused one in four deaths worldwide [3]. Anticoagulant drugs have been extensively used
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as an adjunct therapy in thrombotic diseases, and heparin is one of the agents more widely used in the
therapy and prophylaxis of thrombosis. However heparin is mostly extracted from pig intestine or
bovine lung and the tissues are rich in mast cells, presumably resulting from the high foreign parasite
burden in the tissues. The incidence of prion-related diseases in mammals and the appearance of ‘mad
cow disease’ have limited the use of animal heparin. Furthermore, heparin is associated with various
side effects [4,5]. Therefore, new instead sources of heparin are urgently desired [6].

Marine algae accumulate large amounts of sulfated polysaccharides in their cell walls or
intercellular regions [7,8]. These sulfated polysaccharides exhibit various biological activities, including
anticoagulant, antihyperlipidemic, immunomodulatory, and antiviral activities [9–11]. So far, algal
sulfated polysaccharides are only partly explored, especially the sulfated polysaccharides from marine
green algae. Some investigations revealed that the sulfated polysaccharides from marine green algae
were one abundant and unique source of heparinoids, and had high potential as preventing and
therapeutic agents against thrombotic diseases [12–18].

The marine green alga Monostroma nitidum is widely distributed through the world’s seas,
and has been cultivated as edible alga in some countries. In the present study, a novel sulfated
polysaccharide was obtained from M. nitidum. The structural characteristics, anticoagulant and
antithrombotic properties in vitro and in vivo of the sulfated polysaccharide were investigated. The
sulfated polysaccharide has promising as a marine drug for thrombotic disease. The results of our
investigation are given in the paper.

2. Results and Discussion

2.1. Isolation and Chemical Composition of MS-1

The crude polysaccharide was extracted by hot water and then fractionated using a Q Sepharose
Fast Flow column into two fractions. The fraction eluted with 0.5 mol/L NaCl contained the most
abundant total sugar and was then further purified by Sephacryl S-400/HR column. Finally, one
purified Monostroma sulfated polysaccharide (MS-1) was obtained. The yield of MS-1 from starting
material was about 1.34% (w/w).

MS-1 was a homogenous polysaccharide due to it appeared as a single and symmetrical peak
on the high performance gel permeation chromatography (HPGPC) (Figure S1a). The molecular
weight of MS-1 was ~79.8 kDa based on the calibration graph prepared with pullulan standards.
The monosaccharide composition analysis (Figure S1b) showed that MS-1 consisted of rhamnose,
glucuronic acid, glucose, and xylose in the molar ratio of 35.41:1.28:1.36:1.00. The sugar configuration
analysis showed that rhamnose was the l-configuration, whereas glucuronic acid, xylose, and glucose
were the d-configuration (Figure S1c). The sulfate ester content of MS-1 was 28.20% and the glucuronic
acid was 3.81%. No protein was found in MS-1.

Fourier-transform infrared (FTIR) spectrum of MS-1 was shown in Figure S1d. The characteristic
band at 3400 cm−1 was attributed to the O–H stretching vibrations, and the absorption band at
2930 cm−1 was due to the C–H stretching vibration. The band at 1051 cm−1 was from the stretching
vibration of C–O and change angle vibration of O–H. Furthermore, the band at 1460 cm−1 could be the
stretching vibration of the carbonyl group. The absorption peaks at 850 and 1240 cm−1 derived from the
stretching vibration of C–O–S of sulfate ester in axial position and S–O stretching vibration, respectively.

2.2. Structural Characteristics of MS-1

2.2.1. Methylation Analysis

In order to obtain the information of the linkage pattern and the sulfate ester position in MS-1, a
comparative methylation analysis between the native MS-1 and its desulfated polysaccharide product
(DSMS-1) was carried out. As shown in Table 1, MS-1 was mainly composed of →3)-Rhap-(1→,
→2)-Rhap-(1→ and →2,3)-Rhap-(1→ residues, followed by →3,4)-Rhap-(1→ and →2,4)-Rhap-(1→
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residues. Compared with the result of methylation analysis of DSMS-1, the →3)-Rhap-(1→ and
→2)-Rhap-(1→ residues were significantly increased, whereas the amounts of →2,3)-Rhap-(1→,
→2,4)-Rhap-(1→ and→3,4)-Rhap-(1→ residues decreased. Moreover, no→4)-Rhap-(1→ residue was
found in DSMS-1, with the disappearance of→2,4)-Rhap-(1→ and→3,4)-Rhap-(1→ residues. Thus, the
sulfate ester groups substituted at the C-4/C-2 of→3)-Rhap-(1→ and C-4 of→2)-Rhap-(1→ residues.
In addition, minor amounts of Xylp-(1→, Glcp-(1→,→4)-Xylp-(1→,→4)-Glcp-(1→ and→6)-Glcp-(1→
residues were detected in MS-1 and DSMS-1. Moreover it could be deduced that ~23.31% of the
rhamnose residues in MS-1 were substituted by sulfate ester groups, especially for→3)-Rhap-(1→
residue was about 15.15%, for→2)-Rhap-(1→ residue was about 8.16%.

Table 1. Results of methylation analyses of Monostroma sulfated polysaccharide (MS-1) and
Monostroma desulfated polysaccharide (DSMS-1).

Methylated Alditol Acetate Linkage Pattern Molar Percent Ratio

MS-1 DSMS-1

1,5-Di-O-acetyl-2,3,4-tri-O-methyl-rhamnitol Rhap-(1→ 3.53 3.91

1,5-Di-O-acetyl-2,3,4-tri-O-methyl-xylitol Xylp-(1→ 0.68 0.62

1,2,5-Tri-O-acetyl-3,4-di-O-methyl-rhamnitol →2)-Rhap-(1→ 22.68 30.84

1,3,5-Tri-O-acetyl-2,4-di-O-methyl-rhamnitol →3)-Rhap-(1→ 30.02 45.17

1,5-Di-O-acetyl-2,3,4,6-tetra-O-methyl-glucitol Glcp-(1→ 1.03 1.13

1,4,5-Tri-O-acetyl-2,3-tri-O-methyl-xylitol →4)-Xylp-(1→ 1.38 1.72

1,3,4,5-Tetra-O-acetyl-2-O-methyl-rhamnitol →3,4)-Rhap-(1→ 9.27 1.13

1,2,3,5-Tetra-O-acetyl-4-O-methyl-rhamnitol →2,3)-Rhap-(1→ 20.87 12.10

1,2,4,5-Tetra-O-acetyl-3-O-methyl-rhamnitol →2,4)-Rhap-(1→ 7.16 0.57

1,6,5-Tri-O-acetyl-2,3,4-tri-O-methyl-glucitol →6)-Glcp-(1→ 1.42 1.17

1,4,5-Tri-O-acetyl-2,3,6-tri-O-methyl-glucitol →4)-Glcp-(1→ 1.86 1.64

2.2.2. NMR Spectroscopy Analysis of DSMS-1

In the 1H NMR spectrum of DSMS-1 (Figure 1A), there were three main anomeric signals at 5.00
(A), 5.07 (B), and 5.23 (C) ppm, and two relatively weak signals at 5.29 (D) and 5.39 (E) ppm. The
relative integrals of A, B, C, D, and E were 1.00:1.43:1.24:0.38:0.60. The five anomeric proton signals
were assigned to the α-l-rhamnopyranose residues. The signal at 1.38 ppm was the proton of CH3

group of rhamnose residues. In the 13C NMR spectrum (Figure 1B), the anomeric carbon signals at
102.40~103.70 ppm were assigned to α-l-rhamnopyranose units (compared with that of β-anomer at
105 ppm) [19]. The signal at 18.32 ppm was assigned to C-6 of the rhamnose residues. Other signals at
70–80 ppm were attributed to C-2–C-5 of the rhamnose residues. The α-anomeric configuration of
rhamnosyl units was also deduced from H-5 signals at 3.91–3.98 ppm (compared with the β-anomer at
3.39 ppm) and C-5 signal at 70.73 ppm (compared with that of the β-anomer at 72.3–73.4 ppm). Due to
the relatively low contents of glucuronic acid, xylose, and glucose and overlapping of signals, it was
very difficult to identify their chemical shifts. However, the low intensity signal at 105.74 ppm could
be from β-d-glucuronic acid and β-d-xylosyl units [20].

The 1H NMR spin systems of the polysaccharide were assigned by the 1H–1H COSY spectrum
(Figure 1C). The direct C–H coupling was determined by the 1H–13C HSQC spectrum (Figure 1D).
Combined with the analysis of the 1H–13C HSQC spectrum and the comparison with the chemical
shift data of similarly substituted sugar residues, the assignment of the main signals of the five sugar
residues could be completed. The anomeric proton signals of A and B at 5.00 and 5.07 ppm were
correlated to the anomeric carbon signals at 103.55 and 103.72 ppm, respectively. A and B were
suggested to be→3)-α-l-Rhap-(1→ because of the downfield chemical shifts of the C-3 at 79.02 ppm as
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compared with that of parent α-l-rhamnopyranose residue. A and B with different chemical shifts
probably corresponded to the same type of residue with different environments. The anomeric proton
signals of C and D at 5.23 and 5.30 ppm, respectively, were correlated to the anomeric carbon signal at
102.41 ppm. C and D were assigned to→2)-α-l-Rhap-(1→, which was confirmed by the downfield
chemical shift of the C-2 at 79.40 ppm. The anomeric proton signal of E at 5.39 ppm was related to the
anomeric carbon signal at 102.37 ppm. E was proposed to be→2,3)-α-l-Rhap-(1→ on account of the
downfield chemical shifts of the C-2 and C-3 at 79.9 and 79.0 ppm, respectively.

Figure 1. NMR spectra and structures of the main repeating disaccharides of DSMS-1. Spectra
were performed on an Agilent DD2 500M NMR spectrometer. Chemical shifts are referenced to
internal acetone at 2.225 ppm for 1H and 31.07 ppm for 13C. (A) 1H NMR spectrum, (B) 13C NMR
spectrum, (C) 1H–1H COSY spectrum, (D) 1H–13C HSQC spectrum, (E) 1H–1H NOESY spectrum, and
(F) structures of the main repeating disaccharides in DSMS-1. A–E correspond to→3)-α-l-Rhap-(1→,
→3)-α-l-Rhap-(1→, →2)-α-l-Rhap-(1→, →2)-α-l-Rhap-(1→ and →2,3)-α-l-Rhap-(1→, respectively.
Rhap: rhamnopyranose.

Based on the analysis of the 1H–1H NOESY spectrum (Figure 1E), the repeating units of the
monosaccharide sequences in the polysaccharide chain were established. The anomeric proton signal
of A was correlated to the H-2 of C/D at 4.11 ppm and H-3 of E at 3.97 ppm, respectively, indicating
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the sequences →3)-α-l-Rhap-(1→2)-α-l-Rhap-(1→ and →3)-α-l-Rhap-(1→2,3)-α-l-Rhap-(1→. The
anomeric proton signal of B was related to the H-3 of A at 3.89 ppm and H-3 of E
at 4.11 ppm, respectively, indicating the presence of →3)-α-l-Rhap-(1→3)-α-l-Rhap-(1→ and
→3)-α-l-Rhap-(1→2,3)-α-l-Rhap-(1→. The anomeric proton signal of C was related to the
H-3 of A/B at 3.89 ppm, H-3 of E at 3.97 ppm and H-2 of D at 4.11 ppm, respectively,
suggesting the presence of→2)-α-l-Rhap-(1→3)-α-l-Rhap-(1→,→2)-α-l-Rhap-(1→2,3)-α-l-Rhap-(1→
and→2)-α-l-Rhap-(1→2)-α-l-Rhap-(1→. In conclusion, the backbone of DSMS-1 was composed of
→3)-α-l-Rhap-(1→,→2)-α-l-Rhap-(1→ and→2,3)-α-l-Rhap-(1→, and the branches were substituted
partly at C-2 of→3)-α-l-Rhap-(1→ and/or C-3 of→2)-α-l-Rhap-(1→ residues. Structures of the main
repeating disaccharides in DSMS-1 are shown in Figure 1F.

2.2.3. NMR Spectroscopy Analysis of MS-1

In the 1H NMR spectrum of MS-1 (Figure S2A), there were six anomeric proton signals occurring
at 5.07 (A), 5.23 (B), 5.25 (C), 5.39 (D), 5.45(E), and 5.50 ppm (F), with the relative integrals of
2.93:2.34:0.80:1.18:0.87:1.00. In the 13C NMR spectrum (Figure S2B) of MS-1, the anomeric carbon
signals at 100.76~103.32 ppm were assigned to α-l-rhamnosyl units. Compared with the anomeric
proton signals of DSMS-1, MS-1 had additional anomeric proton signals at 5.25, 5.45, and 5.50 ppm. By a
comprehensive analysis of 1H NMR, 13C NMR, 1H–1H COSY (Figure S2C), and 1H–13C HSQC (Figure
S2D) spectra, the anomeric proton signal of C at 5.25 ppm was related to the anomeric carbon signal at
101.85 ppm and C was ascribed to→2)-α-l-Rhap(4SO4)-(1→, with the downfield chemical shifts of the
C-2 at 79.78 ppm and C-4 at 80.39 ppm. The anomeric proton signal of E at 5.45 ppm corresponded
with the anomeric carbon signal at 100.40 ppm and E was assigned to→3)-α-l-Rhap(4SO4)-(1→, which
was confirmed by the downfield chemical shifts of the C-3 at 79.35 ppm and C-4 at 81.99 ppm. The
anomeric proton signal of F at 5.50 ppm was related to the anomeric carbon signal at 100.76 ppm and
F was assigned to→3)-α-l-Rhap(2SO4)-(1→, due to the signals of the C-2 and C-3 shifted to 78.18
and 77.42 ppm, respectively. Based on the analysis of the 1H–1H NOESY spectrum (Figure S2E),
the repeating units of the monosaccharide sequences in the polysaccharide chain were established.
The anomeric proton signal of A was correlated to the H-3 of E at 4.00 ppm, H-3 of D at 4.09 ppm,
H-3 of F at 4.11 ppm, H-2 of B at 4.28 ppm, and H-2 of C at 4.30 ppm, respectively, indicating
the linkages →3)-α-l-Rhap-(1→3)-α-l-Rhap(4SO4)-(1→, →3)-α-l-Rhap-(1→2,3)-α-l-Rhap-(1→,
→3)-α-l-Rhap-(1→3)-α-l-Rhap(2SO4)-(1→, →3)-α-l-Rhap-(1→2)-α-l-Rhap-(1→ and
→3)-α-l-Rhap-(1→2)-α-l-Rhap(4SO4)-(1→. The anomeric proton signal of B was correlated
with the H-3 of A at 3.96 ppm, H-3 of D at 4.09 ppm and H-3 of F at 4.11 ppm, respectively, indicating
the sequences →2)-α-l-Rhap-(1→3)-α-l-Rhap-(1→, →2)-α-l-Rhap-(1→2,3)-α-L-Rhap-(1→ and
→2)-α-l-Rhap-(1→3)-α-l-Rhap(2SO4)-(1→. The anomeric proton signal of D was correlated
with the H-3 of A at 3.96 ppm and H-2 of B at 4.28 ppm, respectively, indicating the
linkages →2,3)-α-l-Rhap-(1→3)-α-l-Rhap-(1→ and →2,3)-α-l-Rhap-(1→2)-α-l-Rhap-(1→. The
anomeric proton signal of E was correlated with the H-3 of A at 3.96 ppm and H-3 of F
at 4.11 ppm, respectively, suggesting the linkages →3)-α-l-Rhap(4SO4)-(1→3)-α-l-Rhap-(1→
and →3)-α-l-Rhap(4SO4)-(1→3)-α-l-Rhap(2SO4)-(1→. Besides the anomeric proton
signal of F was correlated with the H-3 of A at 3.96 ppm, suggesting the linkage
→3)-α-l-Rhap(2SO4)-(1→3)-α-l-Rhap-(1→. Structures of the main repeating disaccharides in
MS-1 were shown in Figure 2. The assignment of the main signals of the six sugar residues could be
completed (Table 2).
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Figure 2. Structures of the main repeating disaccharides in MS-1.

Table 2. 1H and 13C chemical shifts (ppm) of MS-1.

Rhamnosyl Residues Chemical Shift (ppm)

1 2 3 4 5 6

A→3)-α-l-Rhap-(1→
1H 5.07 4.20 3.96 3.59 4.10 1.43
13C 103.32 71.36 79.31 73.16 70.69 18.39

B→2)-α-l-Rhap-(1→
1H 5.23 4.28 4.00 3.59 4.14 1.38
13C 101.85 79.78 70.72 73.19 70.79 18.39

C→2)-α-l-Rhap(4SO4)-(1→
1H 5.25 4.30 4.12 4.39 4.10 1.43
13C 101.85 79.78 70.86 80.39 70.74 18.39

D→2,3)-α-l-Rhap-(1→
1H 5.39 4.26 4.09 3.60 4.00 1.38
13C 101.31 79.30 80.46 73.19 70.67 18.39

E→3)-α-l-Rhap(4SO4)-(1→
1H 5.45 4.25 4.00 4.31 4.02 1.35
13C 100.40 71.46 79.35 81.99 70.69 18.39

F→3)-α-l-Rhap(2SO4)-(1→
1H 5.50 4.70 4.11 3.58 3.98 1.35
13C 100.76 78.18 77.42 73.16 70.51 18.39

2.2.4. Hydrophilic Interaction Liquid Chromatography-Fourier-Transform Mass Spectrometry
Analysis of MS-1-Derived Oligosaccharides

In order to get more detailed structural information, MS-1 was partially hydrolyzed by mild
acid. Two hydrolysis products, the supernatant (MS-1-O) and precipitate (MS-1-P) products were
obtained. Compared with the high performance liquid chromatography (HPLC) result of MS-1, the
monosaccharide composition of MS-1 had slightly change. The molar percent ratios of rhamnose,
glucuronic acid, glucose and xylose in MS-1-P were ~94.44:2.51:1.72:1.33, while MS-1-O contained a
large amount of rhamnose, xylose and glucose with a minor amount of glucuronic acid (Figure S3A).
The results indicated that the rhamnose, xylose, glucose and glucuronic acid could be released from
the chain of MS-1 by mild acid hydrolysis. Hence, it could be deduced that the side chain of MS-1
consisted of glucose, xylose, rhamnose, and glucuronic acid.

MS-1-O was followed by hydrophilic interaction liquid chromatography-Fourier-transform mass
spectrometry (HILIC-FTMS) analysis. The total ion chromatogram of MS-1-O is shown in Figure
S3B. The raw data was deconvoluted using Decon tools, and then was processed by GlycResoft to
get matching structures and relative quantitative information [21,22]. Relative quantitative results
of the oligosaccharides were shown in Figure S3C. A total of 22 chain compositions with size equal
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or smaller than degree of polymerization (dp) 6 were detected in MS-1-O, in which G2 (24.55%), G3

(14.99%), R2S (8.23%), X2 + G (19.57%), R3S (5.48%), X2 + G + R(S) (8.02%), and R2S + GA/R2 + GA(S)
(4.13%) were the main components. Minor amounts of R2S2, X + R, R4S2, RS + GA/R + GA(S), R5S2,
and R + GA were also detected. The content of other oligosaccharides was below 1%. R, G, GA, X,
and S represented rhamnose, glucose, glucuronic acid, xylose and sulfate ester, respectively. Here, the
detailed sequences of the oligosaccharides containing glucuronic acid were further investigated.

The negative ion MS2 spectrum of R + GA at m/z 339 was given in Figure S4A. The major fragment
at m/z 321 was derived from the dehydration of the ion at m/z 339, and the less intensive fragment at m/z
193 arose from glyosidic bond cleavages of C1. No 2,5A-type cross-ring cleavage was detected, which is
a unique cleavage from reducing end GlcA residue [23], indicating the GlcA was at the nonreducing
end. The presence of C1 suggested the 1→3 linkage between GlcA and Rha, because the fragmentation
of the 3-O-sulfated monosaccharide led to only one high abundance daughter ion at m/z 97 [24]. The
minor ion at m/z 235 which was originated from 0,2A indicated that minor amount of the 1→2 linkage
was also existed between GlcA and Rha. So, the sequence of R + GA might be GlcA(1→3)Rha and/or
GlcA(1→2)Rha, and the former was the main component.

The negative ion MS2 spectrum of RS + GA/R + GA(S) at m/z 419 was listed in Figure S4B, the
most abundant ion at m/z 255 arose from glyosidic bond cleavage of B1, indicating the presence of
sulfated glucuronic acid and the sulfate ester could be at the C-2 of the GlcA according to NMR
analysis. The less-intensive ion at m/z 243 arose from glyosidic bond cleavage of Z1, indicating the
1→3 linkage between GlcA and Rha. The minor ion at m/z 183 arose from cross-ring cleavage 0,2A2,
indicating the 1→2 linkage between GlcA and Rha. So, the sequence of RS + GA/R + GA(S) might
be GlcA(2SO4)(1→3)Rha, GlcA(2SO4)(1→2)Rha, GlcA(1→3)Rha(4SO4), GlcA(1→3)Rha(2SO4), and/or
GlcA(1→2)Rha(4SO4).

The negative ion MS2 spectrum of R2S + GA/R2 + GA(S) at m/z 565 was listed in
Figure S4C. The ions at m/z 255, 193, 321, and 339 arose from the glyosidic bond cleavages
of B1, B2, C1, and C2, respectively. The ion at m/z 255 indicated the presence of the sulfated
glucuronic acid. The ions at 225, 243, and 389 arose from the glyosidic bond cleavages of Y1,
Z1, and Y2, respectively. The ions at m/z 225 and 243 indicated the presence of the sulfate
ester at the reducing end of rhamnose. The main structures of R2S + GA/R2 + GA(S) were
GlcA(2SO4)(1→3)Rha(1→3)Rha GlcA(2SO4)(1→3)Rha(1→2)Rha, GlcA(2SO4)(1→2)Rha(1→3)Rha,
GlcA(2SO4)(1→2)Rha(1→2)Rha, GlcA (1→3)Rha(1→3)Rha(2SO4), GlcA (1→3)Rha(1→3)Rha(4SO4),
GlcA(2SO4)(1→2)Rha(1→3)Rha(2SO4) and/or GlcA(2SO4)(1→2)Rha(1→3)Rha(2SO4).

The above results demonstrated that the backbone of MS-1 mainly consisted of→3)-α-l-Rhap-(1→
and→2)-α-l-Rhap-(1→ residues, partially sulfate groups were at C-4/C-2 of (1→3)-Rhap and C-4 of
(1→2)-Rhap residues. The branching was composed of sulfated or unsulfated terminal β-d-GlcAp,
→3)-α-l-Rhap-(1→ and →2)-α-l-Rhap-(1→, as well as →4)-β-d-Xylp-(1→, →4/→6)-d-Glcp-(1→
residues. The branching substituted at C-2 of →3)-α-l-Rhap-(1→ and C-3 of →2)-α-l-Rhap-(1→
residues. MS-1 had sophisticated structural characteristics differing from those of the sulfated
polysaccharides previously obtained from Monostroma species [15,16,25–27]. The structural changes
may be due to the species, ecophysiological growth conditions, and harvest seasons [28]. The
microheterogeneities with sugar residues and/or sulfation patterns of sulfated polysaccharides could
have originated from sequential enzymatic modification in the biosynthesis of these molecules [29].
The present result suggested that the marine green algae could be a potential source of sulfated
polysaccharides with unique structures, and be worth being further investigated.

2.3. Anticoagulant Activity In Vitro and In Vivo of MS-1 and Its Platelet Aggregation

Activated partial thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT) are
widely used for estimating the anticoagulant activity. The prolongation of APTT indicates inhibition
of the intrinsic and/or common pathway. TT reflects the blood coagulation status that transforming
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fibrinogen into fibrin [30]. PT is the extrinsic pathway-dependent clotting time. The anticoagulant
activity of MS-1 in vitro was evaluated by APTT, TT and PT assays using heparin as a reference.

As shown in Table 3, the anticoagulant activity of MS-1 was concentration-dependent. MS-1
effectively prolonged the APTT, and the clotting time was more than 200 s at 25 µg/mL. In addition,
the TT activity by MS-1 slowly increased, and the clotting time was more than 120 s at 50 µg/mL.
It was observed that the APTT and TT activities of MS-1 were different from that of heparin. Heparin
quickly increased the APTT and TT times; the clotting time was more than 200 s at 10 µg/mL for APTT
and 120 s at 10 µg/mL for TT. Lack of prolongation effect of MS-1 on the PT was also observed with
increasing concentration of MS-1. The results showed that MS-1 inhibited both the intrinsic and/or
common pathways of coagulation and thrombin activity or conversion of fibrinogen to fibrin.

Table 3. Result of anticoagulant activity assay of MS-1 in vitro.

Clotting Time a (s) Sample Concentration (µg/mL)

0 5 10 25 50

APTT
MS-1

40.3 ± 1.1
59.2 ± 0.5 * 97.8 ± 5.0 ** >200 ** -

Heparin 127.8 ± 12.9 ** >200 ** - -

TT
MS-1

14.5 ± 0.3
17.1 ± 0.2 19.4 ± 1.5 * 57.4 ± 3.6 ** >120 **

Heparin 70.3 ± 0.9 ** >120 ** - -

PT
MS-1

13.9 ± 0.7
12.8 ± 0.1 13.3 ± 0.2 15.5 ± 0.5 19.3 ± 0.8

Heparin 17.4 ± 4.4 * 33.6 ± 1.7 ** 81.3 ± 2.2 ** >120 **
a All data were the mean of three parallel assays and expressed as means ± standard deviation (SD). * p < 0.05,
** p < 0.01, versus the control group.

Anticoagulant activity of MS-1 in vivo was further evaluated by assays of APTT, PT, and TT. No rats
were found moribund and bleeding after intravenous injection of heparin and MS-1. Furthermore, the
clotting times had been prolonged after injection of MS-1 and heparin, indicating that heparin and
MS-1 were absorbed. As shown in Figure 3A,B, MS-1 indicated significant prolongation effects on
the APTT and TT at 2.5 mg/kg, and no prolongation effect on the PT was found (data not shown).
Furthermore, the APTT activity of MS-1 had exceeded that of heparin at 5 mg/kg. Thus, MS-1 exhibited
strong anticoagulant activity in vivo.

MS-1 had a higher anticoagulant activity in vitro than some sulfated polysaccharides from
Monostroma species [17,18,25–27]. It is interesting to note that the APTT activity of MS-1 was weaker
than that of the sulfated polysaccharide WF3 from M. nitidum [31], though both of MS-1 and WF3
mainly consisted of→2)-α-l-Rhap-(1→ and→3)-α-l-Rhap-(1→ residues. The sulfate ester of MS-1 was
substituted mainly at C-2/C4 of→3)-α-l-Rhap-(1→ and C4 of→2)-α-l-Rhap-(1→ residues, while the
sulfate ester of WF3 was at C-2 of→3)-α-l-Rhap-(1→ residue. In addition, no anticoagulant activity
was found in DSMS-1 (data not shown), indicating that the sulfate ester content played a major role in
the anticoagulant activity of sulfated polysaccharide. Mao et al. [31] also reported that the sulfate ester
content markedly modified the anticoagulant activity of sulfated rhamnan. The results demonstrated
that the sulfated polysaccharides from Monostroma species exhibited anticoagulant activity not merely
as a function of charge density. The structural basis of anticoagulant activity depends on the sites of
sulfation, and also on the distribution and/or the proportion of sulfation pattern.

Platelet aggregation plays a central role in the extension artery thrombosis and adenosine
diphosphate (ADP) induced primary and secondary aggregation [32]. This aggregation involves
purinergic receptors that are targets for generation of new antiplatelet agents, such as clopidogrel.
The antiplatelet aggregation activity of MS-1 was evaluated via a conventional turbidimetric assay
using clopidogrel as a positive control. As shown in Figure 3C, MS-1 could significantly inhibit platelet
aggregation, and the inhibitory effect was concentration-dependent. Furthermore, the inhibitory effect
on the platelet aggregation of MS-1 at 10 mg/kg was higher than that of clopidogrel. The concentration
of clopidogrel used in the experiment referred to the clinical dosage in human according to the
specification of the clopidogrel. The data suggested that MS-1 had a high antiplatelet aggregation
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activity. So far, little work in the literature is related to the antiplatelet aggregation property of sulfated
polysaccharides from marine green algae. The effect of platelet aggregation could relate to the structural
variety of sulfated polysaccharides [33]. Further work is required to investigate the platelet aggregation
of the sulfated polysaccharides from Monostroma species.

Figure 3. Anticoagulant activity and in vivo and platelet aggregation of MS-1. (A) APTT, (B) TT, and
(C) platelet aggregation, clopidogrel. * p < 0.05, ** p < 0.01 versus control, # p < 0.05, ## p < 0.01 versus
the heparin or clopidogrel group.

2.4. Effects of MS-1 on Thrombin and Factor Xa Activities Mediated by AT-III or HC-II

In order to elucidate the inhibitory mechanism of MS-1, a specific analysis for coagulant factors Xa
and thrombin inhibitions mediated by antithrombin-III (AT-III) and heparin cofactor-II (HC-II) were
performed using chromogenic assays in vitro. As shown in Figure 4, both heparin and MS-1 were
observed to poorly inhibit thrombin and factor Xa in the absence of HC-II or AT-III. However, thrombin
inhibition was pronounced after combined treatment with AT-III or HC-II in a dose-dependent manner.
It was noted that the effect of MS-1 on thrombin inhibition mediated by HC-II was stronger than that of
heparin. However, a higher concentration of MS-1 was required to obtain the same thrombin inhibition
as heparin mediated by AT-III. In addition, MS-1 had a strong inhibitory effect on the activity of factor
Xa in the presence of HC-II, but it had no inhibitory effect on factor Xa in the presence of AT-III (data
not shown).
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Figure 4. Effects of MS-1 on thrombin and factor Xa activities. (A) The activity of thrombin in the
absence and presence of AT-III; (B) the activity of thrombin in the absence and presence of HC-II; and
(C) the activity of factor Xa in the absence and presence of HC-II.

Normally, AT-III inhibits all intrinsic pathway coagulation enzymes, and HC-II is a serine
protease inhibitor and selectively inhibits thrombin. Inherited deficiency of AT-III individuals follows
hypercoagulable disorders [34]. The results suggested that MS-1 did not have direct inhibition of
thrombin and factor Xa. MS-1 was a potent thrombin inhibitor mediated by HC-II. It also hastened
thrombin and factor Xa inhibitions mediated by AT-III, but MS-1 is less effective than heparin. The
differences may be attributed to their structural features variation. MS-1 and heparin bind to different
sites on AT-III. The conformational activation of AT-III and the consequent formation of a covalent
complex with thrombin or factor Xa appear to be less important for anticoagulant activity of MS-1 than
for heparin. Hayakawa reported that the effect of sulfated polysaccharide from Monostroma species on
thrombin inhibition mediated by HC-II was stronger than that of heparin [35]. It is observed that the
effect of MS-1 on thrombin and factor Xa inhibitions mediated by AT-III or HC-II had some differences
from those of the sulfated polysaccharides from Monostroma species [27,31]. The differences between
thrombin and factor Xa inhibitions may be attributed to the variation of their molecular size, charge
density, sulfation position and the linkage pattern of rhamnose residues [36]. Structural requirements
for the interaction of sulfated polysaccharide with coagulation inhibitors and their target proteases
were stereospecific and not merely a consequence of charge density [37]. An in-depth study in the
relationship between the structure and mechanism of anticoagulant activity of Monostroma sulfated
polysaccharides is required.
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2.5. Fibrinolytic and Thrombolytic Activities of MS-1

The fibrinolytic activity of MS-1 was evaluated by fibrin degradation products (FDP) plasminogen
activator inhibitor-1 (PAI-1) and d-dimer levels using rat plasma; urokinase was used as a reference. FDP
is the degradation product of fibrous protein and is involved in many vascular diseases [38]. d-dimer
is a specific protein fiber degradation product of cross-link fibrin by the hydrolysis of fibrinolytic
enzyme [39,40]. Fibrinolytic inhibitor PAI-1 is a potent inhibitor of the fibrinolytic agent tissue-type
plasminogen activator and urokinase-type plasminogen activator (uPA) and determines resistance to
artery thrombolysis [41]. PAI-1 has heightened fibrinolytic capacity and exhibits endogenous protection
against thrombosis, which could bind the ternary complex PAI-1–uPA–uPA receptor (uPAR) thereby
exerting antifibrinolytic activity effect [42,43]. As shown in Figure 5A,B, the levels of FDP and D-dimer
were obviously increased by MS-1. The increasing effects of MS-1 at 5 and 10 mg/kg on the levels of
FDP and d-dimer were significantly higher than that of urokinase in the concentration used in the
experiment. Compared with the control group, the level of PAI-1 was effectively decreased by MS-1
(Figure 5C). Moreover, the decreasing effects of MS-1 at 5 and 10 mg/kg on PAI-1 were significantly
higher than that of urokinase. The results demonstrated that MS-1 had a high fibrinolytic activity
in vitro. MS-1 appeared to depress the activity of PAI-1, release uPA–uPAR complex who activated
proenzyme plasminogen to biologically active plasmin, promote fibrin degradation and result in
increasing of FDP and D-dimer levels.

Further, the effect of MS-1 on carotid artery thrombosis in vivo induced by FeCl3 was investigated
by monitoring blood flow using urokinase as a reference. As shown in Figure 5Da, after 3 min of
FeCl3 stimulation, the blood flow of common carotid artery was rapidly reduced to occlusion in
all experimental groups, and no increase in the control group occurred after saline injection. From
Figure 5Db–e, a reversion was found in positive control and MS-1 groups. Effective recanalization
rate was found in MS-1 groups, and it was in a dose-dependent manner. Obviously, the blood flow
treated with 25 mg/kg of MS-1 increased to 24.22% of the baseline, the blood flow treated with 50
and 100 mg/kg of MS-1 groups increased to 51.33% and 83.89%, respectively, which exceeded that of
urokinase group. The results indicated that the occluded carotid artery could be recanalized after
intravenous injection MS-1, and complete recanalization could be achieved at a high concentration of
MS-1. Carotid artery thrombus occurs in vessels with severe atherosclerotic disease and may embolize
to cause transient ischemic attacks and cerebral infarctions, associating with severe iron deficiency
anemia and thrombocytosis [1]. The basis of therapy is the intravenous administration of an exogenous
plasminogen activator [44]. An in-depth work is required to investigate the thrombolytic activity of
Monostroma sulfated polysaccharides.
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Figure 5. Results of fibrinolytic and thrombolytic activities in vivo of MS-1. (A) FDP; (B) d-dimer, the
d-dimer value of control and urokinase was below 0.05 mg/L; (C) PAI-1; and (D) recanalization rate,
time–carotid artery blood flow curves of mice injected saline (a: saline; b: urokinase; c: 25 mg/kg MS-1;
d: 50 mg/kg MS-1; d: 100 mg/kg MS-1). Significance: * p < 0.05, ** p < 0.01 versus the control group;
# p < 0.05, ## p < 0.01 versus the urokinase group.
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2.6. Antithrombotic Activities In Vitro and In Vivo of MS-1

Antithrombotic activities of MS-1 in vitro and in vivo were investigated by assays of the weight
and length of thrombus and the carotid artery occlusion time by electrical induced carotid artery
thrombosis model using heparin as a reference. As shown in Figure 6A,B, the wet weights and lengths
of the thrombus for MS-1 groups were far below those of the control, MS-1 could significantly inhibit
the thrombus formation in a dose-dependent manner. Moreover, it was observed that the weights of
thrombus of MS-1 at 5 and 10 mg/mL were lighter than that of heparin in the concentration used in the
experiment. Similar results were also found in the wet lengths of thrombus. The results suggested that
MS-1 had a high antithrombotic activity in vitro.

Figure 6. Antithrombotic effect of MS-1. (A) Thrombus dry weight, (B) thrombus wet length, and (C)
occlusion time. Significance: * p < 0.05, ** p < 0.01 versus the control group; # p < 0.05, ## p < 0.01 versus
the heparin group.

Antithrombotic activity of MS-1 in vivo was further evaluated. The carotid artery thrombosis
induced by electrical consisted of large amounts of platelets and red cells which involved in a
fibrin network [36]. As shown in Figure 6C, the occlusion times of the thrombus for MS-1 groups
were significantly increased. The effects of MS-1 at 5 and 10 mg/kg were stronger than that of
heparin. The notable potency of MS-1 observed in the carotid artery thrombosis model is related
to its potent inhibitory effect in the coagulation and platelet aggregation. It is noted that some
sulfated polysaccharides exhibit antithrombotic activity and are heparinoid-active [45–47]. However,
little work in the literature is related to the antithrombotic activity of sulfated polysaccharides from
Monostroma species. Further work is required to investigate the antithrombotic effect of Monostroma
sulfated polysaccharides.

Marine algae produce a large amount of sulfated polysaccharides with various biological activities.
In view of the increasing incidence of thrombotic diseases, effective functional foods or drugs
are urgently desired. Until now, the research on anticoagulant and antithrombotic activities of
sulfated polysaccharides from marine green algae is still less comprehensive than those of sulfated
polysaccharides from brown and red algae. The present results revealed that MS-1 from marine green
alga M. nitidum possessed strong anticoagulant and antithrombotic activities in vitro and in vivo, and
could be a promising drug or functional foods for prevention and therapy of thromboembolic disease.
An in-depth investigation on MS-1 is in progress.
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3. Materials and Methods

3.1. Materials

M. nitidum was collected from the coast of Yantai, China on May 2016. The raw material
was thoroughly washed with tap water, air-dried, milled using a blender, and then stored at room
temperature in a dry environment. Q Sepharose Fast Flow and Sephacryl S-400/HR were from GE
Healthcare Life Sciences (Piscataway, NJ, USA). Dialysis membranes (flat width 44 mm, molecular
weight cut-off 3500; flat width 31 mm, molecular weight cut-off 1000) were from Lvniao (Yantai,
China). Pullulan standards (Mw: 9.6, 21.1, 47.1, 107, 200, 344 and 708 kDa) were from Showa Denko
K.K. (Tokyo, Japan). l-rhamnose, l-arabinose, d-xylose, d-fucose, d-mannose, d-galactose, d-glucose,
d-glucuronic acid, d-galacturonic acid, and d-glucosamine were from Sigma (St. Louis, MO, USA).
APTT, TT, and PT kits were from MD Pacific (Tianjin, China). Heparin (196 U/mg) was obtained from
Sigma (St. Louis, MO, USA). Clopidogrel was from Sanofi (Hangzhou, China). Urokinase was obtained
from Ndpharm (Nanjing, China). d-Dimer kit was from Siemens Healthcare Diagnostics Products
(Marburg, Germany). Factor Xa and thrombin were from Boatman Biotech CO., LTD. (Shanghai,
China). AT-III was from Chromogenix (Milan, Italy). HC-II was from Hyphen Biomed (Neuville,
France). S-2238 and S-2765 were from Asnail (Beijing, China). FDP kit was from BIOLINKS CO., LTD.
(Tokyo, Japan). PAI-1 kit was from Cloud-Clone Corp (Wuhan, China).

3.2. Animals

Male Sprague-Dawley (SD) rats (180–220 g) and Kunming (KM) mice (18–20 g) were housed at
23 ± 2 ◦C under a 12 h light/dark cycle with free access to food and water. All animal experiments
were approved by the Institutional Animal Care and Use Committee of the Ocean University of China
(OUC-YY-201801001).

3.3. Isolation and Purification of the Sulfated Polysaccharide

The alga powder (100 g) was dipped into 40 vols of distilled water and extracted at 100 ◦C for 4 h,
and then centrifuged at 3600× g for 15 min, concentrated, and dialyzed in a cellulose membrane against
distilled water. The retained fraction was recovered, concentrated by rotary evaporation, precipitated
by adding four volumes of 95% ethanol (v/v) and dried at 40 ◦C to obtain a crude polysaccharide.
The crude polysaccharide was fractionated on a Q Sepharose Fast Flow column (30 cm × 3.5 cm, GE
Healthcare Life Sciences, USA), and eluted with a stepwise gradient of 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and
3.5 mol/L NaCl at a flow rate of 1 mL/min. Eluate was collected by autofraction collector (8 mL/tube,
Bio-Rad, Hercules, CA, USA). Total sugar content of the eluate was determined by the phenol–sulfuric
acid method [48]. The subfraction eluted with 0.5 mol/L NaCl was pooled and dialyzed. Then, the
fraction was further purified on a Sephacryl S-400/HR column (100 cm × 2.5 cm; GE Healthcare Life
Sciences, USA), eluted with 0.2 mol/L NH4HCO3 at a flow rate of 0.3 mL/min. Eluate was collected by
autofraction collector (6 mL/tube). The major fraction of MS-1 was pooled and freeze-dried (1.34 g).

3.4. General Technique of Structural Characteristics

The homogeneity and molecular weight were determined by HPGPC on a Shodex OHpak
SB-804 HQ column (7.8 mm × 300 mm, Tokyo, Japan) and elution with 0.2 mol/L Na2SO4 at a flow
rate of 0.5 mL/min. The molecular weight was estimated by reference to a calibration curve made
by pullulan standards [49]. Total sugar content was assayed by the phenol–sulfuric acid method
using rhamnose as the standard. Protein content was determined as described by Bicinchoninic acid
protein assay kit (Shanghai, China). Sulfate ester content was measured according to the method
of Therho and Hartiala [50]. Uronic acid content was determined by the carbazole–sulfuric acid
method using glucuronic acid as standard [51]. Monosaccharide compositions were measured by
reversed phase HPLC after precolumn derivatization [25]. Calculation of the molar ratio of the
monosaccharide was carried out on the basis of the ratio of peak areas of monosaccharide and
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correspondent monosaccharide standard. Sugar configuration was determined according to the
method of Tanaka et al. [52]. Identification of sugar configuration was completed by comparison with
retention time of the derivatives of reference sugars.

Desulfation of the sulfated polysaccharide was performed according to the method of Falshaw and
Furneaux [53]. Desulfurization product of MS-1 was named DSMS-1. The effectiveness of desulfation
procedure was confirmed by determination of residual sulfate in the polysaccharide. Methylation
analysis was performed according to the method of Sims et al. [54] with some modification. The
completion of methylation was confirmed by IR spectroscopy as the disappearance of OH bands.
The products were analyzed by gas chromatography–mass spectrometry (GC–MS) on a TRACE 1300
instrument (Thermo Fisher, Waltham, MA, USA) using a DB 225 fused silica capillary column (0.25 mm
× 30 m, Agilent Technologies Co. Ltd., Palo Alto, CA, USA). Identification of partially methylated
alditol acetates was carried out on the basis of retention time and mass fragmentation patterns.

3.5. Spectroscopy Analysis

FTIR spectrum of the polysaccharide was measured on a Nicolet Nexus 470 spectrometer (Thermo
Fisher Scientific, Waltham, MA). The polysaccharide was mixed with KBr powder, ground and pressed
into a 1 mm pellet for FTIR measurements in the frequency range of 4000–400 cm−1 [55]. 1H and
13C NMR spectra were performed at 23 ◦C on an Agilent DD2 500 M NMR spectrometer (Agilent
Technologies CO., LTD., USA). Approximately 70 mg of polysaccharide was dissolved in 1 mL of D2O
(99.97%) followed by freeze-drying for three times, and the final sample was dissolved in 0.5 mL of
99.97% D2O. 1H–1H COSY, 1H–13C HSQC, and 1H–1H NOESY experiments were also carried out.
Chemical shifts are expressed in ppm using acetone as an internal standard at 2.23 ppm for 1H and
31.07 ppm for 13C.

3.6. Profiling of MS-1-Derived Oligosaccharides by HILIC-FTMS

The acid hydrolysis of MS-1 was performed according to the method of [56] with some
modifications. MS-1 (10 mg/mL) was hydrolyzed with 0.2 mol/L TFA at 60 ◦C for 1 h. The hydrolysis
product was neutralized with 0.2 mol/L NaOH. After concentrated, four-fold volume of 95% (v/v)
ethanol was added. The resulting supernatant and precipitate were recovered by centrifugation
(6000× g, 10 min), designated as MS-1-P and MS-1-O, respectively. The precipitate MS-1-P was
washed with ethanol and vacuum-dried. The supernatant MS-1-O was concentrated, freeze-dried and
redissolved in 50 µL of 50% acetonitrile for HILIC-FTMS analysis.

HILIC-FTMS analysis was performed on an Agilent 1290 LC UPLC system (Wilmington, DE, USA)
equipped with LTQ ORBITRAP XL mass spectrometer (Waters, Milford, MA, UK). The oligosaccharides
were separated by a Luna HILIC column (2.0 mm × 50 mm, Phenomenex, Torrance, CA, USA) at 25 ◦C.
The mobile phase was a mixture of 5 mmol/L 98% of NH4OAc acetonitrile (solvent A) and 5 mmol/L
NH4OAc/H2O (solvent B) at a flow rate of 150 µL/min. The gradient was programmed as 98% A in the
beginning, and linearly changed to 60% A at 10 min and 30 min. The analysis was performed in the
negative ion mode using a capillary temperature of 275 ◦C. The spray voltage was 4.2 KV and nitrogen
dry gas flowed at 40 L/min. Data analysis were performed using GlycReSoft 1.0 software [57,58].

3.7. Assessment of Anticoagulant Activity and Platelet Aggregation

3.7.1. Anticoagulant Activity In Vitro

APTT, TT, and PT assays were carried out according to the manufacturer’s instructions. For
the APTT clotting assay, 95 µL of citrated sheep plasma was mixed with 5 µL of the sample solution
(0.9% NaCl) at various concentrations and incubated at 37 ◦C for 60 s. Then, 100 µL of prewarmed
APTT reagent was added to 100 µL of mixture plasma and allowed to incubate at 37 ◦C for 180 s.
Thereafter, prewarmed 0.025 mol/L CaCl2 (100 µL) was added, and clotting time was recorded in a
SL318 coagulometer (Senlan Medical Science and Trading CO., LTD., Jinan, China). For the PT clotting
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assay, 95 µL of citrated sheep plasma was mixed with 5 µL of the sample solutions (0.9% NaCl) at
various concentrations and incubated at 37 ◦C for 180 s. Then, 200 µL of prewarmed PT assay reagent
was added and clotting time was recorded. For the TT clotting assay, 95 µL of citrated sheep plasma
was mixed with 5 µL of the sample solutions (0.9% NaCl) at various concentrations and incubated at
37 ◦C for 60 s. Then, 200 µL of prewarmed TT assay reagent was added and clotting time was recorded.
Heparin was used for the comparison of anticoagulant activity of MS-1. Saline solution (0.9% NaCl)
was used as control.

3.7.2. Anticoagulant Activity In Vivo and Platelet Aggregation

Male SD rats were randomly divided into five groups, each group included 12 rats. The
experimental rats were anaesthetized with 15% urethane, and then injected with MS-1 (2.5, 5, and
10 mg/kg), heparin (0.5 mg/kg), or saline solution. After 30 min, blood was drawn from the abdominal
aorta and collected into blood collection tube with 3.8% sodium citrate (citrate/blood = 1/9, v/v). APTT,
PT, and TT activity in vivo were determined by above mentioned methods.

The platelet aggregation was determined by the turbidimetric method using an aggregometer
according to Xin et al. [59]. Platelet-rich plasma (PRP) was prepared by low speed centrifugation at
1000 × g for 15 min at room temperature. After the PRP was collected, the residual blood was further
centrifuged at 3000 × g for 10 min at room temperature to obtain platelet-poor plasma (PPP). The
PRP was regulated by the PPP to the concentration of platelets of 5 × 108/mL. For the aggregation
experiment, 290 µL of PRP were prewarmed at 37 ◦C for 5 min. Subsequently, ADP (5 µmol/L) was
added to initiate platelet aggregation with stirring. The changes in light transmission were recorded
for 5 min. Clopidogrel (75 mg/kg) was used as positive control and saline was used as a control.

3.8. Effects of MS-1 on the Thrombin and Factor Xa Activities Mediated by AT-III or HC-II

The assays were performed according to the method of Colliec et al. [60]. Human thrombin or
coagulation factor Xa and inhibitors (HC-II or AT-III) were incubated with or without MS-1 in 180 µL
0.02 mol/L trisaminomethane (Tris)-HCl, 0.15 mol/L NaCl and 1.0 mol/L polyethylene glycol (PEG) at
37 ◦C. After 120 s incubation, 20 µL of Tris–HCl buffer containing 1.5 mmol/L chromogenic substrate
S-2238 for thrombin or S-2765 for coagulation factor Xa was added, and the residual thrombin or
coagulation factor Xa activities were determined by measuring the change in the absorbance at 405 nm.
The change rate of absorbance was proportional to the thrombin or coagulation factor Xa activity
remaining in the incubation. Heparin was used as a positive control and saline was used as a control.

3.9. Fibrinolytic and Thrombolytic Activities

3.9.1. Fibrinolytic Activity

Male SD rats were randomly divided into five experimental groups (12 rats/group). The
experimental rats were anaesthetized, and then injected with MS-1 (2.5, 5, and 10 mg/kg), urokinase
(20,000 U/kg) or saline solution. After 30 min to allow for circulation, the rats were secured in the
supine position, and the blood was drawn from the abdominal aorta and collected into a tube with 3.8%
sodium citrate (citrate/blood = 1:9, v/v) as a plasma anticoagulant. The level of PAI-1 was determined
with ELISA kit through enzymatic marker (Bio Tek, Burlington, VT, USA). FDP and D-dimer assays
were determined with ELISA kits through a CS-5100 automated blood coagulation analyzer (Sysmex
Corporation, Kobe, Japan).

3.9.2. FeCl3-Induced Carotid Artery Thrombosis

The model of FeCl3-induced carotid artery thrombosis was established on the basis of procedures
described previously with modifications through an ultrasonic Doppler flow probe [61]. Male KM
mice were anesthetized with 15% urethane. The carotid arteries were lightly exposed under a surgical
microscope. An ultrasonic Doppler flow probe was placed on the surface of the carotid artery and
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blood flow was recorded using a PeriFlux System 5000 instrument (Stockholm, Sweden). Vascular
injuries were generated by applying a filter paper (1 cm length and 3 mm width) saturated with 7.5%
FeCl3 on top of the left carotid artery for 3 min. Then the carotid arteries were washed with normal
saline and blood flow was complete occlusion after 10 min. Then, mice were injected with MS-1 (25, 50,
and 100 mg/kg), urokinase (100,000 U/kg) or saline solution and the blood flow was recorded.

3.10. Assessment of Antithrombotic Activity

3.10.1. Experimental Thrombosis In Vitro

Male SD rats were randomly divided into five experimental groups (12 rats/group). The
experimental rats were anaesthetized, and then injected with MS-1 (2.5, 5, and 10 mg/kg), heparin
(0.5 mg/kg) or saline solution. After 30 min to allow for circulation, the rats were secured in the supine
position, and the blood was drawn from the abdominal aorta and collected into a silicone tube, and
then the tube was placed in a prewarmed MH3000 thrombosis instrument (Yimeikang, Zhengzhou,
China). After 10 min of rotation, the thrombus was carefully pulled out from the tube. The liquid in
the surface of the thrombus was removed lightly by filter paper. Wet thrombus weight and length
were immediately determined [38].

3.10.2. Carotid Artery Thrombosis In Vivo

Antithrombotic activity in vivo was performed using thrombosis instruments according to the
method of Ulusal et al. [62]. Male SD rats were randomly divided into different experimental groups
(12 rats/group). Rats were anaesthetized with 15% urethane and injected with MS-1 (2.5, 5, and
10 mg/kg), heparin (0.5 mg/kg) or saline solution. The right carotid artery was isolated, and then the
artery was stimulated with 7.6 mA direct current for 7 min at the proximal end of the artery. The
thrombus occlusion time was monitored by a temperature sensor until alarm, which was applied to
the distal end of the carotid artery.

3.11. Statistical Analysis

The bioassay results were expressed as means ± standard deviation (SD). At least three samples
were prepared for assays of every attribute. The experimental data were subjected to one-way ANOVA
analysis with Turkey’s test (GraphPad Prism 7.00, La Jolla, CA, USA). Statistical significance is denoted
by asterisks and hashes. * and # represented p < 0.05, while ** and ## were p < 0.01.

4. Conclusions

MS-1 was a novel sulfated heterorhamnan with branches consisting of 4-linked β-d-xylose,
4-/6-linked d-glucose, terminal β-d-glucuronic acid, and 3-/2-linked α-l-rhamnose. MS-1 had strong
anticoagulant activity in vivo and in vitro, and reduced platelet aggregation. The anticoagulant
property of MS-1 was mainly attributed to powerful potentiation thrombin by HC-II, and it also
hastened thrombin and coagulation factor Xa inhibitions mediated by AT-III. Moreover, MS-1 exhibited
high thrombolytic and antithrombotic activities in vivo and in vitro. MS-1 had potential as a marine
drug for prevention and therapy of thromboembolic disease. An in-depth investigation is underway
to characterize the properties of this active MS-1. Continuous efforts will lead to developments of algal
derived anticoagulant and antithrombotic agents for clinical uses.

Supplementary Materials: The following are available online at link http://www.mdpi.com/1660-3397/17/4/247/s1.
Figure S1: HPGPC chromatogram, HPLC chromatogram and IR spectrum of MS-1, Figure S2: NMR spectra
of MS-1, Figure S3: HILIC-FTMS profiling and HPLC chromatogram of MS-1-O, Figure S4: Negative-ion
ES-CID-MS/MS/MS product–ion spectra and assignments of the ions. (A) ES-MS spectrum of ion at m/z 339; (B)
ES-MS spectrum of ion at m/z 419; (C) ES-MS spectrum of ion at m/z 565.
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