
R E S E A R CH A R T I C L E

Changes in white matter functional networks during
wakefulness and sleep

Yang Yang1,2 | Shilei Wang1,2 | Jiayi Liu1,2 | Guangyuan Zou1,2 | Jun Jiang1,2 |

Binghu Jiang3 | Wentian Cao2 | Qihong Zou1,4

1Center for MRI Research, Academy for

Advanced Interdisciplinary Studies, Peking

University, Beijing, China

2Beijing City Key Lab for Medical Physics and

Engineering, Institution of Heavy Ion Physics,

School of Physics, Peking University, Beijing,

China

3Department of Radiology, Nanchong Central

Hospital, The Second Clinical Medical College,

North Sichuan Medical College, Nanchong,

China

4National Clinical Research Center for Mental

Health, Peking University Sixth Hospital, China

Correspondence

Qihong Zou, Center for MRI Research, Peking

University, 5 Yiheyuan Road, Haidian District,

Beijing, China 100871.

Email: zouqihong@pku.edu.cn

Funding information

Beijing Municipal Science and Technology

Commission, Grant/Award Number:

Z181100001518005; Beijing United Imaging

Research Institute of Intelligent Imaging

Foundation, Grant/Award Number:

CRIBJZD202101; National Key Research and

Development Program of China, Grant/Award

Number: 2018YFC2000603; National Natural

Science Foundation of China, Grant/Award

Numbers: 81671765, 81871427; Sichuan

Science and Technology Program, Grant/

Award Number: 2021JDRC0038

Abstract

Blood oxygenation level-dependent (BOLD) signals in the white matter (WM) have

been demonstrated to encode neural activities by showing structure-specific tempo-

ral correlations during resting-state and task-specific imaging of fiber pathways with

various degrees of correlations in strength and time delay. Previous neuroimaging

studies have shown state-dependent functional connectivity and regional amplitude

of signal fluctuations in brain gray matter across wakefulness and nonrapid eye

movement (NREM) sleep cycles. However, the functional characteristics of WM dur-

ing sleep remain unknown. Using simultaneous electroencephalography and func-

tional magnetic resonance imaging data during wakefulness and NREM sleep

collected from 66 healthy participants, we constructed 10 stable WM functional net-

works using clustering analysis. Functional connectivity between these WM func-

tional networks and regional amplitude of WM signal fluctuations across multiple

low-frequency bands were evaluated. In general, decreased WM functional connec-

tivity between superficial and middle layer WM functional networks was observed

from wakefulness to sleep. In addition, functional connectivity between the deep and

cerebellar networks was higher during light sleep and lower during both wakefulness

and deep sleep. The regional fluctuation amplitude was always higher during light

sleep and lower during deep sleep. Importantly, slow-wave activity during deep sleep

negatively correlated with functional connectivity between WM functional networks

but positively correlated with fluctuation strength in the WM. These observations

provide direct physiological evidence that neural activities in the WM are modulated

by the sleep–wake cycle. This study provided the initial mapping of functional

changes in WM during sleep.
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1 | INTRODUCTION

Functional magnetic resonance imaging (fMRI) has been widely used

to study the brain function of healthy populations (Chaarani

et al., 2021; Gordon et al., 2017) and the dysfunction associated with

neurodegenerative diseases, such as Alzheimer's disease (Chen

et al., 2021), Parkinson's disease (Wolters et al., 2019) and epilepsy

(Hill et al., 2020; Li, Tavakol, et al., 2021). Due to its high sensitivity

and noninvasiveness, the blood oxygenation level-dependent (BOLD)

signal is the most commonly used contrast in fMRI research. However,

in BOLD-fMRI studies, the detection of brain networks and local brain

activity have mainly been focused on gray matter (GM) signals and

cortical brain regions, and fMRI studies based on white matter

(WM) signals remain largely misunderstood and overlooked

(Grajauskas et al., 2019). Studies related to WM have been dedicated

to investigating the structural architecture through structural imaging

techniques, such as diffusion tensor imaging, that do not directly pro-

vide functional information regarding WM (Peer et al., 2017).

BOLD signals rely on cerebral blood flow (CBF) and cerebral

blood volume (CBV); however, CBF and CBV in WM are much lower

than those in GM (Helenius et al., 2003; Preibisch & Haase, 2001;

Rostrup et al., 2000). Although detecting brain function using WM sig-

nals is controversial, reports of fMRI activation in WM are increasing

(Gawryluk et al., 2014). Based on a visuomotor interhemispheric

transfer task, a key report of WM fMRI activation was published by

Tettamanti and colleagues, in which a cluster was observed in the

genu of the corpus callosum (Tettamanti et al., 2002). Moreover, the

findings of Tettamanti et al. were confirmed by other studies

(Gawryluk et al., 2009; Omura et al., 2004; Weber et al., 2005). In

addition to task studies, Ding et al. found that resting-state fMRI sig-

nals in WM exhibit anisotropic correlations (Ding et al., 2013).

Recently, studies detecting brain function using WM signals have

received increasing attention (Ding, Ding, et al., 2018; Ding, Huang,

et al., 2018; Gore et al., 2019; Ji et al., 2019; Jiang, Luo, et al., 2019; Li

et al., 2019; Li, Gao, et al., 2021; Peer et al., 2017). Peer and col-

leagues analyzed resting-state fMRI data from WM signals and dem-

onstrated the existence of symmetrical WM functional networks that

correlated with functional GM brain networks (Peer et al., 2017). Ding

et al. showed that WM signals acquired from BOLD-fMRI reflected

neural activities both in the resting state and during tasks (Ding,

Huang, et al., 2018). Jiang and colleagues found changes in the

perception–motor system in schizophrenia patients by detecting WM

functional networks (Jiang, Luo, et al., 2019). These studies demon-

strated that fluctuations in WM BOLD signals can reveal brain func-

tional neural activities (Gore et al., 2019).

Sleep is the basic physiological state of humans and plays a very

important role in maintaining human health and normal functions

(Zhou et al., 2019). Nonrapid eye movement (NREM) sleep in humans

includes light and deep sleep in repeating patterns of Stages 1, 2, and

3 (N1, N2, and N3). Each state is associated with specific GM func-

tional connectivity patterns and frequency characteristics

(Tagliazucchi et al., 2013). However, previous studies of sleep were

mainly based on GM BOLD signals. To our knowledge, there have

been no studies evaluating brain activity using WM BOLD signals

across the NREM sleep–wake cycle. Previous studies have found

meaningful WM signals under resting-state conditions and during cog-

nitive tasks related to neural activities. Whether functional connectiv-

ity and frequency characteristics of WM networks change in

concordance with physiological transitions between wakefulness and

NREM sleep needs to be investigated.

In this study, the differences in functional networks and regional

characteristics of amplitude fluctuations across different physiological

states (wakefulness and NREM stages) in healthy participants based

on WM BOLD-fMRI signals were investigated. Clustering analysis was

performed to obtain WM networks, and functional connectivity

between each WM network was calculated. The amplitude of low-

frequency fluctuations (ALFF) in each WM network across wakeful-

ness and different sleep stages was calculated. The main effects of

stage and post hoc analyses were used to compare the differences. To

explore the physiological significance of WM functional connectivity

and amplitude fluctuations, Pearson's correlations between WM brain

activity during deep sleep and the power of slow-wave activity (SWA)

were calculated. We hypothesized that individual differences in WM

activity were influenced by sleep pressure, which was reflected in

SWA during deep sleep.

2 | MATERIALS AND METHODS

2.1 | Participants

Seventy-three healthy participants (36 males and 37 females; age:

27.76 ± 8.67 years old) were recruited from the campus of Peking Uni-

versity and the surrounding area of Beijing. These subjects were all

right-handed, and none of them had the following conditions: (1) his-

tory of mental illness and neurological disease; (2) history of proven

medical brain injury; (3) history of using psychotropic drugs; or (4) his-

tory of drug or alcohol abuse. All participants were required to avoid

coffee and alcohol during the experiment. They provided written

informed consent under the guidance of the experimenter and

received monetary compensation for their participation. The study

was approved by the Institutional Review Board of Peking University

Sixth Hospital.

2.2 | Experimental design

The participants were required to maintain a regular schedule for 2

weeks before the electroencephalography (EEG)-fMRI experiment

that was monitored by actigraphy and recorded in a sleep diary.

The experimental data were collected on an MRI scanner (3 T Pri-

sma; Siemens Healthineers, Erlangen, Germany) at the Center of MRI

Research, Peking University. Within 1week after a 2-week period of

sleep monitoring, each subject underwent an fMRI adaptation session.

The subjects were asked to wear an EEG cap (64-channel, MR-

compatible EEG system; Brain Products, Munich, Germany) lying in
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the MRI scanner. The adaptation session included a 6-min

T1-weighted scan and a 20-min BOLD-fMRI scan. Within 1week

after the adaptation scan, simultaneous EEG-fMRI data were acquired

at the participant's usual bedtime when the participant had been

instructed to sleep. It is worth noting that no sleep deprivation was

involved.

2.3 | Data acquisition

During sleep, EEG-fMRI data were simultaneously acquired using a

3 T Prisma MRI Scanner and a 64-channel MR-compatible EEG sys-

tem with a sampling rate of 5000Hz. Based on the international

10/20 system, the 64-channel recording montage included 57 EEG

channels, two electrooculography channels, two electromyography

(EMG) channels, one electrocardiography (ECG) channel, and two ref-

erence channels (A1 and A2). The resistance of the reference and gro-

und channels was reduced to less than 10 kΩ, and the resistance of

other channels was kept below 20 kΩ. The resistance of 64 channels

was checked before and after the fMRI scan to ensure the quality of

EEG data. During the data acquisition process, sponge pads were used

to limit the subjects' head movement, and earplugs were provided to

reduce noise interference. Wires connecting the cap and the ampli-

fiers were fixed to avoid any potential vibration during the MR scan.

The EEG and fMRI data were synchronized in terms of triggers

(SyncBox; Brain Products).

For registration purposes, high-resolution anatomical images of

each subject were acquired by a 3D magnetization-prepared rapid

gradient echo T1-weighted sequence (repetition time [TR] = 2530ms;

echo time [TE] = 2.98ms; inversion time = 1100ms; flip angle

[FA] = 7�; number of slices = 192; matrix = 512� 448; and voxel

resolution = 0.5� 0.5� 1.0mm3). The participants were asked to

keep their eyes closed and lie quietly in the scanner.

Then, the “sleep” session began after the participants were

instructed to try and fall asleep. fMRI data were acquired using gradi-

ent echo-planar imaging (EPI) with the following parameters:

TR = 2000ms; TE = 30ms; FA = 90�; number of slices = 33; slice

thickness = 3.5 mm; gap = 0.7 mm; matrix = 64� 64; and in-plane

resolution = 3.5� 3.5mm2. Scanning ended when the largest number

of volumes (4096 volumes for the EPI sequence in our scanner) was

recorded or the participants were completely awake after sleeping

and could not fall asleep again.

2.4 | EEG preprocessing and sleep stage scoring

EEG data preprocessing was implemented with BrainVision Analyzer

2.1 (Brain Products, Munich, Germany). The MR gradient artifacts in

EEG data were eliminated by the average artifact subtraction method

(Allen et al., 1998; Allen et al., 2000). For the ballistocardiogram arti-

facts, the R peaks were detected semiautomatically with manual

adjustment for peaks misidentified by the software. The R peaks were

transferred from the ECG to the EEG over a selectable time delay, and

the average artifacts were then subtracted from the EEG data (Allen

et al., 2000). Next, the data were downsampled to 500Hz,

rereferenced to the mean values of channels A1 and A2, and tempo-

rally filtered (10–100Hz for EMG channels and 0.3–35Hz for the

other channels) (Zou et al., 2021).

The sleep stages were scored for every 30-s frame of

preprocessed EEG data and were performed visually by an experi-

enced technician and double-checked by another experienced techni-

cian in accordance with American Academy of Sleep Medicine criteria

(Iber et al., 2007). Sleep recordings were divided into five stages,

including wakefulness (W), NREM stage 1 (Stage N1), NREM stage

2 (Stage N2), NREM stage 3 (Stage N3), and rapid eye movement

sleep.

2.5 | fMRI data processing

fMRI data of continuous 5-min epochs of wakefulness, N1, N2, and

N3 were extracted (Zou et al., 2021). It was shown that using a 5-min

period of data was sufficient to estimate stable correlation strengths

(Van Dijk et al., 2009). For each session, fMRI data were preprocessed

using SPM8 (www.fil.ion.ucl.ac.uk/spm), DPARSFA (Yan &

Zang, 2010), and in-house MATLAB (MathWorks) scripts. As

described in the original study by Peer and colleagues (Peer

et al., 2017), the entire preprocessing steps of fMRI included the fol-

lowing: (1) Slice-timing correction. (2) Motion correction to the mean

functional images using trilinear interpolation with 6 degrees of free-

dom. Subjects with maximum motion >2mm or 2� were excluded

from subsequent analysis, resulting in 11 sessions excluded. Sixty-six

of the 73 participants (31 males and 35 females; age: 28.15 ± 8.99

years old) were included in further analysis. (3) Removal of linear

trends for signal drift correction. (4) Nuisance signal regression that

included 24 head-motion-related regressors derived by Volterra

expansion (Friston et al., 1996) and the mean cerebrospinal fluid (CSF)

signals. (5) Filtering with a 0.01–0.15 Hz bandpass filter to limit non-

neuronal contributions to BOLD fluctuations. (6) Scrubbing using

motion “spikes” (framewise displacement >1mm). (7) Spatial smooth-

ing. To avoid mixing the signals of WM and GM, signals from GM and

WM were separately smoothed (4-mm full-width half-maximum, iso-

tropic) based on the respective masks of each participant. (8) Normali-

zation to the standard EPI template and resampling to 3� 3� 3mm3

voxels using the DARTEL algorithm (Ashburner, 2007).

2.6 | Clustering analysis to obtain WM networks

Based on the above segmentation results, a tissue probability map of

WM, GM, and CSF of each participant was obtained. To generate indi-

vidual WM masks, tissue segmentation results of anatomical images

from each individual were thresholded at 0.5. WM masks at the group

level were generated as follows. If a voxel was recognized as WM in

more than 60% of the participants, then this voxel was labeled WM in

the group-level mask. Using existing segmentation methods, some
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deep regions were easily classified as WM. The thalamus, caudate

nucleus, putamen, globus pallidus and nucleus accumbens defined by

the Harvard-Oxford Atlas were excluded from the group-level WM

mask (Peer et al., 2017).

After obtaining the group-level WM mask, WM spatial networks

were identified by a clustering algorithm. To reduce computational

complexity in the subsequent cluster analysis, the WM mask was spa-

tially downsampled based on an interchanging grid strategy (Peer

et al., 2017), resulting in 4561 voxels in the subsampled WM mask. A

whole-WM correlation coefficient matrix (18,278� 4561) was

obtained by calculating Pearson's correlation coefficients between

each voxel in the WM mask and each voxel in the downsampled WM

mask. The correlation coefficient matrices were averaged across the

participants to obtain a group-level correlation coefficient matrix.

The K-means clustering method (distance metric-correlation,

10 replicates) was applied to the group-level correlation coefficient

matrix to obtain WM functional networks, within which all the voxels

had similar connectivity patterns with the rest of the voxels in the

WM mask (Blumensath et al., 2013; Craddock et al., 2012; Moreno-

Dominguez et al., 2014; Peer et al., 2014; Yeo et al., 2011). To deter-

mine the most stable number of WM networks, clustering analyses

were performed with the number of clusters (K) ranging between

2 and 22 (Lange et al., 2004; Yeo et al., 2011). The method to calcu-

late the spatial stability of the clustering results corresponding to each

K was as follows: (1) The correlation coefficient matrix was randomly

divided into four folds along the columns. (2) For each K, clustering

analysis was performed on the four folds of data separately. Relatively

similar clustering results would be obtained if the stability was high

(Lange et al., 2004; Yeo et al., 2011). The clustering results obtained

by the clustering analysis were randomly labeled, so it was difficult to

compare the similarity of cluster results based on the labels directly.

To evaluate the similarity of the clustering results, the adjacent matrix

was calculated for each clustering result from each fold. Then, the

Dice coefficient was calculated to compare these adjacent matrices.

For each K, all four adjacent matrices were compared in pairs. The

mean value of the Dice coefficients was calculated to determine the

number of clusters with high stability through the local peak point in

the Dice coefficient graph (Peer et al., 2017).

2.7 | Functional connectivity between WM
networks

Based on the multiple WM networks obtained by the above clustering

analysis, the mean fMRI time courses within each WM network were

extracted during each physiological state for each subject. Then,

Pearson's correlation coefficients between each pair of WM networks

was calculated and transformed to Fisher's z score (zFC) for statistical

analysis. The zFC data from the four stages were compared using the

program 3dLMEr (Chen et al., 2013) in AFNI (Cox, 1996) and

Bonferroni corrected (p < 10�16 corrected). WM network pairs with

significant differences in FC across the four stages were obtained.

Post hoc t-tests between paired networks were then conducted on

the basis of these significant differences to reveal which sleep states

showed significant differences in FC.

2.8 | Frequency characteristics of WM networks

Spontaneous low-frequency oscillations in BOLD signals in the resting

state are considered meaningful physiological indicators to study

spontaneous brain activity (Fox & Raichle, 2007). Studies have shown

that low-frequency bands can be divided into multiple subbands, and

these different subbands may be associated with different physiologi-

cal functions (Cha et al., 2016; Duan et al., 2017; Palva & Palva, 2012;

Zuo et al., 2010). ALFF was adopted to capture the amplitude fluctua-

tions of the WM signals. Consistent with a previous study on WM sig-

nals, ALFF over the 0.01–0.08Hz band (Zang et al., 2006) for the WM

network in each physiological state was calculated. The main effect of

stage was performed on amplitude fluctuations from four physiologi-

cal states using 3dLMEr and corrected with Bonferroni correction (p <

10�16). Post hoc analyses were then conducted to explore which

sleep states were significantly different from each other.

In addition, the low-frequency band (0.01–0.08Hz) was divided into

two subbands based on a previous definition, namely, slow-5 (0.01–

0.027Hz) and slow-4 (0.027–0.073Hz), to calculate the average fluctua-

tion amplitude in slow-5 and slow-4 between different sleep states (Zuo

et al., 2010). ALFF in these two subbands from four sleep states was cal-

culated. The interaction effect between stage by frequency subband and

the main effects of stage and frequency subband on ALFF were evalu-

ated using 3dLMEr and corrected with Bonferroni correction (p < .001).

2.9 | Slow-wave activity correlated with functional
connectivity and frequency characteristics

The power spectral density was acquired using a fast Fourier trans-

form on 5-min EEG data with artifacts removed based on a 4-s

Hanning window and 2-s overlap, which was implemented by Welch's

method based on a custom script (“pwelch” function in MATLAB

2017a). Then, SWA was computed, whose frequency band ranged

from 0.75 to 4 Hz (Ly et al., 2016). To explore whether FC in these

WM network pairs was electrophysiologically significant, Pearson's

correlation coefficients between FC and SWA in N3 sleep was calcu-

lated. Similarly, the relationship between the fluctuation amplitude in

the WM and SWA signal during N3 sleep was explored.

3 | RESULTS

3.1 | WM functional networks

Seventy-three sessions of wakefulness (16 males and 8 females; ages:

27.46 ± 8.11 years old), 42 sessions of N1 sleep (12 males and

16 females; ages: 27.32 ± 9.51 years old), 174 sessions of N2 sleep

(20 males and 24 females; ages: 28.98 ± 9.89 years old), and
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195 sessions of N3 sleep (20 males and 21 females; ages: 26.41 ±

8.36 years old) were analyzed in this study (Table S1).

The group-level WM mask is shown in Figure S1. The obtained

WMmask showed high symmetry and contained 18,260 voxels in total.

WM networks were then obtained based on K-means clustering analy-

sis. Dice coefficients were used to evaluate the stability of the net-

works. As shown in Figure 1a, the local peak of the Dice coefficients as

a function of K was located at K = 10, which was consistent with the

clustering results of some previous studies (Jiang, Luo, et al., 2019;

Jiang, Song, et al., 2019; Peer et al., 2017). Therefore, WM networks

clustered with K = 10 were adopted for further analysis.

Based on the spatial locations of the networks, these networks

were labeled WM1 (superior temporal and motor network), WM2

(frontoparietal network), WM3 (superior frontal and middle temporal

gyrus network), WM4 (motor network), WM5 (occipital network),

WM6 (brainstem network), WM7 (prefrontal network), WM8 (cere-

bellar network), WM9 (deep network), and WM10 (parietal network),

as shown in Figure 1b. These 10 networks were adopted for the fol-

lowing analyses. In accordance with previous studies, the WM net-

work could be divided into three layers by spatial location, namely,

superficial, middle, and deep layers, as shown in Figure 1c. Specific

information about these networks is presented in Table 1.

F IGURE 1 Stability of clustering
results of white matter functional
networks and spatial locations of white
matter functional networks with an
optimal number of clusters, that is,
K = 10. (a) Stability of clustering results
of white matter functional networks for
different numbers of clusters evaluated
by Dice coefficients (* represented the
local peak greater than 0.85). (b) Four
different views for each of the 10 white
matter functional networks. (c) Spatial
layout of the 10 white matter functional
networks categorized into deep, middle,
and superficial layers.

TABLE 1 Spatial information of
white-matter functional networks

Label White-matter network Layer Number of voxels

WM1 Superior temporal and motor network Superficial 1679

WM2 Fronto-parietal network Middle 1958

WM3 Superior frontal and middle temporal gyrus network Superficial 1375

WM4 Motor network Superficial 2504

WM5 Occipital network Superficial 1332

WM6 Brainstem network Superficial 1102

WM7 Prefrontal network Superficial 1151

WM8 Cerebellar network Superficial 1350

WM9 Deep network Deep 4471

WM10 Parietal network Middle 1338
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3.2 | Functional connectivity between WM
networks during wakefulness and NREM sleep

To explore the functional synchronization between different WM

networks, functional connectivity between each pair of the

10 WM networks was calculated, and then the main effect of stage

was assessed across the four physiological states, as shown in

Figure 2a. After Bonferroni correction (p < 10�16), five pairs of

WM networks showed a significant main effect of stage

(Figure 2b). Functional connectivity between superficial WM net-

works 1 and 4 and networks 3 and 4, between superficial and mid-

dle layer networks 1 and 10 and networks 4 and 10, and between

superficial and deep networks 8 and 9 showed significant main

effects of physiological state. In general, post hoc analysis showed

decreased WM functional connectivity between superficial–

superficial and superficial–middle layer WM networks from wake-

fulness to NREM sleep. Interestingly, functional connectivity

between the deep and cerebellar networks was higher during light

sleep (N1 and N2) and lower during both wakefulness and deep

sleep (Figure 2c). With a less stringent threshold (p < .05,

Bonferroni corrected), a main effect was observed between most

pairs of WM networks.

3.3 | Characteristics of fluctuation strength in WM
networks

To further explore the characteristics of BOLD signals in the WM net-

works, power spectra were calculated by extracting the average time

courses within the network. The power spectra in these WM networks

showed similar changes across physiological states (Figure 3). As the fre-

quency increased, the amplitude gradually decreased, which was consis-

tent with the findings in GM (Biswal et al., 1995; Zuo et al., 2010). It is

worth noting that two peaks appear in the spectrograms of superficial

layer network 6 and deep layer network 9, while only one peak was

observed in the spectrograms of other WM networks.

The main effect of stage (p < 10�16, Bonferroni corrected)

showed that for the frequency range of 0.01–0.08 Hz, the average

fluctuation amplitudes in superficial layer networks 1, 7, and 8 and

deep network 9 were significantly different across states (Figure 4).

Post hoc analysis showed that the regional fluctuation amplitude was

always higher during light sleep and lower during deep sleep. In addi-

tion, the signal amplitudes in superficial layer networks 1 and 8 and

deep network 9 were lower during wakefulness than during light

sleep, while the amplitudes of superficial layer network 7 and deep

network 9 were higher during wakefulness than during deep sleep.

F IGURE 2 Main effect of sleep stage on functional connectivity between white matter functional networks. (a) Differences in functional
connectivity between all the white matter functional networks across stages (the color bar shows the chi-square values. * represents a significant
main effect of stage after Bonferroni correction.) (b) Five pairs of white matter functional networks, which showed a significant main effect of
stage. (c) Post hoc results of the five network pairs exhibiting significant main effects are shown in the bottom panel. Functional connectivity is
presented as the mean ± SEM.
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Further splitting the low-frequency fluctuations into slow-4

(0.027–0.073Hz) and slow-5 (0.01–0.027Hz) subbands, we found

that for slow-4, the average fluctuation amplitudes in superficial layer

networks 1, 7, and 8 and the deep network were significantly differ-

ent across stages (Figure 5), similar to the findings based on the low-

frequency band (Figure 4). Regarding the slow-5 subband, only the

average fluctuation amplitude in the deep network was significantly

different across stages (Figure 6), showing similar post hoc findings to

those with the low-frequency fluctuations (Figure 3).

Significant interaction effects between physiological states and

different subbands regarding the fluctuation amplitudes in the occipi-

tal network (WM5) and the deep network (p < .001, Bonferroni

corrected) were observed (Figure 7). Taking the occipital network as

an example, post hoc analysis showed higher fluctuation amplitude in

F IGURE 3 Power spectra of the 10 white matter functional networks. Significant spectral changes (p < .05, Bonferroni corrected by the

number of frequency bins) are indicated by the blue horizontal lines.

F IGURE 4 White matter functional networks that showed a significant main effect of stage (p < 10�16, Bonferroni corrected) and post hoc
results on the average fluctuation amplitude within 0.01–0.08 Hz. Data are presented as the mean ± SEM.
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slow-5 than slow-4 during N1 and N2 sleep but lower fluctuation

amplitude in slow-5 than slow-4 during N3 sleep. Regarding the deep

network, although slow-4 always showed a higher amplitude across

the four stages, the extent of the increase was smaller during N3.

Meanwhile, significant main effects of subbands were observed

in the superficial white networks located in the middle temporal,

frontal and brainstem networks, the middle layer parietal network

and the deep WM network (Table 2). In addition, significant stage

effects on fluctuation amplitude were found in all 10 WM

networks.

3.4 | Correlations between slow-wave activity and
characteristics of WM networks

For the five pairs of WM networks that showed significant stage

effects (Figure 2), exploratory correlation analysis between EEG SWA

during stage N3 and WM network connectivity was performed. Con-

nectivity between all five pairs of WM networks negatively correlated

with SWA power (Figure 8).

Regarding the fluctuation amplitude of BOLD signals within WM

networks 1, 7, 8, and 9 that showed a significant stage effect

(Figure 4), a similar correlation analysis with SWA during N3 was con-

ducted. SWA was positively correlated with fluctuation amplitude in

superficial layer WM networks 1, 7 and 8, while there was no signifi-

cant correlation with deep WM network 9 (Figure 9).

4 | DISCUSSION

It is generally believed that BOLD signals in GM reflect neuronal activ-

ity. Recent studies have shown reliable BOLD signals in WM, which

seem to reflect intrinsic neuronal activity (Gawryluk et al., 2014; Gore

et al., 2019). Task activation in the corpus callosum while performing

specific tasks (Gawryluk et al., 2011; Mazerolle et al., 2008; Mazerolle

et al., 2010) has been observed. Furthermore, fMRI signals in WM

could be clustered into multiple functional networks (Jiang, Song,

et al., 2019; Peer et al., 2017), which closely correspond to WM tracts

identified by diffusion tensor imaging. In this study, 10 stable WM

functional networks (WM1–WM10, including superficial, middle, and

deep networks) were obtained by a clustering analysis based on the

fMRI data during wakefulness and NREM sleep (N1, N2, and N3

sleep). Functional connectivity between the WM networks was calcu-

lated, and the comparison showed that from wakefulness to sleep,

WM functional connectivity between superficial and middle layer

WM networks decreased. Interestingly, the functional connectivity

between the deep and cerebellar networks was lower during both

wakefulness and deep sleep but higher during light sleep. Moreover,

F IGURE 5 White matter functional networks that showed a significant main effect of stage (p < .001, Bonferroni corrected) and post hoc
results on the average fluctuation amplitude within the slow-4 subband (0.027–0.073 Hz). Data are presented as the mean ± SEM.
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the regional amplitude of WM signal fluctuations across multiple low-

frequency bands was evaluated and showed that the regional fluctua-

tion amplitude was always higher during light sleep and lower during

deep sleep. Additionally, the signal amplitudes in the superior tempo-

ral, cerebellar and deep WM networks were higher during light sleep

than during wakefulness. Furthermore, we found that the signal fluc-

tuated more strongly in the slow-4 band than that of slow-5 across

the WM during wakefulness and NREM sleep. Finally, based on the

above results, to investigate whether the difference in functional con-

nectivity or frequency characteristics had some electrophysiological

meaning, the correlations between SWA and the above significant

differences were analyzed. The results showed that SWA during deep

sleep was negatively correlated with functional connectivity between

WM networks but positively correlated with the frequency amplitude

in WM, which provides direct physiological evidence that neural activ-

ities in WM are modulated by the sleep–wake cycle.

Functional connectivity has been widely used in neuroscience

and clinical practice and reflects the temporal synchronization in

spontaneous fluctuations between brain regions (Biswal et al., 1995)

or networks (Smith et al., 2015). Previous WM connectivity studies

have shown that fluctuations in WM BOLD signals are related to neu-

ral activities (Gore et al., 2019). In the present study, functional

F IGURE 6 White matter functional networks that showed a significant main effect of stage (p < .001, Bonferroni corrected) and post hoc
results on the average fluctuation amplitude within the slow-5 subband (0.01–0.027Hz). Data are presented as the mean ± SEM was presented.

F IGURE 7 White matter functional
networks that showed a significant
interaction effect between stage and
subband on the average fluctuation
amplitude (p < .001, Bonferroni
corrected). Data are presented as the
mean ± SEM.
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connectivity between WM networks was calculated during varying

physiological stages, including wakefulness and NREM sleep. Analyses

of the main effect of stage were performed to detect the differences

among the four sleep states. Functional connectivity between superfi-

cial layer WM networks, between superficial and middle layer WM

networks, and between superficial and deep layer WM networks

showed significant main effects of stage, indicating that each physio-

logical stage was associated with a specific level of functional connec-

tivity. Further post hoc analysis found that functional connectivity

between four pairs of superficial–superficial and superficial–middle

layer WM networks decreased from wakefulness to N3 sleep. Our

findings in WM networks are similar to those obtained in GM net-

works. Awareness and responsiveness to environmental stimuli show

physiologically distinct changes during sleep compared with wakeful-

ness (Larson-Prior et al., 2009). Fading of consciousness during NREM

sleep has been demonstrated to be associated with a breakdown in

cortical effective connectivity (Massimini et al., 2005). Temporal inte-

gration, measured as long-term memory in the history of neural activ-

ity, gradually decreases from wakefulness to deep sleep (Tagliazucchi

et al., 2013).

It should be noted that functional connectivity between the cere-

bellar network and deep layer WM network under NREM sleep was

TABLE 2 Interaction and main
effects of sub-band on fluctuation
amplitude in all WM functional networksLabel

p value

Interaction effect Main effect of sub-band Main effect of stage

WM1 >.05 >.05 5.69 � 10�21

WM2 >.05 6.67� 10�3 2.14 � 10�14

WM3 >.05 1.72� 10�4 1.80 � 10�19

WM4 >.05 >.05 8.94 � 10�17

WM5 1.29� 10�11 4.18� 10�3 1.05 � 10�11

WM6 >.05 3.71� 10�7 1.17 � 10�11

WM7 >.05 1.01� 10�6 1.93 � 10�21

WM8 2.38� 10�3 >.05 1.93 � 10�21

WM9 5.05� 10�7 1.93� 10�21 1.93 � 10�21

WM10 >.05 1.36� 10�6 3.65 � 10�17

Note: p values were Bonferroni corrected, and those marked in bold font could survive correction.

F IGURE 8 Significant correlations (corrected by the number of white matter networks adopted in the correlation analyses) of functional
connectivity between white matter functional networks and slow-wave activity (SWA)
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higher than that under wakefulness. The increased internetwork con-

nectivity between parietal and cerebellar WM networks during deep

sleep might support memory consolidation (Vahdat et al., 2017).

Nonetheless, future studies linking WM internetwork connectivity

with cognition and behavior are warranted.

The regional characteristics of WM networks were further inves-

tigated using the fluctuation amplitude of each WM network. A grad-

ual decrease in amplitude with increased frequency during

wakefulness was observed, which was identical to a previous study

(Peer et al., 2017). Importantly, the average fluctuation amplitudes in

the superior temporal and motor networks, prefrontal network, cere-

bellar network and deep network showed significant differences

across the four physiological stages of sleep, indicating that different

physiological stages were associated with divergent strengths of low-

frequency fluctuations. Further post hoc analysis showed that the

mean fluctuation amplitude in the superior temporal and motor net-

work, cerebellar network and deep network increased from wakeful-

ness to light sleep (N1 and N2 sleep stages) and then decreased when

entering deep sleep. N1 sleep is generally short and unstable, while

N2 sleep is characterized by K-complex and spindle waves, which

might cause a larger amplitude of signal fluctuations. Thus, the

average fluctuation amplitudes of N1 and N2 sleep were larger than

those of wakefulness and N3 sleep. It is worth noting that spindle

activity is related to sleep-dependent memory enhancements (Crunelli

et al., 2018), and spindles during N2 sleep seem to support memory

consolidation (Gais et al., 2002). Thus, the difference in mean fluctua-

tion amplitude is probably associated with memory consolidation dur-

ing sleep, which should be investigated in more detail in future

studies. Moreover, Zhou et al. investigated dynamic functional con-

nectivity states during wakefulness and NREM sleep and found that

the number of state transitions showed a trend of an increase from

wakefulness to N2 sleep and decrease (Zhou et al., 2019) in N3 sleep.

In addition, Kung and colleagues showed the highest instability of

information transfer within and between functional networks during

N2 sleep (Kung et al., 2019). The average fluctuation amplitude of the

deep layer network increased from wakefulness to N1 sleep and grad-

ually decreased from N1 sleep to N3 sleep, which was similar to the

trend in GM signal variance across sleep stages (Tagliazucchi

et al., 2013).

Consistent with previous studies (Jiang, Luo, et al., 2019; Peer

et al., 2017), the average fluctuation amplitudes in the deep layer net-

work had two peaks in the low-frequency band during wakefulness.

F IGURE 9 Significant correlation (corrected by the number of white matter networks adopted in the correlation analyses) between the
average fluctuation amplitude in white matter functional networks and slow-wave activity (SWA)
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We extended this finding such that the pattern of the two-peak

power spectrum was maintained during both light and deep sleep.

Furthermore, the low-frequency band was divided into slow-4 and

slow-5 subbands, and the fluctuation amplitudes of WM networks

across sleep stages were compared. The results showed that the aver-

age fluctuation amplitude in slow-4, much more than that in slow-5,

contributed to the main findings of fluctuation amplitude in the low-

frequency band. The two-peak power spectrum and the characteris-

tics of the slow-4 phenomenon need to be investigated in future

studies.

SWA is a typical neural pattern of behavior observed during sleep,

the power of which is higher during NREM sleep than during wakeful-

ness, and it is a common electrophysiological signature of sleep pres-

sure (Léger et al., 2018). There was a significant negative correlation

between SWA and functional connectivity between superficial–

superficial and superficial–middle layer WM networks under N3 sleep.

Correspondence between inter-WM network connectivity and SWA

provided direct evidence that functional connectivity between WM

networks has electrophysiological significance. In contrast, the fluctu-

ation amplitude of three superficial WM networks was positively cor-

related with SWA during deep sleep. Thus, decreased between-

network integration with increased local fluctuation amplitude in the

WM networks are associated with sleep pressure and slow-wave gen-

eration and propagation.

The results demonstrated in the present study may help improve

our understanding of the neural mechanisms for sleep. In particular, the

comparisons of regional WM fMRI measurements among different

sleep stages and analyses of their relations with EEG signals may yield

novel insight into neural the substrates of natural sleep and wakeful-

ness, which could foster major breakthrough in this fundamental neuro-

science research. And from a broader perspective, this study expanded

the horizon of WM fMRI studies, which may attract an increasing num-

ber of scientists to pay close attention to this emerging area.

There were some limitations in this study. First, the number of

imaging sessions varies with the sleep stages, among which N1 has

fewer sessions than N2 and N3. This is hardly avoidable, however,

given that typically the duration of N1 stage (5%–10%) is much shorter

than those of N2 (�50%) and N3 (�20%) stages during natural sleeping

and we wish to maximize the use of imaging data available. Second, the

WM clustering analysis was conducted within the group-level WM

mask and performed based on fMRI data from all four physiological

stages. It will be useful in future studies to derive precise individualized

and stage-specific parcellations in WM functional organization, similar

to the construction of cortical parcels (Gordon et al., 2017; Han

et al., 2020). To test whether the findings in the main text will be

affected by the generation of WM masks, we adopted an independent

set of masks for WM networks from Peer and colleagues (Peer

et al., 2017). We observed similar results (Table S2 and Figures S1–S4),

thus providing validation that our findings are robust and stable. In the

end, more analytic methods, such as dynamic functional connectivity

and regional homogeneity, should be used to investigate the compre-

hensive characteristics of WM functional activity.
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