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Efficient diagnosis of tuberculosis (TB) ismet withmultiple challenges, calling for a shift of focus from pathogen-
centric diagnostics towards identification of host-based multi-marker signatures. Transcriptomics offer a list of
differentially expressed genes, but cannot by itself identify the most influential contributors to the disease phe-
notype.Here,we describe a computational pipeline that adopts anunbiased approach to identify a biomarker sig-
nature. Data from RNA sequencing from whole blood samples of TB patients were integrated with a curated
genome-wide molecular interaction network, from which we obtain a comprehensive perspective of variations
that occur in the host due to TB. We then implement a sensitive networkminingmethod to shortlist gene candi-
dates that aremost central to the disease alterations.We then apply a series of filters that include applicability to
multiple publicly available datasets aswell as additional validation on independent patient samples, and identify
a signature comprising 10 genes— FCGR1A, HK3, RAB13, RBBP8, IFI44L, TIMM10, BCL6, SMARCD3, CYP4F3 and SLPI,
that can discriminate between TB and healthy controls as well as distinguish TB from latent tuberculosis and HIV
in most cases. The signature has the potential to serve as a diagnostic marker of TB.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Tuberculosis (TB) now ranks along with HIV as the leading cause of
death due to an infectious agent worldwide, with approximately 10.4
million people estimated to have acquired TB in 2015, resulting in 1.4
million deaths (World Health Organization, 2016). These deaths are
largely preventable by early and efficient diagnosis of the disease. Un-
fortunately, diagnosis is often delayed due to insensitive and time-con-
suming methods. Present diagnostic measures rely largely on the
detection of Mtb in patient samples together with radiological assess-
ments, and they have several shortcomings. Sputum cultures are the
current standard for detecting Mtb, but while sensitive, they take 3–
6 weeks to provide conclusive results, thereby delaying the initiation
of treatment. Host-based diagnostic methods provide an alternative
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for early detection of TB onset and enable the monitoring of symptom-
atic changes. IFN-γ release assays (IGRAs) such as the T-SPOT.TB
(Richeldi, 2006; Pai et al., 2014) or the QuantiFERON test (Sultan et al.,
2010) measure IFN-γ+ production in response to stimulation with
Mtb-specific antigens ESAT6 and CFP10 (Mazurek and Villarino, 2003;
Ravn et al., 2005). However, IGRAs cannot discriminate between active
and latent Mtb infection, and are thus inadequate for marking the dis-
ease status. In the clinic, IGRAs are used more often to detect latent tu-
berculosis than for diagnosis of active disease (Herrera et al., 2011).
Existing assays that rely on single-marker readouts, such as that of
serum deaminase levels (Gui and Xiao, 2014), also suffer from inade-
quate sensitivity and/or specificity, calling for more effective host-relat-
ed multi-marker signatures that hold promise for applications in
prognostic research and vaccine trials as well as in monitoring treat-
ment responses. There is thus a current need for a shift from investiga-
tions on single markers to high-coverage studies that will reveal
signatures consisting of multiple integrated markers (Maertzdorf et
al., 2014). Recent years have witnessed an increase in host omics data
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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to identify specific gene variations upon infection with Mtb, including
genetic polymorphisms identified byGWAS and linkage and association
studies that ascribe host susceptibility to infection (Azad et al., 2012),
genome-wide expression variations in patient cohorts as compared to
healthy controls, as well as variations over the course of treatment in
the same patient.

Transcriptomics provide global coverage into host responses, and
are widely used in TB biomarker research (Maertzdorf et al., 2011a;
Joosten et al., 2013). One drawback of microarray technologies is the
lack of absolute and detailed evaluation of gene expression. Modern
deep sequencing technologies provide quantitative and qualitative in-
formation on gene expression and genomic composition down to the
single-nucleotide level (Normand and Yanai, 2013). RNA sequencing
(RNA-Seq) is fast gaining foothold, and provides more accurate mea-
surements of transcript levels and their isoformswith greater sensitivity
than microarrays, as it overcomes probe-dependency (Wang et al.,
2009). RNA-seq has been applied to study host variations due to myco-
bacterial infections and has led to rich insights, an example being dual
RNA sequencing of host and pathogen in Mtb infected Thp-1 cells that
indicated a simultaneous induction ofMycobacterium bovis BCG choles-
terol degradation genes and a compensatory upregulation in the host de
novo cholesterol biosynthesis genes (Rienksma et al., 2015). Recently, a
whole blood signature that could predict the risk of developing active
tuberculosis in patients with latent infection was identified by RNA-
seq data (Zak et al., 2016).

Although the immunological response againstMtbwill be primarily
focused in the lung, its pathologic status is reflected in the peripheral
blood by circulating immune cells (Weiner et al., 2013). Whole blood
transcriptomic profiles provide global insights into host immune re-
sponses in tuberculosis and serve as essential tools in determining un-
derlying molecular players of infection.

A multi-marker set of gene classifiers determined from blood
transcriptomic data with sufficient discriminatory prowess would thus
support current diagnostic measures to enhance early detection of TB
in the clinic (Cliff et al., 2015). Gene expression values highlight differ-
entially expressed genes (DEGs), which by themselves are indicative
of the variations in disease, but further selection is required to identify
a small biomarker set that is characteristic of the disease. Such a selec-
tion has been achieved using machine learning methods for a number
of diseases including tuberculosis (Blankley et al., 2014). Use of net-
works, however, provides a different perspective to identify DEGs that
may be functionally linked to other differentially regulated genes, either
directly or indirectly through other bridging nodes. A systems approach
integrating transcriptomic data and genome-wide molecular interac-
tion networks is necessary to provide mechanistic insights into the na-
ture of dynamic responses to infection and help identify the most
significant contributors to the disease phenotype. Biological network
analysis involves the construction of a pair-wise assembly of molecular
interactions among cellular components that will yield a connected net-
work of interactions. The network can be compared to a street-map of a
city and provides an overview of the interconnected routes or in other
words the topological architecture of the molecular interactions in a
cell. Mapping genome-wide expression profiles into molecular net-
works to construct condition-specific response networks provides an
unbiased systematic approach to enable the identification of combina-
tions of host components that can serve as markers for tuberculosis
and aid early diagnosis.

India currently leads the world's burden of tuberculosis, accounting
for about 2.8 million cases out of the global incidence of 10 million
(World Health Organization, 2016).Omics studies on the Indian popula-
tion have been few and far between. In this study, with an aim to differ-
entiate pulmonary tuberculosis from other conditions, we use a new
network-based pipeline for biomarker discovery. We obtain RNAseq
data from an Indian cohort and map them onto interaction networks,
from which we identify the most influential genes in the host whole
blood response network to tuberculosis.We then apply a series of filters
to finally discover a 10-gene validated signature that can discriminate
TB samples and healthy controls in multiple cohorts from different geo-
graphical locations and also discriminate between latent and active tu-
berculosis. In addition, the signature distinguishes between TB and
HIV and has a potential to be used for diagnosis in the clinical setting.

2. Materials and Methods

2.1. Study Participants

Clinical samples were obtained from participants enrolled at the Na-
tional Institute for Research in Tuberculosis (NIRT), Chennai: active TB
(BL), IGRA−ve/healthy control (HC), and IGRA+ve/latent TB (LTB);
St. John's Research Institute, Bengaluru (IGRA−ve/healthy controls
and HIV+) and Arogyavaram Medical Centre, Madanapalle (IGRA+-
ve/latent TB). Patients attending the outpatient clinics of NIRT and com-
munity controls were enrolled for this study. This was a prospective
case control study and we enrolled consecutive patients and controls.
The diagnosis of pulmonary tuberculosis (TB) was based on smear and
culture positivity. Chest X-rays were used to define cavitary disease as
well as unilateral vs bilateral involvement. Smear grades were used to
determine bacterial burdens and classified as 1+, 2+ and 3+. At the
time of enrolment, all active TB cases had no record of prior TB disease
or anti-tuberculosis treatment (ATT). Latent tuberculosis (LTB) diagno-
siswas based on tuberculin skin test (TST) andQuantiFERONTB-Gold in
Tube ELISA positivity, absence of chest radiograph abnormalities or pul-
monary symptoms. A positive TST result was defined as an induration at
the site of tuberculin inoculation of at least 12 mm in diameter to min-
imize false positivity due to exposure to environmental mycobacteria.
NTB individuals were asymptomatic with normal chest X-rays, negative
TST (indurations b 5 mm in diameter) and QuantiFERON ELISA results.
All participants were BCG vaccinated, HIV negative, non-diabetic and
had normal body mass index. All participants did not exhibit signs or
symptoms of any associated lung or systemic disease. Standard anti-
TB treatment (ATT)was administered to TB individuals using the direct-
ly observed treatment, short course (DOTS) strategy. At 6 months fol-
lowing ATT initiation, fresh plasma samples were obtained. All TB
individuals were culture negative at the end of ATT. All individuals
were examined as part of a study protocol approved by the ‘Internal
Ethics Committee’ of NIRT and written informed consent was obtained
from all participants (approval number NIRTIEC2010002). Table 1 de-
scribes the breakdown of different patient classes. Clinical details of all
enrolled participants are provided in Additional File 2. Samples for
RNA sequencing were exclusively from NIRT, Chennai. A total of three
samples from the IGRA−ve and IGRA+ve categories and 4 from the ac-
tive TB category were used for RNA sequencing. An additional 13 active
TB, 10 IGRA−ve, 9 IGRA+ve and 7HIV+ sampleswere used for valida-
tion of gene expression by qRT-PCR. Classification of IGRA−ve and
IGRA+ve individuals was done on the basis of a QuantiFERON assay.

2.2. RNA Isolation

Blood (3 ml) from each participant was collected in a Tempus tube,
vigorously shaken and transported to IISc, Bangalore, where it was
stored at −80 °C until use. For RNA isolation, frozen Tempus tubes
were thawed and RNAwas extracted using a Tempus Spin RNA isolation
kit (Applied Biosystems) following the manufacturer's instructions.
Briefly, blood from the Tempus tube was centrifuged at 3000 g for
30 min at 4 °C to pellet down the RNA which was then re-suspended
and loaded onto a spin column for purification. RNA bound to the col-
umnwas eluted and aliquoted RNAwas quantified and either subjected
to RNA sequencing or converted to cDNA for gene expression studies by
qRT-PCR.

RNA sequencing RNA isolated from Tempus tubes was quantified
and subjected to quality control analysis. RNA samples with a RIN N 5
were taken further for RNA sequencing. Library preparation was



Table 1
Breakdown of patient classes recruited for this study.

Condition No. of
samples

Age range
(yrs)

Gender male (M),
female (F)

Clinical summary

Active TB 19 18–52 11M, 8F All 19 cases are sputum smear positive with grade 2 to 3. Chest X-ray is abnormal in all, 13 with bilateral and 6 with
unilateral abnormality, with 1 to 6 zones, 6 show cavities and 13 show no cavities. Almost all patients show normal
hematology

HC 15 30–60 8M, 7F All are sputum smear negative, chest X-rays appear normal, no clinical symptoms of TB and no known prior history of
TB

LTB IGRA
+ve

13 19–34 11M, 2F All are sputum smear negative, chest X-rays appear normal, no clinical symptoms of TB and no known prior history of
TB

Condition No. of
samples

Age range
(yrs)

Gender CD4 cells/mm Viral load
copies/ml

Clinical summary

HIV 7 25–47 4M, 3F 16–28%; mean: 20.5% (not
investigated in 2)

3.4 × 101 to 8.2
× 104

All patients are treatment-naive and show normal chest X-rays with
no evidence of TB
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performed at Genotypic Technology's Genomics facility at Bangalore.
Five μg of qubit quantified total RNA was taken and enriched for PolyA
using NextFlexpolyA Beads. Transcriptome library for sequencing was
constructed as per the NEXTflexRapid Directional RNA-Seqlibrary pro-
tocol outlined in “NEXTflex Rapid Directional RNA-Seq sample prepara-
tion guide” (Cat # 5138-08). Briefly, the PolyA RNAwas fragmented for
10 min at elevated temperature (95 °C) in the presence of divalent cat-
ions and reverse transcribed using first strand mix. The RNA–DNA hy-
brid was cleaned up using HighPrep PCR cleanup beads. Second strand
cDNA was synthesized and end repaired using second strand synthesis
mix. Directionality is retained by the addition of dUTP at this step. The
cDNA was cleaned up using HighPrep PCR cleanup beads. NEXTflex™
RNA-Seq Barcode Adapters were ligated to the cDNA molecules after
end repair and addition of “A”-base. SPRI clean-up was performed
post-ligation. The library was amplified using 12 cycles of PCR for en-
richment of adapter ligated fragments. The prepared library was quan-
tified using qubit and validated for quality by running an aliquot on
High Sensitivity Bioanalyzer Chip (Agilent).
2.3. Read Alignment and Transcript Assembly

The Tuxedo protocol was followed for the alignment of reads, tran-
script assembly and analysis. The paired-end reads were aligned using
TopHat2 (version 2.0.9), using the GRCh38 human genome assembly
as reference. The discovery of novel junctions was turned off. The tran-
script assembly using the aligned reads was performed using Cufflinks
(version v2.2.1). Cuffmerge followed by Cuffdiff was used to examine
the differential expression of transcripts between the different sample
groups. The average expression of an individual gene from the fragment
per kilobase of transcript permillionmapped reads (FPKM)was obtain-
ed using Cufflinks. Fold changes were computed for genes in active TB
with respect to IGRA−ve healthy controls by taking a ratio of their cor-
responding FPKM values. Differentially expressed genes in TB were
identified by considering fold change values N2 for upregulated genes
and values b0.5 for downregulated genes.
2.4. cDNA Conversion and qRT-PCR

Approximately 2 μg of RNA from each sample was converted to
cDNA using High capacity cDNA conversion kit (Applied Biosystems).
Selected genes were validated by qPCR using a SYBR Green master
mix (Applied Biosystems) and specific primers (Table S3) except for
SLPI which was amplified using a TaqMan master mix and probe. The
total reaction volume for SYBR green reactions was 25 μl and for
TaqMan it was 10 μl. GAPDH was used as the internal housekeeping
control gene in both cases. All reactions were carried out in duplicates
alongwith a no cDNAnegative control using the Step One Plus (Applied
Biosystems) instrument. Mean CT values were used for calculating rela-
tive copy number (RCN) of each gene.

2.5. Construction of the Human Protein–Protein Interaction Network

A network of human protein–protein interactions was constructed
based on curating high confidence, experimentally verified interactions
from multiple protein–protein interaction sources and pathway data-
bases, as well as from primary literature. This network is termed as
human protein–protein interaction network (hPPiN) (Sambarey et al.,
in press). Briefly, the Search Tool for The Retrieval of Interacting
Genes/Proteins (STRING) version 10 (Szklarczyk et al., 2014) was
mined to extract all human interactions with a combined score N900,
and the functional nature of these interactions was identified from the
protein actions file. Based on these annotations, the edges were
assigned directions, however, interactions describing a ‘binding’ event
were represented as bidirectional edges. SignaLink v 2.0 (Fazekas et
al., 2013)wasmined to identify regulatory interactions of transcription-
al, post-transcriptional and pathway regulators. Additional interactions
present in non-disease conditions were identified from the Cancer Cell
Map (Krogan et al., 2015), and the BioGRID database (Chatr-
Aryamontri et al., 2015) was mined to identify unique interactions not
reported by the other resources used. In addition to PPI databases and
resources, primary literature was explored to identify experimentally
verified interacting proteins in the human proteome. Interactions
were extracted fromMultinet (Khurana et al., 2013), and from themac-
rophage interaction network (Sambarey et al., 2013). From this con-
structed hPPiN, interactions were extracted for all protein-coding
genes present in the RNA-Seq dataset.

2.6. Condition-specific Weighted Networks

The FPKMvalues for all genesweremappedonto the constructed PPI
network in the form of node and edge weights to generate condition-
specific response networks. Node and edge weights were modified
from Sambarey et al. (2013). The node weight of gene i in condition A
is given as

Ni Að Þ ¼ FPKMi Að Þ: ð1Þ

The edgeweightWe(A) of edge e comprising genes i and j in condition
A is computed as:

Weij Að Þ ¼ Inverse
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni Að Þ � N j Að Þ

q
: ð2Þ

A lower edge weight is indicative of an active edge, wherein the
interacting nodes have high expression values in that condition.
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2.7. Shortest Path Analysis

All-vs-all shortest paths were computed for all genes in the net-
work using Dijkstra's algorithm. The algorithm computes minimum
weight shortest paths, in which each path begins from a source
node and ends with a sink node, through interacting proteins, choos-
ing the least-cost edge in every step. For a path of length n in condi-
tion, the PathCostwas computed as a summation of the edge weights
constituting the path. We have previously performed sensitivity
analysis for the response network construction, by modifying ex-
pression values of genes in a random manner to reflect the noise
that can be introduced in microarray data. Repeating the pipeline
over several independent runs incorporating such modifications re-
vealed that the top networks are largely robust to minor variations
in differential expression (Sambaturu et al., 2015). Cytoscape v3.1
(Su et al., 2014) was used for network analysis and visualization as
it is a well-established software used routinely by researchers
working on biological networks. The implementation of Dijkstra's
algorithm was done in Python, a well-established method for com-
puting shortest paths in a network.
2.8. Pathway Enrichment

The EnrichR server (Chen et al., 2013) was used to identify signifi-
cantly enriched KEGG Pathways andWikiPathways, whichwere pooled
and ranked based on the combined score, which is computed as c =
log(p) × z, where p is the p-value computed using the Fisher exact
test, and z is the z-score computed by assessing the deviation from the
expected rank.
Fig. 1. The computational pipeline used for biomarker discovery in tuberculosis. The figure illus
set of 16 putative biomarkers, which were then subjected to experimental verification by qRT-
3. Results

An unbiased computational pipeline was developed to integrate
RNA-seq data obtained from TB patients and corresponding healthy
controls into a global protein–protein interaction network, resulting in
the generation of condition-specific networks. The highest-activity net-
work unique to active TBwas identified in which the upregulated genes
were shortlisted, and their outward reachabilitywasmeasured to deter-
mine the extent to which these DEGs exert their effects in the network.
The expression profiles of these significant and central genes were then
monitored over treatment, and those that responded to therapy were
further filtered, and among these, those with significant upregulation
and a q-value b 0.05 were selected. Additionally, the prediction poten-
tial of these genes was tested on existing transcriptomic datasets to as-
sess their ability in discriminating TB samples from corresponding
healthy controls (HCs) and other diseases. These predicted markers
were then subjected to experimental verification by RT-PCR on addi-
tional TB samples, and were also compared with latent infection and
HIV to finally shortlist a list of 10 genes that can serve as potential
markers for diagnosis in tuberculosis. Fig. 1 illustrates the developed
pipeline and the number of genes that were filtered at every step.
3.1. Differentially Abundant Transcripts Highlight an Active Signaling Re-
sponse in Tuberculosis

Whole blood samples were taken from three healthy controls (HCs),
three patients with baseline tuberculosis (BL)whichwere subsequently
followed up after 6 (FU1) and 12 (FU2) months of treatment. Details
about the patient groups, time of sample extraction and number of
trates the pipeline used in this study, describingmultiple filters used to shortlist a minimal
PCR, eventually deriving a candidate biosignature of 10 genes in tuberculosis.
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samples are provided in Table 1. The RNA sequencingwas performed as
described in the Materials and Methods section. Median FPKM values
for the genes across samples were considered as representative expres-
sion values for each condition. Differentially expressed genes were
identified by computing fold change values relative to the control for
baseline tuberculosis (BL/HC), whereas their dynamic changes over
treatment were captured by taking fold changes relative to their values
in disease (FU1/BL and FU2/BL respectively). The list of fold change
values for all genes and their q-value is provided in Additional File 1.
There were 525 genes upregulated and 125 genes downregulated in
BL, based on a two-fold difference and a q-value b 0.05 (Supplementary
Fig. S1). Supplementary Fig. S2 depicts the GeneOntology (GO) process-
es that are enriched by these DEGs.

The processes captured by the identified upregulated genes involve
the Type I and Type II interferon processes, cytokine signalingmediated
by IL-4, IL-6, IL-2, IL-7, and TGF-beta, TNF pathway, chemokine signal-
ing, TLR pathway, and the Age/Rage pathway, among others. These pro-
cesses broadly capture the innate immune response at play during
active infection. To determine the genes that contribute most signifi-
cantly to these biological processes, we adopted a network approach.

3.2. Response Network Facilitates the Identification of Highest Activities in
the Host and Determination of Most Influential Nodes in Disease

The reconstructed hPPiN consisted of 17,063 proteins (nodes) and
208,760 interactions (edges) among them, of which 168,238 were
uni-directed and 40,522 were bi-directional interactions. The normal-
ized RNA-seq data had expression information measured in terms of
FPKMvalues for 14,394 protein-coding genes, and the subsequent inter-
action network for these genes comprised 192,389 interactions. This
network is highly dense and largely interconnected, and is seen to fol-
low a scale-free distribution attributed to most biological networks.
The hPPiN was constructed based on experimentally validated physical
interactions, with directions assigned based on functional annotations.
It is thus of higher confidence than similar gene co-expression networks
derived based on expression patterns alone.

The computed median FPKM values for conditions HC, BL, FU1 and
FU2 were mapped onto hPPiN in the form of node and edge weights,
and four corresponding condition-specific networks were generated.
Shortest path computation for these networks comprising 14,342
genes and 192,389 interactions resulted in the generation of nearly 1.9
billion paths per network, with only paths of lengths two and higher
considered for further analysis. All paths were sorted and ranked
based on their cumulative path score, with lower scores implying higher
activity. These paths represent the possible routes of signaling from a
source gene to a target gene across the topology of the network, and
are optimized based on the least costs for each edge traversed to reach
a target node. The weights for each edge were formulated to include
the gene abundance information of the two connecting nodes, with a
lower edge weight correlating with higher node weights of the nodes
constituting the edge. The cumulative PathCost, which is a summation
of edge weights in a path, is thus reflective of the activity of the nodes
involved, with the least-scoring paths taking routes through highly up-
regulated nodes. The frequency distribution of the path costs followed a
long-tail distribution, where the ‘highest-activity’ paths comprising
maximally upregulated genes were localized in the beginning, followed
by paths of lower activity, and the frequency tailed off asymptotically.
The paths at the lower end of the distribution thus have a smaller prob-
ability of occurrence in the condition studied. The processes and genes
characteristic of any condition are more likely to be represented in the
‘highest-activity’ end of the distribution, hence the paths occurring in
the top 99th percentile for each condition-specific network were con-
sidered for further analysis.

The highest-activity paths in the BL response network were com-
pared with the corresponding highest-activity paths computed for the
HC network, and those that were common to both top networks were
eliminated in the process, as they likely represent constitutive activity
in the host that is responsible for the regular functioning of the system.
Among the 364,965 paths present in the 99th percentile of the BL net-
work, 97,909 paths were seen to be uniquely active in BL relative to
the representative HC top network, and the nodes and edges present
in these paths resulted in a ‘highest-activity network’ (HAN) for active
disease, which we refer to as a TB-specific response network. This re-
sponse network comprised 3060 genes, and represented about 20% of
the total network. Gene enrichment analysis of the nodes in this re-
sponse network identified a more focused set of pathways that are
enriched with greater significance as compared to mere DEG based en-
richment, since the network formulation eliminates noise by consider-
ing only those genes that are involved in active flows. Cytokine
signaling, complement signaling pathway, MAPK signaling, platelet ac-
tivation, apoptosis, phagocytosis, TNF and TLR signaling as well as the
adaptive immune processes such as the T cell receptor signaling path-
way are seen to be significantly enriched by the HAN nodes. These pro-
cesses are reflective of an enhanced inflammatory immune response, as
well as the early onset of adaptive immunity in the host.

3.3. The Most Influential Nodes Form a Highly Interconnected Sub-network

The HAN, while reflective of the overall host response in tuberculo-
sis, is still a broad representation of the processes triggered in the
host. Interestingly, this network showed high interconnectivity, imply-
ing increased cross-talk and concerted action among genes and process-
es constituting the host's response to infection. An important feature of
a good biomarker is its abundance, in that it is measurable in the blood
in addition to being differentially regulated in disease. We thus focused
on those genes in the HAN that had a fold change of 2 and higher in in-
fection in addition to having a high abundance, both of which are
reflected by the computed node weights. There were 276 upregulated
nodes present in the top network which contribute to the paths of the
highest activity.

In addition to their node weights, their position in the network as
well as the nature and abundance of their connecting partners will dic-
tate the extent to which each of these 276 nodes influences the host re-
sponse, with somenodes playing amore important role than the others.
A node centrality measure termed ripple centrality was computed for
each of these nodes. The ripple score determines how the perturbation
of a single node impacts its neighbors, and how effectively a change at
that node can transmit across the network, leading to the identification
of the most influential nodes, also known as epicenters. The ripple cen-
trality measure was computed using the EpiTracer algorithm
(Sambaturu et al., 2015), which measures the Outward Reachability of
a given node, a property of its connections as well as its condition-spe-
cific node weight. Of the 276 upregulated nodes, 153 nodes had a non-
zero ripple score, and a sub-network of these nodes and their
interacting partners was subsequently analyzed. Fig. 2 illustrates the in-
terconnections and distribution of these 153 upregulated epicenters
(highlighted in red) across the network, and the corresponding enrich-
ments of their sub-networks. While the hub nodes which have the
highest number of partners in the network are highlighted, it is interest-
ing to note that while most of the partners of these hubs are not upreg-
ulated, collectively these individual sub-networks contribute to
significantly enrich biological processes, thus emphasizing their impor-
tance as downstreameffectors of the upregulated gene.Most upregulat-
ed genes are seen to occupy the central positions in the network, as
demonstrated in Fig. 3. The topological representation of the network
is a function of the degree or connectivity of the nodes, with nodes of
highest connectivity placed in the center. Observation of DEGs in the
network center implies that the infection-induced upregulation is close-
ly connected, with a few molecular players playing a more central role
in driving the response to disease.

The enrichment for the complete network provides deeper insights
into the specific processes that are upregulated. In addition to the



Fig. 2. The top response network of the most influential genes (epicenters). Genes that are upregulated (FC N 2) have been marked in red. The hub nodes are highlighted and the most
enriched biological processes for their corresponding sub-networks have been illustrated.
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processes the broader inflammatory processes observed in Supplemen-
tary Fig. S2, specific metabolic processes such as glucose catabolism,
fructose metabolism, phosphatidylserine, phosphatidylinositol and
phosphatidylglycerol metabolism, biosynthesis of glycerolipids and
their regulation, NADH regeneration, and purine nucleoside diphos-
phatemetabolism are seen to be over-represented in this network com-
prising epicenters and their interconnected neighbors of high influence,
as described in Fig. 3. Fc-gammamediated phagocytosis is seen to be up-
regulated, in addition to signaling mediated by pattern recognition re-
ceptors such as Toll-like receptors and stimulatory c-type lectin
receptor pathway. Differential uptake of Mtb by its receptors has been
reported to play a role in governing the outcome of infection. Cellular
responses to stress are notably activated, including regulation of nitric
oxide biosynthesis, generation of reactive oxygen species, intrinsic apo-
ptotic signaling in response to DNA damage, response to endoplasmic
reticulum stress, necrosis, aging and senescence. Cytokine signalingme-
diated by pro-inflammatory cytokines IL2 and IL12 as well as the re-
sponse to interferon gamma, TNF-alpha and Type I interferons are
observed. The importance of cytokines in tuberculosis has been well
documented, and recent years have placed particular emphasis on the
Type I responses, which also show significant enrichment here. The
adaptive immune responses are strongly characterized with the activa-
tion, differentiation, aggregation and regulation of T and B lymphocytes,
that are all observed in the high activity network.

3.4. Reversals in Gene Expression and Pathway Activity Over Treatment

Markers for active infection would ideally get downregulated upon
completion of successful anti-TB therapy, indicating that their active ex-
pression was reflective of the disease state alone. Nodes belonging to
the sub-network of 153 most influential genes were monitored over
the corresponding top networks constructed for conditions FU1 and
FU2, generated for patients monitored at 6 and 12months of treatment
respectively. As determinants of successful anti-tubercular therapy,
genes that are upregulated in active tuberculosis should show a gradual
decrease in expression values over treatment, eventually reaching
levels closer to that of healthy controls 12 months post-treatment.
Markers for active disease alone should therefore rank lower in signifi-
cance in the corresponding treatment top networks. Of the 153 genes
shortlisted in the BL top network, 74 genes showed a linear decrease



Fig. 3. Collective enrichment of the highest-activity network in TB. The enriched KEGG pathways are ranked based on the EnrichR combined score.
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in expression over 6 and 12months of therapy, andwere completely ab-
sent in the FU2highest-activity network. These 74 genes formed a large-
ly interconnected network where they occupy central positions having
a high degree, thereby enabling them to significantly transmit varia-
tions in their expression downstream.
3.5. Shortlisting a Minimal Set of Markers for Tuberculosis

Clinical measurements of the 74 genes from patient samples, while
feasible, would still pose several constraints in developing countries
where tuberculosis is most prevalent. Ranking these genes to shortlist
those which are most significant in terms of abundance, and which
can discriminate between active tuberculosis patients and healthy con-
trols will lead to the identification of a minimal discriminatory signa-
ture. We then applied a filter to these 74 genes to only select a subset
of those genes that (a) were most upregulated with a significant FDR-
corrected p-value (q-value) b0.05 and (b) showed at least a two-fold
reversal in expression after completion of treatment (FU2). These
genes were ranked based on their node weights, which are representa-
tive of their relative abundance in disease, making them measurable
clinically. A total of 16 candidate markers were selected, which were
Table 2
Whole blood transcriptional profiles used for computational validation.

Dataset Number of samples

GSE19491 Whole blood samples: 54 TB and 24 HC
GSE28623 Whole blood samples: 46 TB and 37 HC
GSE34608 Whole blood samples: 8 TB and 18 HC
GSE42834 Whole blood samples: 40 TB and 118 HC
GSE56153 Whole blood samples: 18 TB and 18 HC
RAB13, RBBP8, ADM, CECR6, TNNT1, TIMM10, SMARCD3, SLPI, IFI44L,
IRF7, BCL6, CYP4F3, HK3, FCGR1A, OSM and MYL9.

The expression of these shortlisted genes was monitored across
other reported transcriptomic datasets. There exist several publicly
available datasets describing whole blood expression profiles for pul-
monary tuberculosis, largely generated by microarray analysis. Table 2
describes the five GEO datasets that were used for comparison in this
study. A class prediction step from the linear-discriminant analysis
(LDA) method was carried out using these 16 genes to determine if
they could sufficiently separate the TB patient samples from those of
healthy controls in all five datasets, enabling the assessment of their ex-
pression in other measured patient samples across different population
cohorts. LDA typically includes a training component to select the fea-
tures, followed by a classification component using the identified fea-
tures. The features in this type of study are the expression values of
the individual genes. We have bypassed the selection step and instead
use the genes selected through the network approach as illustrated in
Fig. 1 and have used LDAwith a 4-fold cross-validation to show the pre-
dictive potential of these genes and their ability to classify TB from HC
samples. In otherwords, we have used LDA to estimate the classification
accuracy of the genes that we have already selected through the net-
work-based pipeline.
Population cohort Reference

UK, SA Berry et al. (2010)
The Gambia Maertzdorf et al. (2011b)
Germany Maertzdorf et al. (2012)
London Bloom et al. (2013)
London Ottenhoff et al. (2012)



Fig. 4. (a) Confusion matrices describing predictions for TB and HC samples across transcriptomic datasets for 16 genes incorporating a 4-fold cross validation and (b) without cross-
validation. True Positives (TP) indicate the TB samples that are correctly identified as TB, whereas True Negatives (TN) refer to the samples that are not TB (which mean that they are
HC), that are correctly identified as HC. False Positives (FP) indicate the HC samples that are identified as TB, whereas False Negatives (FN) indicate the TB samples that are identified
as HC. (c) Prediction accuracies obtained for increasing linear combinations of 16 genes across 5 whole blood transcriptomic datasets. Datasets GSE34608 and GSE28623 did not have
the probe for the gene FCGR1A, and the LDA results for these datasets exclude that gene.
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Fig. 4(a) and (b) describe the confusionmatrices generated by the16
genes for five datasets depicting the classification of patient samples
into healthy controls and tuberculosis patients, with and without 4-
fold cross validation respectively. Fig. 4(c) describes the prediction ac-
curacies for increasing combinations of these 16 genes across the
datasets described in Table 2. These genes were ranked based on their
node weights in the RNA-Seq data. Increasing linear combinations of
these 16 genes (based on their node weights) were used to determine
the maximal separability obtained for classification of available TB vs
HC samples across different microarray datasets.
The 16 genes also form a largely interconnected sub-network, as
depicted in Fig. 5(a). The variation of fold changes in their expression
over the course of treatment is shown in Fig. 5(b).

3.6. Comparison With Published Transcriptome-based Biomarker Studies
for Tuberculosis

Several studies have focused on identification of biomarkers via
whole blood transcriptomics utilizing machine learning approaches to
determine combinations of markers that can accurately distinguish



Fig. 5. (a) Interaction network of the 16 shortlisted markers. The 16 genes have been highlighted. (b) Reversals in expression over treatment. The fold change values of the 16 markers
show downregulation upon 6 (FU1) and 12 (FU2) months of treatment. Fold changes are computed w.r.t a median healthy control.
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between active TB. Recently, a 3-gene signature was derived by Sweeney
et al. (2016). Comprising genes DUSP3, GBP5 and KLF2, a study by
Maertzdorf et al. (2016) also determined a four-gene signature by RT-
PCR quantitation in the Indian population constituting ID3, GBP1,
IFITM3 and P2RY14. These genes were absent in the shortlisted marker
list predicted by our study. We assessed the presence of these gene



Table 3
Assessment of published signatures in this computational pipeline.

Filter Khatri signature
(2016)

Maertzdorf signature (2016)

Biomarkers GBP5 DUSP3 KLF2 ID3 GBP1 IFITM3 P2RY14

DEG-RNAseq D D ✗ D D D ✗

Top network ✗ ✓ ✗ ✓ ✓ ✗ ✓

Variation over treatment ✗ ✗ ✗ ✗ ✓ ✓ ✗

Epicenters ✗ ✗ ✗ ✗ ✗ ✗ ✗
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signatures in each step of our computational pipeline to determinewhere
they were filtered out and why they were absent in the final signature
predicted in this study. While most of themwere reported to be upregu-
lated in our generated dataset, they were not all present in the top net-
work, with none of them forming epicenters. Further, only 2 of those
genes show a variation over treatment in our study, as depicted in
Table 3.

3.7. Experimental Validation by qRT-PCR

We tested 15 (RAB13, RBBP8, ADM, CECR6, TNNT1, TIMM10,
SMARCD3, SLPI, IFI44L, IRF7, BCL6, CYP4F3, HK3, FCGR1A, OSM) genes
from a total of 16 shortlisted candidates from the computational
Fig. 6. qRT-PCR verification of the 16 genes shortlisted by the biomarker identification pipeline.
infected subjects: All genes listed were verified by qRT-PCR by the SYBR method, with the ex
calculating relative copy number (RCN) of each gene. Statistical significance for between gro
and active TB subjects. All genes tested were significantly different between these two grou
correct for multiple comparisons; Dunn's multiple comparisons test was then used to identify
***p b 0.0001.
pipeline, using qRT-PCR in additional whole blood samples taken from
patients freshly diagnosed with TB (Table 1). The probe for geneMYL9
did notwork, and hence itwasnot considered for validation. In addition,
we also tested 6 genes (OASL,MX1, ISG15, SOCS3, STAT1, STAT2) belong-
ing to the Type I IFN induced responsewhichwas identified to be highly
upregulated in active TB as seen in the differentially expressed gene
(DEG) list derived from RNA sequencing, as the Type I interferon re-
sponse has emerged as an important host response in tuberculosis.
From the list of potentially most significant genes obtained from the
computational pipeline, expression of RAB13, RBBP8, FCGR1A, IFI44L,
TIMM10, BCL6, SMARCD3, HK3, CYP4F3 and SLPIwas significantly higher
in active TB compared to IGRA−ve/healthy controls as determined by
theMann–WhitneyU test.OASL,MX1 and ISG15 from the Type I induced
gene list could be validated for high expression in TB compared to
IGRA−ve/healthy controls. Additionally, expression of genes TIMM10,
BCL6, SMARCD3 and OASL was higher in active TB compared to latent
TB and expression of FCGR1A, BCL6, SMARCD3, HK3 and SLPIwas higher
in active TB compared to HIV infection (Fig. 6). Using Dunn's multiple
comparisons test, BCL6 and SMARCD3 were most significant in
distinguishing active TB from several other groups: healthy control, la-
tent TB and HIV infection. Interestingly, none of the Type I IFN induced
genes differentiated between active TB and HIV infection at the N per
group studied.
Comparative analysis of IGRA ve/healthy controls, active pulmonary TB, latent TB and HIV
ception of SLPI, which was verified by TaqMan. GAPDH was used as internal control for
up RCN differences was first calculated using Mann–Whitney U test between IGRA−ve
ps using this test. p-Value shown in each graph was determined by one way ANOVA to
significant differences between specific groups as shown by a line. *p = 0.01; **p b 0.01,
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The expression values of the 10 geneswere predicted by the pipeline
and subsequently verified by qRT-PCR. Expression values for 3 addition-
al genes MX1, OASL and ISG15 were also obtained and subjected to pa-
tient-wise analysis in the additional samples obtained for verification.
Fold changes per gene in TB patient samples were computed with re-
spect to a median HC. As observed in Fig. 7, in every patient sample, a
minimum of 5 genes of the predicted markers were seen to be upregu-
lated, with some patients seeing an upregulation in all the genes mea-
sured. The exception was the sample from patient 28, in whom only 5
genes could be measured, of which 2 genes show significant upregula-
tion. Further, every gene showed upregulation in all or most of the pa-
tients measured, and is ranked by the proportion of samples in which
they are expressed, with respect to healthy controls.

3.8. Monitoring Expression Changes Upon Treatment

A good biomarker for the disease should show variation over the
course of treatment, and the pipeline selected those genes that showed
a linear decrease in expression after 6 (FU1) and 12 (FU2) months of
treatment. As additional validation, the patients whose blood samples
were taken at diagnosis for validation by qRT-PCR were followed up
for six months and their samples were tested to determine if there
were any reversals in the upregulation of the shortlisted candidate
markers. The expression of genes RBBP8, TIMM10, SMARCD3, IFFI44L,
BCL6, CYP4F3, HK3 and FCGR1A was shown to have a significant reduc-
tion after 6 months of therapy, whereas RAB13 did not showmuch var-
iation. SLPIwasnotmeasured in these patients. Additionally, three other
genes upregulated in TBMX1,OASL and ISG15, whichwere subsequently
eliminated at one of the steps of the biomarker identification pipeline,
were also measured. Of these, ISG15 showed an increase in expression
upon treatment, whereas MX1 and OASL showed significant decrease
in expression, indicating changes in the Type I response upon therapy.
These results are shown in Fig. 8(a), which indicate that a majority of
the genes in the panel showed a decrease in expression values upon
treatment, with respect to their expression levels at diagnosis of TB. Pa-
tient-wise variation in gene expression over treatment is shown in Fig.
8(b).
Fig. 7. Patient-wise fold changes in expression of the candidatemarkers in TB vsHC. Ranked list
respect to a median HC. Genes with a log2FC N 1 have been highlighted.
3.9. Specificity of the Predicted Markers

From the results described above, it is clear that the expression pat-
tern of the 10-gene panel is sufficiently characteristic of the TB condi-
tion when compared to HC, latent TB and HIV samples. Beyond this, a
frequent requirement in the clinic is to get a differential diagnosis be-
tween TB and other diseases whose clinical presentation may resemble
pulmonary TB. Transcriptome data for other diseases which elicit a sim-
ilar inflammatory response in the host as that of TBwere publicly avail-
able (Berry et al., 2010; Bloom et al., 2013; Kaforou et al., 2013; Haas et
al., 2016), and we therefore assessed the predictive power of the 10
genes to distinguish between TB and other diseases. To determine the
specificity of our identified signature for these diseases, an LDAwas per-
formed on additional samples to determine howmany of these samples
would be correctly classified into TB and other diseases, using only the
10-gene panel by performing the class prediction step of LDA with 4-
fold cross-validation. Table 4 shows the predictive ability of the 10
genes on TB, HIV, LTB and other disease samples reported by Kaforou
et al. (2013). Additional File 3 provides the details for the datasets
used and the prediction accuracies obtained using both the 16 gene-
set and the 10-gene combination to show specificity of TB with respect
to other similar diseases.

4. Discussion

The host response toMtb is complex and multifaceted, and involves
an elaborate interplay of multiple components of the immune system
(Cooper, 2009). The transcriptome offers a global dynamic view of the
changes occurring in the host during infection, and provides a list of dif-
ferentially expressed genes which help characterize specific responses
to infection. Whole blood transcriptomes are comprehensively covered
genomic data that are reflective of condition specificity. While a global
view broadly captures the immune response at play during an active in-
fection, for ease of diagnostics at the clinical level, further filtering of this
list will help shortlist the most significant of these genes.

The field of detecting blood biomarkers is rapidly evolving (Haas et
al., 2016; O'Bryant et al., 2016; Petruccioli et al., 2016). The key
of genes validated by qRT-PCR, with upregulation observed in individual PTB sampleswith
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challenge for the success of this approach is the robustness of a minimal
biomarker to readily distinguish a disease state. This studywasdesigned
to identify a minimal biomarker and to validate the marker to distin-
guish extremes of disease. To do so we implemented a network ap-
proach, by analyzing these DEGs in the context of their connections
and the extent to which they can influence their interacting neighbors.
Networks provide an overview of the nature of connectedness of each
participating gene, enabling the identification of hubs, however, by
themselves they only provide a static picture of the system. Integrating
condition-specific transcriptomic data into the network results in the
generation of weighted response networks which describe how the
changes in expression flow across the interconnected routes in a given
condition, thereby identifying key regulators of the host response. The
hPPiN utilized in this studywas constructed using only high scoring ex-
perimentally validated physical interactions, with directions assigned
based on functional annotations. It is thus of higher confidence than
similar gene co-expression networks derived based on expression pat-
terns alone. Each step in the pipeline considers a different aspect,
which when put together, provides cumulative insights about multiple
aspects. While enrichment of the generated response network provides
a better overview of the underlying processes that are activated during
infection, further mining of the network is necessary to identify those
genes and processes that are primary drivers of the host response,
which can serve as putative markers for active tuberculosis.

An ideal biomarker should not only be capable of discriminating be-
tween disease and healthy conditions clearly, but should also be func-
tionally relevant. Analysis of network topology has highlighted the
central positioning of these predicted markers, which have all shown
to exert significant influence on their partners and can thus transmit ef-
fects of their expression variation downstream in the host. Additionally,
several of these genes have been implicated in the pathobiology of tu-
berculosis, strengthening their importance as functional biomarkers of
disease. InfectionwithMtb has been reported to alter immuno-metabo-
lism in the host, with the induction of the Warburg effect primarily by
HIF-1 recently observed in mice lungs (Shi et al., 2016). HK3 has been
shown to be an important player in the activation of HIF-1mediated re-
sponses, participating in stress-mediated energy metabolism and anti-
microbial activity. CYP4F3 encodes leukotriene-B(4) omega-hydrolase
2, and is directly connected to LTA4H in the top response network for
TB. The expression profile of LTA4H has been shown to influence the
TNF-mediated inflammatory response by regulating the pro-inflamma-
tory lipid leukotriene B4 in tuberculosis as well as in other respiratory
diseases such as asthma, and can determine the outcome of infection
inmacrophages (Tobin et al., 2010, 2013).Mtb also promotes its surviv-
al in host macrophages by dysregulation of lipid mediator balance by
enhancing the production of lipoxins, mediated by leukotrienes
(Dietzold et al., 2015). Genome-wide associated studies (GWAS) of
the African population have reported RBBP8 to be associated with ge-
netic predisposition to tuberculosis (Thye et al., 2010). While its exact
mechanism of action in tuberculosis is yet unknown, it has been report-
ed to be upregulated in several TB transcriptomic studies. The expres-
sion of genes RBBP8, RAB13, FCGR1A, TIMM10 and SMARCD3 has been
demonstrated to significantly distinguish between active TB and other
diseases such as sarcoidosis and pneumonia (patent WO2014093872
A1). BCL6 has been shown to mediate a sustained Mtb specific CD4 T
cell response in addition to regulating host apoptotic responses
(Moguche et al., 2015). Both IFI44L and SLPI participate in the interfer-
on-mediated inflammation in TB (Maji et al., 2015), with IFI44L also im-
plicated in lymph node tuberculosis; SLPI has been shown to exhibit
Fig. 8. (a) qRT-PCR verification of the candidate marker genes after six months of treatment (FU
control for calculating relative copy number (RCN) of each gene. Statistical significance for betw
each graphwas determined by oneway ANOVA to correct formultiple comparisons. (b) Patient
computed at FU1 for each gene with respect to their median values in the same patient at diag
highlighted in red. Black indicates those genes that were not measured in a given patient samp
antimicrobial activity and also plays an important role in regulating ap-
optosis by interacting with membrane phospholipid scramblase (Py et
al., 2009).

Experimental validations in a fresh set of patient samples strengthen
our predictions, underlining the sensitivity of this methodology which
utilized a minimum number of samples to derive a signature, but
which still should be substantially validated in an additional pool of
samples from existing datasets in literature with significant prediction
accuracies, as well as on additional fresh patient cases. The decrease in
expression observed for these genes over six months of treatment for
the patients followed up further depicts that the candidate genes
responded to therapy, and that their high expressionwas representative
of a TB-specific response. Based on these initial results, it seems likely
that the signature will hold true for additional patient samples as well.

Difficulties in diagnosis of TB are at times, further compounded by
the presence of comorbidities such as HIV infection, as well as by a sim-
ilar inflammatory response observed in other diseases such as sarcoido-
sis, pneumonia, SLE and Still's disease. The predictedmarkers are shown
to sufficiently distinguish TB from other diseases, by monitoring their
differences in expression in these diseases, as reported in literature. Fur-
ther, the discriminatory prowess of the signature against HIV was vali-
dated experimentally by qRT-PCR. HIV was chosen for comparison as
it is well known that a common pathway dysregulated in both HIV
and TB is the Type I interferon pathway (Mayer-Barber and Yan, 2016;
Pawlowski et al., 2012). We show in this manuscript by validating the
minimal marker in additional samples to those used for sequencing
that the marker can distinguish TB subjects from healthy controls and
HIV infected subjects, with reasonable accuracy. We wish to highlight
that the robustness of a marker lies in being successfully validated in
samples above and beyond those for its initial identification. We dem-
onstrate that despite themarker being identified using RNA sequencing
data fromamere three to four subjects in each group, it was validated in
several TB samples collected from an additional clinical site, as well as
by comparing it with expression profiles in other diseases from existing
literature. Furthermore, we show that the genes in the identified panel
respond to treatment and have significantly lower levels of expression.

Mapping omics data into genome-scale interaction networks and
analysis in terms of the pathways and processes associated with these
genes have served to provide vital clues about the critical differences
at a systems level that occur during infection, providing precise sugges-
tions for the development of biomarkers that can not only predict dis-
ease risk but also monitor outcome of therapy. Computational system
level models serve as platforms for rationalizing available data in both
amolecular bottom-up approach and a top-down approach, so as to de-
rive variations in system properties that may reflect disease sub-types
and predict response to a particular treatment plan. Such models
when supplemented with experimental data can accelerate the prog-
ress of system medicine.

The approach implemented in this study is unbiased, in that noother
prior knowledgewas directly used in the selection of genes to include in
the signature. Initially all genes and their known or predicted interac-
tions are considered to reconstruct the network. The transcriptome
data has been taken for all genes in a systematic manner. Our pipeline
selects genes based on the criteria defined at each stage and hence is un-
biased or hypothesis-free. Such an approach thus offers global insights
into the multiple changes occurring in the host upon infection, making
it feasible to pick among those genes that are topologically significant
and functionally relevant, andwhich demonstrate sufficient discrimina-
tory prowess. Signatures and network patterns specific to different
1). All genes were verified by qRT-PCR by the SYBRmethod. GAPDHwas used as interna
een group RCN differences was calculated using Mann–Whitney U test. p-Value shown in
-wise fold changes in expression of the candidatemarkers in FU1 vs TB. Fold changes were
nosis. Genes with a log2FC b −1 are highlighted in blue, and those with a log2FC N 1 are
le.
l



Table 4
Predictive potential of the 10-gene combination with and without 4-fold cross-validation on the dataset by Kaforou et al. (2013).

Condition #Sample C1 #Sample C2 TP TN FP FN Accuracy TP noCV TN noCV FP noCV FN noCV Accuracy noCV

Malawi
TB vs HIVLTB 51 TB 35 HIVLTB 49 31 4 2 0.93 49 31 4 2 0.93
HIVTB vs HIVOD 50 HIVTB 35 HIVOD 41 23 12 9 0.75 45 27 8 5 0.85
TB vs HIVOD 51 TB 35 HIVOD 46 23 12 5 0.8 48 26 9 3 0.86
TB vs HIVTB 51 TB 50 HIVTB 46 37 13 5 0.75 47 41 9 4 0.87
TB vs LTB 51 TB 36 LTB 42 33 3 9 0.86 43 34 2 8 0.89
TB vs OD 51 TB 34 OD 47 16 18 4 0.74 49 22 12 2 0.84

South Africa
TB vs HIVLTB 47 TB 49 HIVLTB 38 48 1 9 0.9 38 49 0 9 0.9
HIVTB vs HIVOD 47 HIVTB 57 HIVOD 29 48 9 18 0.74 33 52 5 14 0.82
TB vs HIVOD 47 TB 57 HIVOD 34 49 8 13 0.8 38 53 4 9 0.88
TB vs HIVTB 47 TB 47 HIVTB 37 29 18 10 0.7 36 35 12 11 0.75
TB vs LTB 47 TB 47 LTB 37 43 4 10 0.85 40 46 1 7 0.91
TB vs OD 47 TB 49 OD 32 39 10 15 0.74 34 42 7 13 0.79

C1 and C2 are conditions 1 and 2; TP, TN, FP, and FN are True Positives, True Negatives, False Positives and False Negatives respectively, similar to that in Fig. 4. noCV— no cross-validation.
Columns 4 to 7 present the results with a 4-fold cross-validation.
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stages of treatment have the potential to drive clinical decisions about
the duration of treatment and specific drug combinations, carving a
clear roadmap towards precise and personalized medicine. Identifica-
tion of a marker profile is a step towards aiding early and efficient diag-
nosis of TB, aimed at enabling more effective management of the
disease.

Taken together, this is a comprehensive study showing the identifi-
cation of a robust minimal marker gene-set for TB that deserves further
validation in larger cohort based studies of both TB and other chronic
disease states.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2016.12.009.
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