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Abstract:  Human solid tumors contain hypoxic regions that have considerably lower oxygen tension than normal
tissues.  They are refractory to radiotherapy and anticancer chemotherapy.  Although more than half a century has passed
since it was suggested that tumour hypoxia correlates with poor treatment outcomes and contributes to recurrence of
cancer, no fundamental solution to this problem has been found.  Hypoxia-inducible factor-1(HIF-1) is the main
transcription factor that regulates the cellular response to hypoxia.  It induces various genes, whose function is strongly
associated with malignant alteration of the entire tumour.  The cellular changes induced by HIF-1 are extremely
important therapeutic targets of cancer therapy, particularly in therapy against refractory cancers.  Therefore, targeting
strategies to overcome the HIF-1-active microenvironment are important for cancer therapy.  To Target HIF-1-active/
hypoxic tumor cells, we developed a fusion protein drug, PTD-ODD-Procaspase-3 that selectively induces cell death in
HIF-1-active/hypoxic cells.  The drug consists of the following three functional domains: the protein transduction
domain (PTD), which efficiently delivers the fusion protein to hypoxic tumor cells, the ODD domain, which has a VHL-
mediated protein destruction motif of human HIF-1α protein and confers hypoxia-dependent stabilization to the fusion
proteins, and the human procaspase-3 proenzyme responsible for the cytocidal activity of the protein drug.  In vivo
imaging systems capable of monitoring HIF-1 activity in transplanted human cancer cells in mice are useful in evaluating
the efficiency of these drugs and in study of HIF-1-active tumor cells.   (J Toxicol Pathol 2009; 22: 93–100)
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Introduction

Most solid tumours contain a tumour-specific
microenvironment that is completely different from that
inside normal tissues (Fig. 1).  The microenvironment of a
solid tumour is characterised by low pO2 and low pH, which
are well below physiological levels1–4.  This is due to the
generation of areas within the solid tumours that do not
receive adequate nutrients and oxygen from blood vessels
because of the uncontrolled growth of the tumour cells and
disproportional and incomplete vascular structures during
angiogenesis.  Due to certain physical factors within these
hypoxic areas, hypoxic tumour cells are resistant to cancer
therapy1–4.  Since transport of anticancer agents via blood

flow to hypoxic tumour cells, which are located distant from
blood vessels, is inefficient, there is only a small chance that
an anticancer agent reaches hypoxic tumour cells at an
effective concentration.  In addition, many anticancer agents
target dividing cells and, thus, are ineffective in growth-
arrested or slowly growing hypoxic tumour cells.
Furthermore, radiation, which enhances cytotoxicity via
oxygen molecules, and certain types of anticancer agents
cannot exert their therapeutic effects sufficiently under
hypoxic conditions.  Therefore, there are cases in which
hypoxic tumour cells survive after radiotherapy or
chemotherapy, even though the surrounding well-
oxygenated and proliferating cancer cells die, suggesting
that they are the cause of poor treatment outcomes and
recurrence of cancers.

At the same time, cells in hypoxic areas contribute to
malignant alteration of cancers due to biological factors.
Compared with the actively growing cancer cells
surrounding them, which are exposed to an aerobic
environment, they are ‘impaired cancer cells’ and are not
nomally considered as a serious target for cancer therapy.
However, recent research has shown that these ‘impaired

Received: 27 November 2008, Accepted: 28 November 2008
Mailing address:  Shinae Kizaka-Kondoh, Department of Radiation 
Oncology and Image-applied Therapy, Kyoto University Graduate 
School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 
606-8507, Japan
TEL: 81-75-751-3417  FAX: 81-75-771-9749
E-mail: skondoh@kuhp.kyoto-u.ac.jp



94 HIF-1-active Microenvironment

cancer cells’ increase the malignancy of the entire tumour5.
Although these hypoxic tumour cells are in a ‘moribund
state’, they try to adapt to their poor environment.  Hypoxia-
inducible transcription factor (HIF-1) supports their
adaptation.  HIF-1, whose activity is barely detectable in
cells under aerobic conditions, is immediately activated
under hypoxic conditions.  Moreover, it induces expression
of genes that are related to glucose metabolism and glucose
transport, produces angiogeneic and growth factors and
helps to improve the nutritional environment.  HIF-1
attempts to prevent apoptosis and death by inducing
expression of genes that induce mutations.  At the same time,
it induces expression of genes that are involved in metastasis
and invasion.  These chain-of-survival actions are linked to
malignant alteration of the entire cancer.  Therefore,
extensive research is being conducted to identify genes
whose expression is directly induced by HIF-1, and nearly a
hundred such genes have been reported thus far5.

HIF-1 Activity and Hypoxic Regions in Tumors

The binding of 2-nitroimidazole derivatives such as
pimonidazole (Pimo), to cellular macromolecules increases
dramatically below an oxygen concentration of 10 mmHg
and is considered to indicate chronic hypoxia6, 7.  Recently, it
has been reported that the intratumour regions in which HIF-
1α is expressed (HIF-1-active regions) hardly overlap Pimo-
positive regions (Fig. 2); HIF-1-active regions are more
closely distributed in blood vessels than Pimo-positive
regions8.  Janssen et al.9 performed an extensive study of
surgical specimens from patients and reported that while
typical Pimo-positeve regions at a distance from blood
vessels with peaks of around 80 μm were observed, the HIF-
1-positive regions were more variable, without clear peaks,

and no correlation was observed between the percentage of
positive tumour tissue for either markers; although the
median values of the positive area were similar for both
markers (5.8% vs. 5.6%), the median percentage of the
regions positive was below 5% (range 0.2–2.3%) for both
markers.

As gene clusters whose expression is induced by
transcription factor HIF-1 exert functions that contribute
greatly to the malignant alteration of a cancer, imaging and
targeting of ‘hypoxic cells with HIF-1 activity’ has become
important.  In addition, while compounds such as Pimo
function at absolute oxygen concentrations below 10 mmHg,
the oxygen concentrations at which HIF-1 activity occurs
differs among tissue cells5, 10, indicating that the abnormal
oxygen concentrations necessary for HIF-1 activity and the
oxygen concentrations required by cells differ in each tissue
and cell type.  For example, pulmonary cells are consistently
exposed to relatively high oxygen concentrations, and thus,
the oxygen concentrations that these cells perceive as
abnormal are relatively high, while bone marrow cells,
which usually exist under low oxygen concentrations,
require no HIF-1 activity when they are kept under the same
oxygen concentrations.  Sensitive recognition of abnormal
hypoxia with respect to tissue or cell type is not possible with
compounds that respond to absolute oxygen concentrations.
Therefore, bioprobes that respond to biological reactions in
specific microenvironments are required.

Regulations of HIF-1

Structure of HIF-1 subunits
HIF-1 is a heterodimer consisting of HIF-1α and HIF-

1β 5, 11.  The β subunit (HIF-1β), also known as the aryl
hydrocarbon receptor nuclear translocator (Arnt1), is a

Fig. 1. A section of a xenograft of human liver cancer cell line NuE
was analyzed by staining with hematoxylin-eosin (HE), and a
hypoxia marker, Pimonidazole (dark brown).  Cancers
contain necrotic regions that contain no oxygen, no ATP and
no protein expression.  Tumor associated macrophages
(TAM) are considered to be able to nest in necrotic regions.

Fig. 2. Tumor hypoxia arises in regions with impaired oxygen
delivery.  As the distance from the blood vessels increases,
the concentration of oxygen and nutrition diminishes.  The
HIF-1-active regions (red/pink) are located closer to the
blood vessels than the Pimonidazole-positive regions (blue/
light blue).  The Pimo-positive regions are located next to the
necrotic regions (dark blue) and barely express HIF-1α; they
possess little HIF-1 activity.
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constitutively expressed nuclear protein.  The α subunit
(HIF-1α) is regulated at the translational level and strictly
controlled by post-translational modification (Fig. 3).  HIF-
1α translocates to the nucleus, forms a heterodimer with
HIF-1β through protein-protein interactions via their PER-
ARNT-SIM (PAS) domains and binds to hypoxia-
responsive elements (HREs) of the target genes12.  Thus,
HIF-1 activity depends on the degree of HIF-1α expression.
Both HIF-1α and HIF-1β belong to the family of basic helix-
loop-he l ix  (bHLH)  and  PAS domain-con ta in ing
transcription factors11.  The bHLH and PAS domains
mediate DNA binding and dimerisation.  The other HIF-1α
domains include a unique oxygen-dependent degradation
(ODD) domain and two transcription domains, N-terminal
activation domain (NAD) and C-terminal activation domain
(CAD; Fig. 4).

Modification of HIF-1α by proline hydroxylases
Control of HIF-1α via post-translational modification

mainly occurs via oxygen-dependent proline hydroxylase.
The ODD domain is responsible for the regulation of the
oxygen-dependent degradation of the HIF-1α protein that
‘stabilizes in a hypoxic environment and degrades
immediately under normal oxygen conditions (aerobic
environment)’.  The details of this control mechanism were
clarified in 2001 on a molecular level by cloning three
human proline hydroxylase genes13.  These genes encode

PHD1, PHD2 and PHD3, which have closely related
catalytic domains and belong to the superfamily of 2-
oxoglutarate-dependent oxygenases.  The PHDs contain
Fe(II) in their catalytic centres, which is oxidised to Fe(III)
during the hydroxylation reaction, and should be regenerated
prior to another round of catalyse14.  The PHDs hydrate
proline residues (P402 and P564) in the ODD domain (Fig.
4).  Hydroxylated prolines enable specific recognition of
HIF-1α by the von Hippel-Lindau (VHL) protein15, 16,
which, in a complex with elongin B, elongin C and Cul2,
functions as an E3 ubiquitin ligase for HIF-1α.  Binding of
hydroxylated HIF-1α by VHL is followed by rapid
polyubiquitylation.

The E2 ubiquitin-conjugating enzyme UBcH5 requires
K532, K538, and K547 as acceptors for the VHL-mediated
ubiquitylation of HIF-1α.  Polyubiquitylated HIF-1α is then
translocated to and degraded in the 26S proteasome17 (Fig.
3).  This ODD control mechanism is strictly controlled, and
when cells expressing HIF-1α are oxygenated, they degrade
within a few minutes.

Modification of HIF-1α by FIH
Factor-inhibiting HIF (FIH) is an asparaginyl

hydroxylase that hydroxylates asparaginyl residue N803 in
the CAD domain at the N-terminal end18, 19.  Oxygen-
dependent hydroxylation of this single asparagine has been
found to be sufficient to prevent the interaction of CAD with
the essential transcriptional coactivator CBP/p300, thus
silencing HIFs transcriptional ability.  FIH-1 has an absolute
requirement for oxygen to maintain enzymatic activity, and
thus has the potential to be a cellular oxygen sensor.  The
estimated Km values of FIH-1 and the PHDs for molecular
oxygen were first reported to be approximately 90 and 250
mM, respectively20, 21.  Since FIH-1 appears to have a higher
affinity for O2 than the PHDs based on in vitro experiments,
it follows that as the severity of hypocia increases, the PHDs
would be inactivated first, while FIH-1 would require more

Fig. 3. In the presence of oxygen (normoxia), prolyl hydroxylase
(PHDs) hydroxylates proline residues on HIF-1α, allowing it
to interact with an ubiquitin-protein ligase complex (VHL,
CLU2 ,  E long in -B  and  E long in -C)  t h rough  VHL.
Ubiquitination of HIF-1α targets it for degradation by the 26S
proteasome.  When the oxygen supply is insufficient to
activate PHDs or the HIF-1α expression exceeds the capacity
of ubiquitin-proteasome degradation, HIF-1α binds to
ubiquitously the expressing HIF-1β to form a heterodimer.
The heterodimer then translocates to the nucleus and binds to
HRE elements in the promoter/enhancer region of the target
genes, inducing expression of various HIF1-responsive genes.
Ub, ubiquitin; VHL, von Hippel-Lindau protein.

Fig. 4. HIF-1α contains basic-helix-loop-helix (bHLH) and PER-
ARNT-SIM (PAS) domains in the N-terminal regions.  The
positions of post-translational hydroxylation (OH) are
indicated.  Hydroxylation of two proline residues (at P402 and
P564) and an asparagine residue (at N803) confers recognition
by pVHL and FIH, respectively.  Hydroxylation at N803 in the
C-terminal transactivation domain (CAD) inhibits recruitment
of coactivators (p300 and CBP) required for HIF-1α
transcriptional activity.  NAD, amino-terminal transactivation
domain.



96 HIF-1-active Microenvironment

severe hypoxia to lose activity (Fig. 2).

HIF-1-Responsive Genes

Hypoxia responsive elements
HIF-1 activity drastically changes cellular response and

cell properties through the expression of HIF-1-responsive
genes.  HIF-1 also forms a unit with p300 and CBP22 and
binds to the hypoxia responsive element (HRE)12, promoting
transcription of many genes with various functions related to
fundamental cell activities, such as cell proliferation, cell
survival, apoptosis, adhesion, angiogenesis, glucose
metabolism, iron metabolism, energy metabolism and,
amino-acid metabolism5, 23.

HREs are enhancer elements localized at various
positions and orientations in the coding region of the HIF-1
target genes12, 24.  HREs contain a consensus core sequence
(A/G)CGT(G/C)(G/C), which is the HIF-1 binding site.
Among them, the HREs in the erythropoietin (Epo), vascular
endothelial growth factor (VEGF), and phosphoglycerate
kinase 1 (PGK-1) genes have been extensively studied.  The
Epo HRE is located in the 3’ untranslated region, while

PGK-1 and VEGF HREs are located in the 5’ flanking
region.  The HRE sequences isolated from HIF-1-responsive
genes have been shown to selectively induce gene
expression in response to hypoxia when placed upstream of
a promoter.  Thus, their promoters become a useful tool for
selective gene therapy in the HIF-1-active microenviroment.

Artificial HIF-1-dependent promoters
Several constructs of HIF-1-dependent promoters have

been reported.  They contain tandem-repeats of HRE
consensus core sequences of HIF-1-responsive genes, such
as PGK-1, enolase, LDH-A, EPO and VEGF, and a
minimum promoter isolated from various virus promoters,
such as SV40, CMV and Adeno virus E1B25–29.  The number
of copies of HRE consensus core sequences influences the
induction levels of gene expression.  In the case of promoters
containing Epo-HRE, increasing the HRE copy number to
three or six results in a 4-fold increased in basal gene
expression under anoxic conditions compared with that
observed under aerobic conditions28, while the use of nine
HRE copies results in an 11- to 18-fold increase in gene
expression28.  A similar result has been reported for VEGF-
HRE25, however, it was observed that a saturation effect can
occur for constructs containing more than five copies.  Thus
increasing the number of copies of HRE consensus core
sequences appears to be a valuable option for promoting
enhanced gene expression.

Visualisation of the HIF-1-active
Microenvironment

Reporter genes
Visualisation of HIF-1 activity in vivo provides useful

information of the tumours microenvironment because the
presence of HIF-1 activity indicates the expression of HIF-1-
responsive genes, which cause the aforementioned dynamic
changes in the cells.  To directly monitor HIF-1 activity in
vivo as well as in vitro, several reporter genes were set under
HIF-1-dependent promoters, which included β-galactosidase
(β-gal), enhanced green fluorescent protein (EGFP) and
firefly luciferase30–32.  These HIF-1-dependent reporters are
useful for monitoring HIF-1 activity in vivo as well as in
vitro.

In vivo bioluminescence imaging of HIF-1 activity
Optical in vivo imaging provides noninvasive collection

of spatiotemporal information for biological activities in
small animals.  Among the HIF-1-dependent reporters,
luciferase reporter genes are more suitable for quantitative
monitoring of ongoing biological processes in vivo because
bioluminescence, which is produced during luciferase-
mediated oxidation of a molecular substrate, can be imaged
as deep as several centimetres within tissues with low
intrinsic bioluminescence33.  Thus, bioluminescence
imaging with remarkably high signal-to-noise ratios can be
obtained.  We established human cancer cell lines that
contain an integrated firefly luciferase reporter gene

Fig. 5. Imaging of the HIF-1 active cells.  A: Cancer cells that were
transfected with luciferase reporter gene under the control of
HIF-1-dependent promoter, 5HRE, express luciferase under
hypoxic conditions but not under aerobic conditions.  The
5HRE promoter contains five tandem repeats of VEGF-HRE
sequences and the CMV minimum promoter.  B: Observation
of a mouse with 5HRE-Luc cancer cell xenografts with an in
v i v o  b i o l u m i ne s ce nc e  p ho t o n - c ou n t i n g  d ev i c e .
Bioluminescence was detected in the xenografts.  C:  Serial
sections of HeLa/5HRE-Luc xenografts were stained with
hematoxylin-eosin (HE) and antibodies against pimonidazole-
reacting cells (Pimonidazole) and luciferase expressing cells
(Luciferase).  Both ‘Pimonidazole’ and ‘Luciferase’ were
located around the border between the HE-stained and
unstained regions.
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downstream of p5HRE (5HRE-Luc) (Fig. 5A).  When these
cells are grafted into nude mice, the luciferase protein that
responds to the HIF-1-active microenvironment is
expressed, and visible light is produced for a fixed period of
time after administration of the luciferin substrate.
Bioluminescence imaging can be performed using an in vivo
imaging system (IVIS®) equipped with an ultra-sensitive
cooled CCD camera (Fig. 5B).  Immunohistochemical
analysis demonstrated that the localization of the regions
detected with anti-luciferase antibody and the Pimo-positive
regions were similar and that both regions were located at the
boundary areas between viable and necrotic regions (Fig.
5C).  These results indicate that the cells expressing
luciferase were certainly hypoxic and that we successfully
imaged HIF-1 activity in vivo34, 35.

Bioprobes Specific to HIF-1-active
Microenvironment

Construction of PTD-ODD fusion protein
Because HIF-1 activity is a hallmark for malignant

tumours as well as ischemic diseases, bioprobes specific to
HIF-1-active cells have been desired.  We previously
reported that a VHL-mediated protein destruction motif of
the human HIF-1α ODD domain produced hypoxia-
dependent stabilization when a protein was fused with it
(Fig. 6A)36, 37.  We found that at least 18 amino acids are
necessary to control the activity of an optional protein in an
oxygen-dependent manner and that an ODD domain
comprising approximately 50 amino acid sequences is
necessary to achieve optimal ODD control.  The ODD
regulatory mechanism is dependent on the ubiquitin-
proteasome system, which is an intracellular mechanism.
Thus, an ODD fusion protein must enter cells to be subject to
the ODD regulatory mechanism.  We fused the ODD fusion
protein to a protein transduction domain (PTD) that gives it
a membrane penetrating activity.  We confirmed the
membrane penetration and ODD function of the PTD-ODD
fusion protein with cultured cells; we were able to introduce
PTD-ODD fusion protein into almost 100% of the cells and
succeeded in regulating the stability of ODD fusion protein
in an oxygen-dependent manner36, 37.  Furthermore, it has
been reported that when mice are administered PTD fusion
protein intraperitoneally, the protein can be delivered into
the tissues and cells of the entire body, including the brain38.
The PTD-ODD-β-gal fusion protein was intraperitoneally
administered, and the biodistribution of this fusion protein
and the β-gal activity were investigated.  When PTD-β-gal
was administered, protein and β-gal activities were observed
in normal hepatic and all tumour tissues, whereas when
PTD-ODD-β-gal protein was administered, no protein or β-
gal activity was observed in normal tissues and only partial
activity was observed in tumour tissues37.  In brief, this
suggests that most normal tissues and tumours are
sufficiently exposed to oxygen and have no HIF-1 activity
and that hypoxic HIF-1-active cells are not present
throughout tumors.  We stained tumour sections with Pimo

for a further examination and found that the locations of the
β-gal protein and Pimo-positive regions were similar (Fig.
6B).  As expected, these findings demonstrated that the
degradability of the PTD-ODD fusion protein is controlled
in an oxygen-dependent manner, and its distribution and
function have the same specificity as HIF-1-active cells.
This makes specific imaging and targeting of HIF-1 active
cells feasible when the functional domain of the PTD-ODD
fusion protein (Fig 6A) possesses imaging and targeting
functions, respectively.

Development of an imaging bioprobes specific to HIF-
1-active cell microenvironment

Because PTD-ODD fusion proteins underlie the same
ODD control as HIF-1α, they could serve as bioprobes for
imaging of the diseases related to HIF-1.  As mentioned
above, PTD-ODD-β-gal fusion protein coexists in hypoxic
cells that express HIF-1α and can be used as an imaging
bioprobe by substituting β-gal with an imaging material.
Therefore, we first designed a probe by labelling PTD-ODD-
EGFP with near-infrared fluorescent dye Cy5.5, for use as a
model protein.  When testing the membrane permeability

Fig. 6. PTD-ODD fusion protein.  A. PTD-ODD fusion protein
consisting of three domains, PTD, ODD and a functional
domain.  PTD enables the fusion protein to diffuse and enter
the cell.  ODD is derived from ODD548-603 of the HIF-1α
protein and endows the fusion protein with the same oxygen-
dependent degradation regulation as the HIF-1α protein.
Thus, PTD-ODD is degraded quickly in normoxia (aerobic
conditions) but is stabilized and functional in hypoxia.  B.
When the PTD-ODD-β-galactosidase fusion protein was
injec ted  in to  a  tumor-bearing  mouse ,  the  de tec ted
galactosidase protein and Pimo-positive regions in the tumor
were similar.
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and oxygen-dependent degradation control of this prototype
probe using cultured cells, we found that it permeated cell
membranes with high efficiency, and its stability was
controlled in an oxygen concentration-dependent manner.
When this bioprobe is administered to tumour-bearing mice,
it is delivered to the whole body soon after administration,
but it degrades immediately in cells that are under aerobic
conditions, and this leads to immediate clearance of the
probe.  On the other hand, the probe accumulates in hypoxic
cancer cells with HIF-1 activity, and in contrast to the
surrounding cells that are under aerobic conditions, the
hypoxic cancer cells with HIF-1 activity can be imaged (Fig.
7A).  Currently, we are performing immunohistochemical
analyses to investigate whether the probe accumulates
locally in HIF-1-active cells.  In addition, we are continuing
our research into preparation of a probe with radioactive
reagents for clinical PET/SPECT probes.

Development of a targeting bioprobe specific to the
HIF-1-active cell microenvironment

To endow the PTD-ODD fusion protein with a targeting

function, we fused it with an endogenous cytotoxic protein,
procaspase-3, which is a major executioner protease located
at the most downstream position in several apoptotic
pathways that remains dormant until the initiator caspases
activate it by direct proteolysis.  It is activated specifically in
hypoxic tumour cells because, as described above, the
apoptotic pathway and, hence, initiator caspases are
activated in hypoxic tumour cells, generating active caspase-
3.  The final fusion protein product, TAT-PTD-ODD-
procaspase-3 (TOP3), was examined for its efficacy in
tumour-bearing mice.  Systemic administration of TOP3
significantly suppressed tumour growth and reduced tumour
size without any apparent side effects in mice bearing human
pancreatic tumour xenografts.

The hypoxic tumour cell-specific effect of TOP3 was
further confirmed in a rat ascites model39.  The fluid of rat
ascites hepatoma cells has exceedingly low oxygen tension
(less than 1% pO2), low pH, low glucose and high lactate
concentrations.  Intraperitoneal administration of TOP3
elongated the life spans of rats that bore a significant volume
of malignant ascites.  The effect was so drastic that 60% of
the treated animals were cured without recurrence of ascites.

Our ul t imate goal  is  to improve the effect  of
radiotherapy and chemotherapy on solid tumours by
removing hypoxic tumour cells.  In fact, we have recently
shown that the combination of TOP3 with radiotherapy
significantly suppresses long-term tumour growth and
neovascularisation35, indicating that TOP3 targeted both
radiation and hypoxia-dependent increases in HIF-1 and thus
suppressed HIF-1-dependent expression of survival factors,
such as proangiogenic and growth factors, in the treated
tumours.  Recently, we analyzed a well-characterized animal
model of bone metastasis in MDA-MB-231 human breast
cancer cells with TOP3, and the results indicated that
hypoxia and HIF-1 expression contribute to the development
of bone metastases40.

The HIF-1-active microenvironment becomes a driving
force of metastasis in pancreatic cancer.  We grafted SUIT-
2/5HRE-Luc cells (a human pancreatic cancer cell line
carrying 5HRE-Luc) orthotopically into the pancreas.  The
mice who received these grafts died due to peritoneal
dissemination and ascites within 7 weeks of grafting.
Without using in vivo imaging system, it is not possible to
observe the presence of cancer until the animals are
dissected.  Bioluminescence imaging with IVIS allowed for
real-time external observation of the proliferation, local
invasion and metastasis of HIF-1-active cancer cells that
were grafted into the pancreas (Fig. 7B, upper panels).
Recently, we constructed POP33, a new version of TOP3,
that has a novel PTD, PTD3, instead of TAT-PTD.  PTD3
was five times more efficient in penetrating membranes than
TAT-PTD.  When POP33 was intraperitoneally injected into
the aforementioned orthotopic mouse model of pancreatic
cancer, it significantly suppressed local invasion and
peritoneal dissemination (Fig. 7B) and significantly
increased survival of the transplanted mouse.  These results
confirm that the HIF-1-active microenvironment plays a

Fig. 7. PTD-ODD fusion protein with targeting and imaging
functions.  A.  The PTD-ODD-EGFP fusion protein (probe)
was labelled with near infrared fluorescent dye and injected
into a tumour-bearing mouse.  Fluorescence was detected in
the whole body shortly after i.v.  injection of the labelled
probe.  By 6 hr after probe injection, the florescence was
predominantly detected in the tumor, suggesting that the
PTD-ODD probe could be a potential probe for imaging HIF-
1 activity.  B. The PTD-ODD fusion protein with targeting
function was injected into an orthotopic model of pancreatic
cancer.  Without treatment, the pancreatic cancer cells with
HIF-1 activity locally invaded and metastasized into
peritoneal cavity.  Eventually, the mice died and their
peritoneal cavity was full of ascites and cancer cells.  On the
other hand, the HIF-1 active cancer cells in the treated mice
did not spread significantly to the peritoneal cavity, indicating
that suppression of HIF-1 activity significantly reduces local
invasion and metastasis. 
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crucial role in invasion and metastasis.

Conclusion

Although the significance of the tumor-specific
microenvironment for cancer therapy has been recognized
for a long time, many problems have been left unsolved.
However, with the discovery of HIF-1, investigation at the
molecular level eventually began on a large scale, and
current research in this field is progressing with increasing
speed and on a global scale.  The hypoxia visualisation and
capturing methods introduced in this report represent
pioneering research in regard to functional application of
HIF-1.  Our current projects using PTD-ODD fusion protein
comprise 1) development of the aforementioned hypoxia
imaging probe, 2) development of anticancer agents that
target hypoxic cancer cells and 3) development of a cell
death-suppressing agent for hypoxic cells in ischemic
disorders.  In regard to development of a PO fusion protein-
imaging probe for clinical use, we are currently evaluating
the specificity and in vivo pharmacokinetics of a probe by
optical imaging.  The target diseases of this project include
the three most prevalent disorders in Japan, namely, cancer,
cardiac infarction and cerebral infarction, which are
expected to become even more prevalent in the future.  We
hope to make a contribution to improvement of the outcomes
of these diseases by developing diagnostic and therapeutic
p r o d u c t s  s p e c i f i c a l l y  f o r  t h e  H I F - 1 - a c t i v e
microenvironment.
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