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Abstract

Dormancy is an essential strategy for microorganisms to cope with environmental stress. However, global ecosystem
models typically ignore microbial dormancy, resulting in notable model uncertainties. To facilitate the consideration of
dormancy in these large-scale models, we propose a new microbial physiology component that works for a wide range of
substrate availabilities. This new model is based on microbial physiological states and the major parameters are the
maximum specific growth and maintenance rates of active microbes and the ratio of dormant to active maintenance rates.
A major improvement of our model over extant models is that it can explain the low active microbial fractions commonly
observed in undisturbed soils. Our new model shows that the exponentially-increasing respiration from substrate-induced
respiration experiments can only be used to determine the maximum specific growth rate and initial active microbial
biomass, while the respiration data representing both exponentially-increasing and non-exponentially-increasing phases
can robustly determine a range of key parameters including the initial total live biomass, initial active fraction, the maximum
specific growth and maintenance rates, and the half-saturation constant. Our new model can be incorporated into existing
ecosystem models to account for dormancy in microbially-driven processes and to provide improved estimates of microbial
activities.
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Introduction

Ecologically-important processes such as soil organic carbon

and nutrient cycling largely depend on the active fraction of

microbial communities [1]. At any given time in a given

environment, microorganisms can be in active, dormant, or dead

states [2]. Dormancy is considered an evolutionary strategy

designed to maintain the genetic code until conditions improve

to allow replication [3]. When environmental conditions are

unfavorable for growth, e.g., resource limitation, microbes may

enter a reversible state of low to zero metabolic activity to alleviate

the loss of biomass and metabolic functions [4,5]. The mainte-

nance coefficient (i.e., maintenance cost of C per unit microbial

biomass C per unit time) can be two to three orders of magnitude

lower in dormant microbes than in metabolically active microbes

[6,7]. Many soils have slow organic matter turnover rates with

seasonal changes in substrate supply, temperature, and moisture.

The complexity of soils in space and time may result in uneven

distributions of multiple potentially limiting resources, leading to

significant rates of dormancy even when some resources are

abundant. When spatial and temporal complexity is combined

with differential resource partitioning among species in a

community, high rates of dormancy could be a prominent feature

in soil systems. Thus it is essential to understand dormancy in

order to more accurately predict how active microorganisms

contribute to ecosystem processes such as decomposition and

nutrient turnover [1].

A complicating factor in studying microbial dormancy is that no

single approach can be easily employe to simultaneously measure

individual microbial states (active, dormant or dead), and a

combination of different techniques is required. Differential

staining is often used to segregate physiological states with direct

microscopic counting of bacteria and fungi. ‘Life-indicating’ stains

that require the presence of ‘standard’ physiological abilities, such

as the esterase activity needed for fluorescein diacetate cleavage,

may distinguish active from dormant+dead cells [8]. When

combined with general-purpose stains, these strains can distinguish

dormant cells by difference [9]. Combining membrane-permeant

with membrane-impermeant nucleophilic stains (e.g., SYTO-9

and propidium iodide respectively) may distinguish live from dead,

but not active from dormant [10,11]. Active microbes may or may

not be ‘viable’ with common culture-based techniques, which

complicates classification and measurement of dormancy phe-

nomena [5]. Methods such as direct plating, serial dilution and

most probable number (MPN) techniques will not distinguish

between active and dormant organisms [12]. Substrate Induced

Respiration (SIR) or Substrate Induced Growth Response (SIGR)

method [13,14] can distinguish active and dormant communities if

growth respiration curves are modeled (using initial exponentially-

increasing respiration); however, the technique often needs to be
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combined with microscopy or chloroform fumigation/extraction

in order to obtain total live microbial biomass [15,16].

Despite limitations in distinguishing active, dormant and dead

microbial biomass, abundant evidence indicates that the majority

of environmental microorganisms in a given community may be

dormant under natural conditions [1,17]. Alvarez et al. [18]

reported that only 3.8–9.7% of the total biomass is active in a

Typic Argiudoll soil from the Argentinean Pampa. Khomutova et

al. [19] showed that the fraction of active microbial biomass

ranged from 0.02% to 19.1% in the subkurgan paleosoils of

different age and 9.2–24.2% in modern background soils.

Microbial biomass measured through SIR or SIGR is thought to

reflect only the active portion because the maintenance respiration

of dormancy biomass is negligible in the initial exponentially-

increasing phase [13,16,20]. Through a mathematical analysis of

respiration curves, Van de Werf & Verstraete [21] examined 16

soils and found that 4–49% of the total biomass was in an active

state; and the active component in undisturbed natural ecosystems

(18.868.8%, mean6standard deviation) was about 70% of that in

arable agricultural soils (25.7614.8%). Stenström et al. [22]

showed that the fraction of active biomass typically varied from

5% to 20% in soils without recent addition of substrates. Lennon

& Jones [5] found much lower active fractions in soils (18615%)

than in marine (65619%) and fresh (54611%) water environ-

ments. From the above studies it seems conservative to extrapolate

that the active fraction is very likely below 50% of live microbes

under most natural soil conditions.

Microbially-mediated processes have been incorporated into

ecosystem models [23–28] although continued development is still

required to bring microbial processes into global climate models

[29–31]. However, these recent models do not consider physio-

logical state changes and assume that measures of microbial

biomass constitute the active biomass. The exclusion of dormancy

from the microbially-driven ecosystem processes could result in

incorrect estimates of total live microbial biomass, which further

leads to deficiencies in model parameterization and predictions of

soil organic carbon and nutrients.

Generally, there are two strategies to represent physiological

states in microbial-ecology models: one is to explicitly separate the

total live biomass into two pools, i.e., active and dormant [4,32];

the other is to directly regard the active fraction (i.e., ratio of active

biomass to total live biomass) as a state variable [33,34]. Both of

these two approaches predict the total live biomass, active and

dormant biomass, and the flux between the active and dormant

components. Apparently the introduction of the ‘active fraction’ as

a state variable in the latter approach simplifies the model

structure since the adaptive variation of microbial composition

might be represented by one single variable (active fraction)

[34,35]. However, another state variable indicating the microbial

biomass pool size (e.g., total live biomass, active biomass or

dormant biomass) is still essential for ecosystem modeling since the

carbon and nutrient fluxes are pool-size dependent. For example,

if we define active fraction and total microbial biomass as state

variables, the active and dormant biomass could be determined by

them, and the net flux between active and dormant fractions and

other related fluxes could also be computed according to the active

and dormant biomass constrained by mass balance. The above-

mentioned modeling efforts have shown that adequate represen-

tation of dormancy and the transitions between the dormant and

active states is crucial for modeling important microbially-

mediated ecosystem processes.

Here, we review state-of-the-art microbial dormancy modeling

approaches and discuss the rationales of these models with a focus

on transformation processes between active and dormant states.

We propose an improved synthetic microbial physiology model

based on accepted assumptions and examine the model behavior

with theoretical and experimental analyses. In this paper, the ‘total

microbial biomass’ refers to the ‘total live microbial biomass’

unless otherwise stated. Our objective is to clarify the applicability

of existing microbial dormancy models and provide a new

theoretical basis for representing microbial activity and dormancy

in ecosystem models.

Dormancy In Microbial Models

Transformation between active and dormant states
Although Buerger et al. [36] argued that dormant microbial cells

could reactivate stochastically and might be independent of

environmental cues, environmental factors such as substrate

availability are often thought to control the transformation

between active and dormant states [5]. Most models (see Appendix

S1) distinguish the active biomass pool from the dormant pool and

define them as two state variables (Ba and Bd) (Fig. 1). Only active

microbes (Ba) can uptake substrate and produce new cells. The

connection between the active and dormant states is a reversible

process including two directional sub-processes, i.e., dormancy

(from active to dormant) and reactivation (or resuscitation, from

dormant to active). Losses from active biomass include growth

respiration and maintenance (maintenance respiration, mortality,

enzyme synthesis, etc.) [23]. Dormant microbes still require energy

for maintenance and survival although at a lower metabolic rate

[5].

The net transformation rate (BN
a?d ) from active to dormant state

is the difference between the flux from active to dormant (BaRd)

and the flux from dormant to active state (BdRa), i.e.,

BN
a?d~Ba?d{Bd?a. The models of Hunt [37] (Equation S1-1

in Appendix S1) and Gignoux et al. [38] (Equation S1-2 in

Appendix S1) directly formulate the net flux (BN
a?d ) without

explicit components for BaRd and BdRa. The direction of the net

flux depends on the maintenance requirement relative to the

substrate availability. If the available substrate is less than the

maintenance requirement, there is a positive net flux from active

to dormant pool, and vice versa. In addition, Hunt [37] assumed a

‘buffer zone’ for the change of states: when the maintenance

requirement surpasses the substrate supply but the deficit is within

a small fraction (1% d21) of Ba, there is no flux between the two

states.

Some models define rates for both dormancy and reactivation.

In the model of Ayati [39] (Equation S1-3 in Appendix S1), the

Figure 1. Active and dormant microbial biomass pools in
microbial physiology models (modified from Fig. 2 in Lennon &
Jones, 2011).
doi:10.1371/journal.pone.0089252.g001
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dormant rate (caRd) increases with declining substrate concentra-

tion, and the reactivation (cdRa) only occurs when substrate

concentration is higher than the half-saturation constant (Ks).

Konopka [32] modified the potential rates for dormancy and

reactivation by the relative growth rate (m/mmax, ratio of true

specific growth rate to maximum specific growth rate), i.e, the two

rates are multiplied by (1-m/mmax) and m/mmax, respectively

(Equation S1-4 in Appendix S1). Similarly, Jones & Lennon [40]

postulated two complementary rates (1-R and R) for dormancy and

resuscitation (Equation S1-5 in Appendix S1).

Two other models also explicitly formulate the two conversion

rates between states but do so using concepts of probability. Bär et

al. [41] used two complementary factors (1-J and J) to represent

the probability for the transition between active and dormant state

in addition to an identical potential rate constant for the two

processes (Equation S1-6 in Appendix S1). The conceptual model

of Locey [42] applies a deterministic dormant rate and a stochastic

resuscitation rate (Equation S1-7 in Appendix S1). The potential

resuscitation rate is modified by (1-p), where p is the probability

that a disturbance in the active pool will result in the immigration

of one individual from the metacommunity. The probability (J) in

Bär et al. [41] is explicitly calculated from the environmental cues

(e.g., soil moisture), while the cause of the probability (p) in Locey

[42] is not elucidated.

Switch function model
In addition to the dormancy and reactivation processes, a key

concept in the model developed by Stolpovsky et al. [4] is ‘switch

function’ (Equation S1-8 in Appendix S1). The switch function (h)

determines the fraction of active cells taking up dissolved organic

carbon (DOC). This function refers to the growth fraction in active

biomass (Ba) that consumes substrate and thus is not the same as

the active fraction (r) in total biomass (B). Furthermore, the

dormancy and reactivation fluxes are set to be proportional to (1-h)

and h, respectively. h is formulated by the Fermi-Dirac statistics

[4]. Another feature of this model is the consideration of ‘depth’ of

dormancy in reactivation, where the reactivation rate is negatively

dependent on the duration of dormancy. The switch function

model includes at least 15 model parameters and it is difficult to

compute the Gibbs energy change of the oxidation of DOC [4].

The switch function (h) sets it apart from the conventional

Michaelis-Menten (M-M) or Monod kinetics because of its new

perspective of thermodynamics. According to the M-M kinetics

[43], the substrate saturation level represents the fraction of

enzyme-substrate complex (ES) in active enzyme (E0), where the

substrate saturation level is formulated by S/(Ks + S) with S and Ks

being the substrate concentration and the half-saturation constant

[43]. When the M-M kinetics is applied to describe microbial

uptake of substrate, the substrate (or combined with TEA)

saturation level (i.e., m(S, TEA) in Equation S1-8a of Appendix

S1) is a measure of the actively growing fraction in the active

microbial community. The switch function is also determined by

the saturation levels of substrate and terminal electron acceptor

(TEA), i.e., m(S, TEA) (Equation S1-8e in Appendix S1).

Mathematically the inclusion of both the switch function (h) and

the M-M kinetics (i.e., m(S, TEA)) might result in double counting

of the impact of substrate and TEA. We would recommend using

the switch function (h) to modify the microbial uptake rate if the

Gibbs energy change of the oxidation of substrate (DG) is tractable

and the thermodynamic threshold (G0) and the steepness of the

step function (st) are identifiable.

Physiological state index models
As an alternative to models with two microbial biomass pools

(i.e., active and dormant), a further state variable indicating the

dormant or active fraction in total biomass has been proposed.

Wirtz [44] developed a simple index (rd = 0.5–1.0) representing the

dormant microbial biomass as a fraction of the steady-state total

biomass (Bstat) under the condition of Bd ,, Ba. In case of a net

loss of total biomass (dB/dt,0), the dormant biomass Bd = Bstat? rd;

otherwise (dB/dt.0), Bd = Bstat?(12rd). This model has a sudden

change of dormant biomass at the transition point (i.e., dB/dt = 0)

since rd.0.5.

Different from the dormant index of Wirtz [44], the concept of

an active index (i.e., index of physiological state) of soil microbial

community has been employed in soil carbon and nutrient cycling

models [33,34]. The index of physiological state (r), referring to the

activity state, is often defined as the ratio of metabolically active

microbial biomass to the total soil microbial biomass [22,33,34].

In the Synthetic Chemostat Model (SCM), the rate of change of

the state variable r is described as follows [33,45]:

dr

dt
~

1

B

dB

dt
:(w{r)~m:(w{r) ð1Þ

with

w~w(S)~Sn=(KrzSn),orw~S=(KrzS) ð2Þ

where r = Ba/B, representing the fraction (hereinafter referred to as

‘active fraction’) of active biomass in total biomass; m is the specific

growth rate of total biomass; w denotes the saturation level of

substrate (S); the simple power (n = 1) has been widely used [35]

and, in this case (n = 1), Kr is called the half-saturation constant.

Blagodatsky & Richter [34] used the expression

m(S)~mmax
:w(S) in their model development. This expression

was not derived in the original definition of the specific growth rate

(see Equation 3) by Panikov [45] and because its validity cannot be

inferred, the concepts will not be addressed here.

According to Panikov’s derivation [45], the specific growth rate

(m) follows the general definition [46,47]:

m~
1

B

dB

dt
ð3Þ

Based on Equations 1 and 3, we can derive (see Equation S2-1

in Appendix S2):

dBa=dt~w:(dB=dt) ð4Þ

dBd=dt~(1{w):(dB=dt) ð5Þ

We find that the model described by Equation 1 is not

applicable under low substrate availability, as described below.

Generally, the rates of change in biomass pools (B, Ba, and Bd) can

be expressed as

dB=dt~g+(S,Ba){f z(S,Bd ) ð6Þ

Dormant and Active Microbial Dynamics
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dBa=dt~g+(S,Ba){BN
a?d ð7Þ

dBd=dt~{f z(S,Bd )zBN
a?d ð8Þ

where BN
a?d denotes the net dormancy flux; g (S, Ba) is a function

that represents the difference between the substrate uptake and the

maintenance requirements of Ba, i.e., the net growth of Ba; and

f+(S, Ba) is a function denoting the maintenance and survival

energy costs of Bd. The superscript ‘6’ in g indicates the function

value of g could be positive at high S or non-positive when the

substrate uptake cannot satisfy the maintenance requirements of

Ba at low S. The superscript ‘+’ in f+ implies f$0. Note that the

function f+(S, Ba) is not necessarily dependent on S [4].

From Equations 4, 6 and 7, we can obtain

BN
a?d~(1{w):g+(S,Ba){w:f z(S,Bd ) ð9Þ

The two terms in the right side of Equation 9 may be regarded

as the conversion of Ba to Bd (i.e., BaRd) and the transformation of

Bd to Ba (i.e., BdRa), respectively. At high S resulting in g$0,

Equation 9 may be one of the possible expressions for BaRd and

BdRa. However, at low S leading to g,0 and BaRd,0, i.e., no

active cells become dormant under insufficient substrate, which is

inconsistent with the strategy of dormancy for microorganisms

when faced with unfavorable environmental conditions [5].

Based on the above analysis, we conclude that the physiological

state index model (Equation 1) needs to be improved. In other

words, the empirical assumption that the steady state active

fraction (rss) approaches the substrate saturation level (wss
) may not

be necessary because this assumption could lead to impractical flux

(Equation 9) between dormant and active states under low

substrate availability.

A Synthetic Microbial Physiology Model
Based on the aforementioned review and analysis, we have

developed a synthetic microbial physiology model component

relating to substrate availability. As indicated by Fig. 1, the growth

and maintenance functions of active microbes (Ba) are character-

ized by the maximum specific growth rate (mG) and maintenance

rate (mR); whereas the dormant microbes (Bd) cost energy to

maintain their basic cellular functions at a much lower specific

maintenance rate (denoted by b?mR, where b,1) [48].

General assumptions
First we define the substrate saturation level (w) as

w~S=(KSzS) ð10Þ

where the parameter Ks is the half saturation constant for

substrate uptake as indicated by the M-M kinetics [43].

Based on the above review of existing dormancy models, the

following assumptions are accepted in our new model: (1) the

dormancy rate is proportional to the active biomass and the

reactivation rate is proportional to the dormant biomass, i.e.,

Ba?d!Ba and Bd?a!Bd ; (2) under very high substrate concen-

tration (S..Ks), wR1, BaRdR0 and BdRa$0; (3) under very low

substrate (S,,Ks), wR0, BaRd$0 and BdRaR0; (4) based on the

assumptions (1–3), we derive that Ba?d!(1{w):Ba and

Bd?a!w:Ba; (5) further we assume that the maximum specific

maintenance rate for active microbes (mR with units of h21)

controls both transformation processes since the maintenance

energy cost is the key factor regulating the dormancy strategy

[5,37,38]. As a result we postulate that

Ba?d~(1{w):mR
:Ba ð11aÞ

Bd?a~w:mR
:Bd ð11bÞ

Model Description

Equations 11a and 11b only describe the transformation

between the active and dormant states. They need to be linked

to a microbial growth and maintenance model for depicting

microbial dynamics. Our recent work to develop the Microbial-

ENzyme-mediated Decomposition (MEND) model [23] suggested

that it might be adapted to serve this purpose due to its focus on

microbial processes for which we have developed a firm theoretical

basis [47,49]. Combining Equations 11a and 11b with the MEND

model [23,47], we express the microbial physiology component

(see Fig. 1) as a group of differential equations

dS=dt~Is{
1

YG

: w

a
mR

:Ba ð12aÞ

dB=dt~d(BazBd )=dt~(w=a{1):mR
:Ba{ b:mRð Þ:Bd ð12bÞ

dBa=dt~(w=a{1):mR
:Ba{(1{w):mR

:Bazw:mR
:Bd ð12cÞ

dBd=dt~{ b:mRð Þ:Bdz(1{w):mR
:Ba{w:mR

:Bd ð12dÞ

where t is the time scale; w is defined by Equation 10; Is is the input

to substrate pool; YG is the true growth yield; mR denotes the

specific maintenance rate at active state (h21); a = mR/(mG+mR) is

the ratio of mR to the sum of maximum specific growth rate (mG)

and mR, a [ (0,0:5) since usually mR#mG; and b (0–1) is the ratio of

dormant maintenance rate to active maintenance rate, i.e., (b mR)

denotes the maximum specific maintenance rate at dormant state.

In summary, there are five parameters (a, b, mR or mG, YG, Ks) in

the proposed model (hereinafter referred to as the MEND model).

From Equations 12b and 12c, we can derive the change rate of

active fraction (r) (see Equation S2-2 in Appendix S2)

dr=dt~mR
: (w{r)z(w=azb{1):r:(1{r)½ � ð12eÞ

This equation for r is more complicated than Equation 1 but still

practical, given currently available data. Additionally, it implies

that r needs not approach w at steady state in our model, whereas

r;w at steady state is required by the model of Panikov [45].

Steady state analysis
Assuming the input (Is) is time-invariant, we can obtain the

steady state solution to the above new MEND model (see

Equations S2-3(a–e) in Appendix S2). Fig. 2 shows the steady

Dormant and Active Microbial Dynamics
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state active fraction (rss) and substrate saturation level (wss
) as a

function of the two physiological indices, i.e., a (0–0.5) and b (0–1).

Both rss and wss
positively depend on a and b and rss$wss

for any

combinations of a and b. If we consider two extreme values of

bR0 or bR1, the rss and wss
(see Equations S2-4 and S2-5 in

Appendix S2) can be simplified to

rss
b?0~wss

b?0~a ð13aÞ

rss
b?1~

1z
ffiffiffiffiffiffiffiffiffi
1z8a
p

4

wss
b?1~

4a{1z
ffiffiffiffiffiffiffiffiffi
1z8a
p

3z
ffiffiffiffiffiffiffiffiffi
1z8a
p

8<
: ð13bÞ

Equation 13 and Fig. 2 indicate that: (1) the steady state active

fraction (rss) is equal to wss
and they are identical to a = mR/(mG+mR)

only under the condition of bR0; (2) the upper bound of rss is

approximately 0.8 at aR0.5 and bR1; and (3) with a#0.5, the

maximum rss is ca. 0.5 if the magnitude of b is around 0.001–0.01

[6]. This threshold value (0.5) of rss is a reasonable estimate that

can explain how the measured active fraction of microbes in

undisturbed soils is usually considerably less than the total biomass

[5,21,22].

Model simplification under sufficient substrate condition
As mentioned in the Introduction, SIR or SIGR method can

distinguish active from dormant composition and the data from

these experiments have been widely used to estimate the active

microbial biomass and the maximum specific growth rate [13,14].

The simplification of the microbial model under excess substrate

has also been employed to estimate maximum specific growth rate

(mG), active microbial biomass (Ba), and/or total microbial biomass

(B) using the SIR or SIGR data [1,13,35]. Here we show the

simplification of our model (Equation 12) for conditions appro-

priate to SIGR or SIR experiments, e.g., the short-term period of

exponentially-increasing respiration of active biomass following

substrate addition. We will test our reduced and full model with

the SIGR data of Colores et al. [13] in the next section.

Under sufficient substrate (i.e., S..Ks in Equation 10 thus

wR1), Equations 12(a–e) can be simplified and integrated for

initial conditions, i.e., S = S0, B = B0 and r = r0 at t = 0 (see

Equations S2-6 and S2-7 in Appendix S2):

S(t)~S0{
B(t){B0
YG (1{a)

ð14aÞ

B(t)~B0r0
:e 1=a{1ð ÞmRtz

B0(1{r0):½a:e 1=a{1ð ÞmRtz(1{a):e{mRt�
ð14bÞ

r(t)~
½r0za(1{r0)�:e mR=að Þ:t{a(1{r0)

½r0za(1{r0)�:e mR=að Þ:tz(1{a)(1{r0)
ð14cÞ

The CO2 production rate, v(t), during the exponential growth

stage is derived as an explicit function of t (see Equation S2-7d in

Appendix S2):

v(t)~
dCO2

dt
~

B0(1{YG)

YG

(mR=a):r0zmR
:(1{r0)½ �:e 1=a{1ð ÞmRt{ mR

:(1{r0)½ �:e{mRt
n o ð14dÞ

The respiration rate, v(t), is associated with two exponential

items, i.e., e 1=a{1ð ÞmRt~emGtand e{mRt. Considering an extreme

case that mR,,mG (i.e., aR0), Equations 14(b–d) can be further

simplified to Equations S2-8(b–d) (see Appendix S2). Equations

S2-8b and S2-8c (denoting B(t) and r(t), respectively) are similar to

Equations 11 and 10 in Panikov & Sizova [35], respectively.

However, Equation S2-8d (for v(t)) is different from Equation 13 of

Panikov & Sizova [35], where a constant ‘A’ was added to the

exponential. Equation S2-8d is identical to Equation 7 derived for

SIGR experiments in Colores et al. [13].

Panikov & Sizova [35] used their Equation 13 to fit respiration

rates during the exponentially-increasing (i.e., no substrate

limitation) phase (see Fig. 2 in Panikov & Sizova [35] for data

and curve fittings). However, these data are based on glucose-

induced respiration that includes both basal respiration of native

SOC and respiration due to the addition of glucose [13]. The

basal respiration rate may be regarded as a constant in certain

cases (see Colores et al. [13] and data in Fig. 1 of Blagodatsky et al.

[50]). The constant ‘A’ representing the basal respiration rate was

included in Equation 13 of Panikov & Sizova [35] in order to fit

the combined respiration from the addition of glucose and basal

respiration. However, this constant ‘A’ cannot be derived from

such governing equations as Equations S2-6(a–c) (see Appendix

S2) that assume respiration is the sole result of substrate addition.

In other words, the equations do not include basal respiration.

Certainly, our predicted respiration could include basal respiration

as long as (i) a basal respiration rate is added to Eq. 14d ad hoc or

(ii) Equations S2-6(a–c), or more commonly Equations 12(a–e), are

linked to a soil organic matter (SOM) decomposition model, which

can produce decomposed native soil C in addition to the

respiration of substrate addition. Because Equation 13 of Panikov

& Sizova [35] is not linked to a native C decomposition model,

fitting the model to combined native C and substrate respiration

data is not appropriate.

Model test I: substrate-induced respiration
In this section, we used the respiration data from 14C-labeled

glucose SIGR experiments by Colores et al. [13] to calibrate our

Figure 2. Steady state active fraction (rss) and substrate
saturation level ( ss) as a function of a and b; a = mR/(mG+mR),
mG and mR (h21) are maximum specific growth rate and specific
maintenance rate for active microbial biomass, respectivly; b
denotes the ratio of dormant specific maintenance rate to mR.
doi:10.1371/journal.pone.0089252.g002

ð14dÞ
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MEND model. The respiration data only represented the CO2

production from the added substrate and did not include basal

respiration from the native C.

First we employed Equation 14d to fit the respiration rates

during the exponentially-increasing stage and the result is shown

in Fig. 3a (see original data in Fig. 3 of Colores et al. [13]). The

true growth yield (YG) was set to 0.5 according to Colores et al.

[13]. There are four undetermined parameters (B0, r0, mG, a) in

Equation 14d (with mR = mG ?a/(12a)). We found that only the

maximum specific growth rate (mG) could be determined with high

confidence (coefficient of variation (CV) = 5%) from the exponen-

tially-increasing respiration rates. The CVs of the other three

optimized parameters (B0, r0, a) were as high as 55–77% (Table 1).

However, the initial active microbial biomass (Ba0 = B06r0) had a

lower uncertainty (CV = 20%) compared to B0 and r0. The above

results indicate that the exponentially-increasing respiration rates

can only be used to obtain mG and Ba0.

We then conducted numerical simulations in terms of all data

including both exponentially-increasing and non-exponentially-

increasing respiration rates (Fig. 3b). The non-exponentially-

increasing respiration rates include the lag period before the

exponentially-increasing phase and the respiration at longer times

after the rates cease to increase exponentially [13]. The latter

phase is likely because of the substrate saturation levels (w) become

limiting to respiration. We used Equations 12a, 12b, 12e and the

corresponding expression for CO2 flux rate, to allow the substrate

saturation level (w) to change with time. Additionally, we used the

ranges of mG determined above. We used the SCEUA (Shuffled

Complex Evolution at University of Arizona) algorithm [51,52] to

determine model parameters. The SCEUA is a widely used

stochastic optimization algorithm for calibrating hydrological and

environmental models [51].

When exponentially-increasing and non-exponentially-increas-

ing data are included together, the CVs of all parameters (B0, r0,

mG, a, Ks, b) are within 25% except b with a high CV of 76%

(Table 1). The optimized mG values (0.03060.001 h21) are almost

the same as obtained by Colores et al. [13]. Model estimates of

a = 0.22860.031 indicate that the maximum specific maintenance

rate of active microbes (mR) is about 30% of mG and thus cannot be

ignored. The initial active biomass (Ba0) is 0.14560.004 mg C g21

soil (Table 1), which is lower than the values (0.19460.004 mg C

g21 soil) using the SIGR method [13]. This is likely due to the

inclusion of maintenance respiration (characterized by mR, see

Equation 14d) in our model even for the exponentially-increasing

stage; thus a lower Ba0 could produce similar CO2 flux to the case

with higher Ba0 that does not include the contributions from

maintenance respiration. Our results also show that the initial

active fraction (r0) is 28.566.4% and b is 0.02560.019. The

magnitude of b is comparable to the estimation by Anderson &

Domsch [6,7]. In addition, the half-saturation constant (Ks) was

estimated as 0.27560.038 mg C g21 soil, which is very close to the

values derived from 16 soils by Van de Werf & Verstraete [21].

This Ks value indicates the substrate saturation level (w) is higher

than 0.7 before the transition from exponentially-increasing to

non-exponentially-increasing phase (Fig. 3c). The changes of

substrate (S), total microbial biomass (B) and active fraction (r) with

time are also shown in Fig. 3c. In conclusion, the five parameters

(B0, r0, mG, a, Ks) can be effectively determined using both

exponentially-increasing and non-exponentially-increasing respi-

ration rates, whereas b may also be determined but with a

relatively high uncertainty (CV = 76%) than the other parameters.

Through this experimental analysis, we identified the need for

isotopic data to discriminate between basal and substrate-induced

respiration. We also discovered that the exponentially-increasing

period due to substrate addition can be used to identify only a

select set of model parameters (i.e., mG and Ba0) as also

demonstrated by the method of Colores et al. [13]. These

parameters, however, can be further applied to longer-term

respiration experiments to enable fitting to obtain the remainder of

model parameters by using our MEND model. Thus, we have

found a new and unique solution to identify different parameters

as a function of time, and to effectively use isotopic labeling to

yield a specific set of model parameters.

Model test II: intermittent substrate supply
In order to further validate this additional physiological

component in the MEND model, we also tested it against a

laboratory experimental dataset with intermittent substrate supply

[4]. In addition to the substrate, another limiting factor (i.e.,

Figure 3. MEND model simulations against the respiration
rates due to added 14C-labeled glucose in Colores et al. [13]. (a)
Fitting of the respiration rates in the exponentially-increasing phase
using Equation 14, ‘Obs’ and ‘Sim’ denote observed and simulated data,
respectively. (b) Fitting of the respiration rates in both exponentially-
increasing and non-exponentially-increasing phases using Equation 12.
(c) Simulated substrate (S), total live microbial biomass (B), active
fraction (r) and substrate saturation level (q) based on Equation 12.
doi:10.1371/journal.pone.0089252.g003
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oxygen, O2) was included in this study. For this reason, we also

introduced one more parameter (Ko: half saturation constant for

O2) to represent the limitation of O2 on the microbial processes

sketched in Fig. 1. Similar to substrates, the saturation level of O2

is computed as O2/(O2+Ko), where O2 denotes the concentration of

oxygen. The simulated oxygen concentrations by Stolpovsky et al.

[4] were used as an input to our model. We used the SCEUA

algorithm to determine the six model parameters in addition to the

initial value for active fraction (r0).

A summary of the seven parameters (one of them is r0) and their

fitted values is presented in Table 2. The initial active fraction (r0)

has a median of 0.925 with the 95% confidence interval (CI) of

[0.628–1.000]. It means that a high r0 is required for this

experiment, but not necessary to be 1.0 set by Stolpovsky et al. [4].

The model and data are not sensitive to b since its 95% CI covers

a wide range from 0.001 to 1. The reason is that the experiment

only lasts for a very short time (33 h) so the influence of low

metabolic rate at dormant state is insignificant.

Fig. 4 shows that the simulated total biomass (B) and substrate

(S) concentrations agree very well with the observations (the

coefficients of determination are 0.98 and 0.78 for biomass in

Fig. 4a and substrate in Fig. 4b, respectively). Our simulation

results indicate that, under limited O2 between 12h and 24 h of

the experiment, the active biomass decreases and the dormant

biomass increases. As a result, the active fraction (r) declines from

ca. 0.9 to 0.7 (Fig. 4a). For the same period Stolpovsky et al. [4]

predicted a decrease of r from 1.0 to ca. 0, which means that all

active biomass becomes dormant. Although there were not

adequate measurements to confirm either prediction, our predict-

ed changes in the active fraction (r) appear to be more reasonable

during such a short experimental time period. This demonstration

also shows that our model is capable of producing reasonable

change in total, active, and dormant microbial biomass in response

to substrate supply as well as an important forcing function (O2).

Conclusions

We show that the physiological state index model (Equation 1)

of Panikov [33] can be improved by eliminating the assumption

that the steady state active fraction (rss) approaches the substrate

saturation level (wss
). In particular, the model of Panikov [33]

indicates that no active cells become dormant under insufficient

substrate, which disregards the general nature of the strategy of

dormancy in microorganisms when faced with unfavorable

environmental conditions [5]. Our analysis also implies that the

estimate of respiration rates under sufficient substrate by the

Table 1. MEND model parameters values used for simulation of respiration rates due to added 14C-labeled glucose in Colores et al.
[13].

Parameter
Exponentially-increasing
respiration* All data{ Description

Mean SD` CV1 Mean SD CV

B0 0.504 0.279 55% 0.525 0.080 15% Initial microbial biomass, (mg C g21 soil)

r0 0.394 0.263 67% 0.285 0.064 23% Initial active fraction

mG 0.027 0.001 5% 0.030 0.001 3% Maximum specific growth rate (h21)

a 0.185 0.142 77% 0.228 0.031 13% mR/(mG+mR), mR is maximum specific maintenance rate for active
microbes (h21)

Ks — — — 0.275 0.038 14% Half-saturation constant for substrate (mg C g21 soil)

b — — — 0.025 0.019 76% Ratio of dormant maintenance rate to mR

YG 0.5 — — 0.5 — — True growth yield, constant

Ba0 0.135 0.027 20% 0.145 0.004 3% Initial active biomass (mg C g21 soil), calculated by B06r0

*Only the respiration rates during exponentially-increasing phase are used.
{All data including both exponentially-increasing and non-exponentially-increasing respiration.
`SD: standard deviation.
1CV: Coefficient of variation.
doi:10.1371/journal.pone.0089252.t001

Table 2. MEND model parameter values used for simulation of the experiment described in Fig. 3 of Stolpovsky et al. (2011).

Parameter Fitted Value* Initial Range Description

mR 0.032, [0.011–0.048] 0.001–0.1 Specific maintenance rate for active biomass (h21)

a 0.099, [0.045–0.181] 0.001–0.50 mR/(mG+mR), mG is specific growth rate (h21)

Ks 3.110, [1.387–5.652] 0.1–9.0 Half-saturation constant for substrate (mg L21)

YG 0.573, [0.463–0.600] 0.2–0.6 Growth yield factor (–)

Ko 0.0008, [0.0007–0.001] 0.005–0.1 Half-saturation constant for dissolved oxygen (mM)

b 0.351, [0.001–1.000] 0.001–1 Ratio of dormant maintenance rate to mR

r0 0.925, [0.628–1.000] 0–1 Initial fraction of active biomass (–)

*Medians and 95% confidence intervals of the fitted values from 100 optimization runs, i.e., 100 different random seeds are used for the stochastic optimization
algorithm.
doi:10.1371/journal.pone.0089252.t002
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physiological state index model is deficient. Pertaining to the

switch function model, we argue that the switch function (h) is also

determined by the substrate (or combined with other impact

factors) saturation level thus we would recommend using the

switch function to modify the microbial uptake rate if the Gibbs

energy change of the oxidation of substrate (DG) is tractable and

the thermodynamic threshold (G0) and the steepness of the step

function (st) are identifiable. Based on the generally accepted

assumptions summarized from existing dormancy models, we

postulate a synthetic microbial physiology component to account

for dormancy. Both the steady state active fraction (rss) and

substrate saturation level (wss
) can be expressed as functions of two

physiological indices: a and b. The index a = mR/(mG+mR) is

composed of mG and mR denoting the maximum specific growth

and maintenance rates, respectively, for active microbes. The

index b represents the ratio of dormant to active maintenance

rates. The value of rss is no less than wss
, and is equal only under

the condition of bR0, where they are both identical to a. The

upper bound of rss is ca. 0.8 at aR0.5 and bR1. The maximum rss

is ca. 0.5 if b (#0.01) following the estimation of Anderson &

Domsch [6]. It is evident that rss could be attenuated further by

other limiting factors. The application of the MEND microbial

physiology model to an experimental dataset with intermittent

substrate supply shows satisfactory model performance (the

determination coefficients are 0.98 and 0.78 for microbial biomass

and substrate, respectively). The case study on the SIGR dataset

indicate that the exponentially-increasing respiration rates can

only be used to determine mG and Ba0 (initial active biomass), while

the major parameters (B0, r0, mG, a, Ks) can be effectively

determined using both exponentially-increasing and non-expo-

nentially-increasing respiration rates.

In conclusion, the microbial physiology model presented here

can be incorporated into existing ecosystem models to account for

dormancy in microbially-mediated processes. We have illustrated

Figure 4. MEND model simulations against the experimental dataset used by Stolpovsky et al. (2011). (a) total live biomass, active and
dormant biomass, and active fraction; (b) observed and simulated substrate concentration and prescribed O2 concentration. There are three
manipulations on the substrate and oxygen: (1) at time 0, the substrate (3 mg/L) and O2 (0.025 mM) are added to the system; (2) after 12 h, the same
amount of substrate is injected; (3) at 24 h, additional O2 (0.04 mM) is injected to the system. The observed concentrations of substrate and total
biomass are hourly data interpolated from the original observations in Stolpovsky et al. (2011). We scaled the substrate concentrations (with units of
mM in original data) to match the magnitude of biomass concentration in units of mg/L.
doi:10.1371/journal.pone.0089252.g004
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the impacts of substrate and oxygen availabilities on the

physiological states through this study. Other environmental

factors, such as soil temperature and soil water potential, could

also be introduced into this framework to affect the transformation

processes between the two microbial compositions. The changes in

the physiological states of microbes could further alter the

microbially-driven carbon and nutrient dynamics in ecosystems.

Traditional measures of microbial biomass include the entire

microbial population, even though dormancy is an important

evolutionary strategy for preservation of microbial genetics and

function until conditions for growth and replication improve.

Parameterizing microbial ecosystem models assuming the entire

population is active could therefore lead to significant errors. The

approach described here provides a tractable and testable method

to include dormancy as a response to external forcing.
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