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Abstract

Background: A two-arm non-inferiority trial without a placebo is usually adopted to demonstrate that an
experimental treatment is not worse than a reference treatment by a small pre-specified non-inferiority margin due to
ethical concerns. Selection of the non-inferiority margin and establishment of assay sensitivity are two major issues in the
design, analysis and interpretation for two-arm non-inferiority trials. Alternatively, a three-arm non-inferiority clinical
trial including a placebo is usually conducted to assess the assay sensitivity and internal validity of a trial. Recently,
some large-sample approaches have been developed to assess the non-inferiority of a new treatment based on the
three-arm trial design. However, these methods behave badly with small sample sizes in the three arms. This
manuscript aims to develop some reliable small-sample methods to test three-arm non-inferiority.

Methods: Saddlepoint approximation, exact and approximate unconditional, and bootstrap-resampling methods
are developed to calculate p-values of the Wald-type, score and likelihood ratio tests. Simulation studies are
conducted to evaluate their performance in terms of type I error rate and power.

Results: Our empirical results show that the saddlepoint approximation method generally behaves better than the
asymptotic method based on the Wald-type test statistic. For small sample sizes, approximate unconditional and
bootstrap-resampling methods based on the score test statistic perform better in the sense that their corresponding
type I error rates are generally closer to the prespecified nominal level than those of other test procedures.

Conclusions: Both approximate unconditional and bootstrap-resampling test procedures based on the score test
statistic are generally recommended for three-arm non-inferiority trials with binary outcomes.

Keywords: Approximate unconditional test, Bootstrap-resampling test, Non-inferiority trial, Rate difference,
Saddlepoint approximation, Three-arm design

Background
The objective of a non-inferiority trial is to demonstrate
the efficacy of an experimental treatment not being infe-
rior to a reference treatment by some pre-specified non-
inferiority margin. Many authors considered two-arm
non-inferiority trials without a placebo since the compar-
ison between the experimental and reference treatments
is direct and the potential ethical problems encountered
in traditional placebo-controlled trials are avoided (for
example, see Dunnett and Gent [1], Tango [2], and Tang
et al. [3]). However, there are two major concerns for
two-arm non-inferiority trials [4]. The first issue is the
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choice of the non-inferiority margin, which is the clin-
ically acceptable amount or a combination of statistical
reasoning and clinical judgement. The other issue is the
evaluation of assay sensitivity, which refers to the abil-
ity of a trial to differentiate an effective treatment from
a less effective or ineffective treatment [5]. Without a
placebo arm, the assay sensitivity of a trail is not demon-
strable from the trial data and ones must rely on some
external information (e.g., historical placebo trails) for the
reference treatment [4]. Without the trial assay sensitivity,
any non-inferiority testing results from the comparison
of the experimental and reference treatments will become
unconvincing. There are some indications where it is
considered ethically acceptable to continue to random-
ize patients to placebo despite the fact that an effective
treatment exists and there is interest in seeing not only
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whether the new treatment works at all but also how it
measures up to accepted therapy. In this case, a three-arm
non-inferiority clinical trail including the experimental
treatment, an active reference treatment and a placebo is
usually conducted to assess assay sensitivity and internal
validation of a trail [6]. Indeed, three-arm trials are recom-
mended in the guidelines of the ICH (The International
Conference on Harmonisation of Technical Requirements
for Registration of Pharmaceuticals for Human Use) and
EMEA/CPMP (European Medicines Agency/Committee
for Proprietary Medical Products) as a useful approach to
the assessment of assay sensitivity and internal validation
(e.g., see [7]).
Statistical inference based on three-arm non-inferiority

clinical trials with normally distributed outcomes has
received considerable attention in recent years. For exam-
ple, Koch and Tangen [8] and Pigeot et al. [9] considered
the problem of three-arm non-inferiority testing for nor-
mally distributed endpoints with a common but unknown
variance. Koti [10] presented a new approach for normally
distributed endpoints based on the Fieller-Hinkley distri-
bution. Hasler, Vonk andHothorn [11] proposed the usage
of the t-distribution in the presence of heteroscedastic-
ity. Hida and Tango [7] proposed a test procedure for
assessing the assay sensitivity with a pre-specified mar-
gin defined as a difference between treatments in the
presence of homoscedasticity. Ghosh, Nathoo, Gönen and
Tiwari [12] developed a Bayesian approach in the presence
of heteroscedasticity by incorporating both parametric
and semi-parametric models. Gamalo, Muthukumarana,
Ghosh and Tiwari [13] extended the existing generalized
p-value approach for assessing the non-inferiority of a
new treatment in a three-arm trial.
Recently, some statistical methods have also been devel-

oped for three-arm non-inferiority testing with binary
endpoints. For example, Tang and Tang [14] proposed
two asymptotic approaches for testing three-arm non-
inferiority via rate difference based on Wald-type and
score test statistics. Kieser and Friede (2007) revisited
the performance of Tang and Tang’s [14] asymptotic test
statistics via simulation studies and derived approximate
sample size formulae for achieving the desired power.
Munk, Mielke, Skipka and Freitag [15] developed likeli-
hood ratio tests. Li and Gao [4] used the closed testing
principle to establish the hierarchical testing procedure
and proposed a group sequential type design. Liu, Tzeng
and Tsou [16] presented a three-step testing procedure
and derived an optimal sample size allocation rule in
an ethical and reliable manner that minimizes the total
sample size.
All aforementioned approaches for testing non-

inferiority of a new treatment in a three-arm clinical trial
with binary endpoints are based on large sample theory,
and their accuracy has long been suspected and criticized

when sample sizes are small or the data structure is sparse.
To the best of our knowledge, limited work have been
done to address these issues. Motivated by Jensen [17],
we derive saddlepoint approximations to the cumulative
distribution functions of Wald-type, score and likeli-
hood ratio test statistics. Inspired by Tang and Tang [18],
we also propose the exact unconditional, approximate
unconditional and Bootstrap-resampling p-value calcu-
lation procedures for testing three-arm non-inferiority
with small sample sizes.
The rest of this article is organized as follows. We first

review three test statistics for assessing non-inferiority of
a new treatment in three-arm clinical trials with binary
endpoints. We also propose saddlepoint approximation,
exact and approximate unconditional, and bootstrap-
resampling approaches for calculating p-values. Simula-
tion studies are conducted to investigate the performance
of all test statistics based on different p-value calcula-
tion approaches in terms of type I error rate and power.
An example is analyzed to demonstrate our methodolo-
gies. Finally, we discuss the performance of our proposed
methodologies and present some conclusions.

Methods
Model
Let consider a clinical trial with the test (T), reference
(R) and placebo (P) treatments, and assume their pri-
mary clinical outcomes XT , XR and XP be independent
and binomially distributed as XT ∼ Bin(nT ,πT ), XR ∼
Bin(nR,πR) and XP ∼ Bin(nP,πP), respectively. Here,
XT ,XR and XP are the numbers of responses in groups T,
R and P, respectively, πT ,πR and πP represent their cor-
responding response probabilities with higher probability
indicating a more favorable outcome, and nT , nR and nP
denote their corresponding sample sizes. Thus, the joint
probability density function of (xT , xR, xP) is given by

f (xT , xR, xP|πT ,πR,πP)

= (nT
xT

)(nR
xR

)(nP
xP

)
π
xT
T (1 − πT )nT−xTπ

xR
R

× (1 − πR)nR−xRπxP
P (1 − πP)nP−xP .

(2.1)

It can be easily shown from Equation (2.1) that the max-
imum likelihood estimates (MLEs) of πT , πR and πP are
given by π̂T = xT/nT , π̂R = xR/nR and π̂P = xP/nP,
respectively.

Test statistics
Following Hida and Tango [7], to test the non-inferiority
of the experimental treatment to the reference with the
assay sensitivity in a three-arm trial, we have to simul-
taneously demonstrate (i) the superiority of the experi-
mental treatment to the placebo, (ii) the non-inferiority of
the experimental treatment to the reference with a non-
inferiority margin � > 0, and (iii) the superiority of the
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reference treatment to the placebo by more than �. That
is, πT , πR and πP must satisfy the following inequalities:
πP < πR − � < πT , which can be written as the following
two hypotheses:

H0 : πT ≤ πR − � versus H1 : πT > πR − �,

K0 : πR ≤ πP + � versus K1 : πR > πP + �.

Similar to Pigeot et al. [9], we take the margin � as a
fraction f of the effect size of the reference treatment, i.e.,
� = f (πR − πP). Generally, one can select f = 1/2 and
1/3 [14]. Thus, the second hypothesis can be expressed as
K0 : πR ≤ πP versus K1 : πR > πP. If K0 is rejected, letting
f = 1− θ yields the following non-inferiority hypothesis:

H0 :
πT − πP
πR − πP

≤ θ versus H1 :
πT − πP
πR − πP

> θ , (2.2)

where θ ∈ (0, 1) is a fixed retention fraction [8]. Reject-
ing H0 implies that the test treatment preserves at least
100θ% of the efficacy of the reference treatment compared
to placebo [19]. Similar to Tang and Tang [14], we only
consider hypothesis H0 and assume that K0 is rejected at
some pre-given significant level. Thus, the non-inferiority
hypothesis (2.2) can be rewritten as

H0 : πT − θπR − (1 − θ)πP ≤ 0 versus

H1 : πT − θπR − (1 − θ)πP > 0.
(2.3)

Let ψ = πT − θπR − (1 − θ)πP . The non-inferiority
hypothesis (2.3) can be expressed as

H0 : ψ ≤ 0 versus H1 : ψ > 0. (2.4)

The restricted maximum likelihood estimates (RMLEs)
(denoted by π̃T , π̃R, π̃P) of πT , πR and πP can be com-
puted as follows. If the MLEs π̂T , π̂R, π̂P of πT ,πR,πP
satisfy the conditions: π̂T − θπ̂R − (1 − θ)π̂P ≤ 0 and
π̂R − π̂P > 0, we take π̃T = π̂T , π̃R = π̂R and π̃P =
π̂P ; otherwise, the RMLEs can be calculated by setting
πT = θπR + (1− θ)πP in the likelihood function (2.1) and
maximizing it with respect to πR and πP. For the latter,
it follows from Equation (2.1) that the RMLEs of πR and
πP can be obtained by simultaneously solving the follow-
ing equations in the parameter space � = {(πP,πR) : 0 ≤
πP < πR ≤ 1}:

xT − nT (θπR + (1 − θ)πP)

(θπR + (1 − θ)πP)(1 − θπR − (1 − θ)πP)

= nRπR − xR
θπR(1 − πR)

= nPπP − xP
(1 − θ)πP(1 − πP)

.

It is possible that there is no point (πP,πR) ∈ � such
that it satisfies the above equations, which implies that
the likelihood function given in Equation (2.1) attains its
maximum on the boundary of the parameter space �.

Following Tang and Tang [14], ψ can be estimated by
ψ̂ = π̂T − θπ̂R − (1 − θ)π̂P , and its variance is given
by var(ψ̂) = πT (1 − πT )/nT + θ2πR(1 − πR)/nR + (1 −
θ)2πP(1 − πP)/nP, which can be estimated by σ 2(π̆)

�=
v̂ar(ψ̂) = π̆T (1 − π̆T )/nT + θ2π̆R(1 − π̆R)/nR + (1 −
θ)2π̆P(1− π̆P)/nP, where π̆ = (π̆T , π̆R, π̆P) is some appro-
priate estimate of π = (πT ,πR,πP), for example, taking π̆

to be π̂ = (π̂T , π̂R, π̂P) or π̃ = (π̃T , π̃R, π̃P) which is the
RMLE of π . Thus, the statistics for testing hypothesis (2.4)
are given by

TW = ψ̂/σ (π̂) and TR = ψ̂/σ (π̃),

which are asymptotically distributed as the standard nor-
mal distribution underH0 as nT , nR and nP are sufficiently
large. Hence, non-inferiority can be claimed if TW > z1−α

(or TR > z1−α), where z1−α is the (1 − α)-quantile of the
standard normal distribution. When πP = 0, TW is the
Wald-type statistic proposed in Blackwelder [20] and TR
is the test statistic given by Farrington and Manning [21]
for two-arm noninferiority trials.
The signed root of the likelihood ratio statistic for test-

ing hypothesis (2.4) is given by

TL = sgn(ψ̂)
√
2{	(π̂) − 	(π̃)},

which is asymptotically distributed as the standard nor-
mal distribution underH0 as nT , nR and nP are sufficiently
large, where 	(π) = xT log(πT ) + (nT − xT )log(1 −
πT ) + xRlog(πR) + (nR − xR)log(1 − πR) + xPlog(πP) +
(nP − xP)log(1 − πP) + C with C = log{nT ! nR! nP! } −
log{xT ! xR! xP! (nT − xT )! (nR − xR)! (nP − xP)! }. Thus,
non-inferiority can be claimed if TL > z1−α .

p-value calculation methods
The non-inferiority hypothesis (2.2) can be claimed via the
p-value method with the rule: H0 is rejected if the p-value
is less than or equal to the prespecified significance level
α. In what follows, we introduce five approaches for cal-
culating p-values based on t0j , which is the observed value
of test statistic Tj (j = W ,R, L) for the observed value(
xoT , x

o
R, xoP

)
of (XT ,XR,XP).

(1) Asymptotic method (AM)
It follows from the above arguments that all statistics Tj’s
(j = W ,R, L) asymptotically follow the standard normal
distribution under the null hypothesis H0 : ψ ≤ 0. Thus,
the asymptotic p-value for testing hypothesis (2.2) via
statistic Tj (j = W ,R, L) based on

(
xoT , x

o
R, xoP

)
can be cal-

culated by pAMj
(
xoT , x

o
R, xoP

) = P
(
Tj ≥ toj |H0

)
= 1−
(toj ),

where 
(·) is the standard normal distribution function.
The above asymptotic approach for calculating p-value

of testing hypothesis (2.2) via statistic Tj (j = W ,RW , L) is
established under the large sample theory. Its accuracy has
long been suspected and criticized, especially when nT ,
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nR and/or nP are small since the skewness of the underly-
ing binomial distributions is not taken into consideration.
Some higher order corrections such as the saddlepoint
approximation [17] have been proposed to improve the
accuracy of the normal approximation. In what follows,
we will derive saddlepoint approximations to distributions
of the three test statistics.

(2) Saddlepoint approximationmethod (SAM)
Since XT , XR and XP are independent and Xi ∼ Bin(ni,πi)
(i = T ,R,P), the moment generating function of ψ̂ is
given by

ϕ(t) = (
1 − πT + πTet/nT

)nT (
1 − πR + πRe−θ t/nR

)nR
× (

1 − πP + πPe(θ−1)t/nP
)nP ,

with the cumulant generating function being

K(t) = nT log
(
1 − πT + πTet/nT

)
+nR log

(
1 − πR + πRe−θ t/nR

)
+nP log

(
1 − πP + πPe(θ−1)t/nP

)
,

where −1 ≤ t ≤ 1. Thus, the first two derivatives of the
cumulant generating function K(t) are given by

K̇(t) = πTet/nT
1−πT+πTet/nT

+ −θπRe−θ t/nR

1−πR+πRe−θ t/nR

+ (θ−1)πPe(θ−1)t/nP

1−πP+πPe(θ−1)t/nP , and

K̈(t) = (1−πT )πTet/nT
nT (1−πT+πT et/nT )2

+ θ2(1−πR)πRe−tθ/nR

nR(1−πR+πRe−tθ/nR )2

+ (θ−1)2(1−πP)πPe(θ−1)t/nP

nP(1−πP+πPe(θ−1)t/nP )2
,

respectively. To obtain the saddlepoint approximation to
P(ψ̂ ≥ b), we need to solve the following saddlepoint
equation: K̇(t) = b whose unique solution is denoted as t̂.
Following Jing and Robinson [22], the saddlepoint approx-
imation to the cumulative distribution function of statistic
ψ̂ is given by

P(ψ̂ ≥ b) ≈ 1 − 
(ω) + φ(ω)(1/υ − 1/ω),

where ω = sgn(t̂)
√
2{t̂b − K(t̂)} and υ = t̂

√
K̈(t̂). Thus,

the saddlepoint approximation to P
(
Tj ≥ toj |H0

)
(j =

W ,R, L) is given by

pSAj
(
xoT , x

o
R, xoP

) = P
(
Tj ≥ toj |H0

)
≈ 1 − 


(
ωo
j

)
+ φ

(
ωo
j

) (
1/voj − 1/ωo

j

)
,

where ωo
j = sgn(Âj)

√
2

{
Âjtoj − K(Âj/Bj)

}
and υo

j =

ÂjB−1
j

√
K̈(Âj/Bj), Âj is the unique solution to equation:

K̇(Âj/Bj) = toj Bj for j = W ,R with BW = σ(π̂) and
BR = σ(π̃), ωo

L = sgn(ψ̂)
√
2{	(π̂) − 	(π̃)} and υo

L =
ψ̂

√
nTH1/H2 with H1 = nTnRnP(θπ̂R + (1 − θ)π̂P)(1 −

θπ̂R − (1 − θ)π̂P)π̂R(1 − π̂R)π̂P(1 − π̂P), and H2 =
nRnPπ̃R(1 − π̃R)π̃P(1 − π̃P).

(3) Exact unconditional method (EUM)
When sample sizes (i.e., nT , nR, nP) are small, asymptotic
methods may yield inflated type I error rates and their
exact versions may provide reliable alternative. UnderH0 :
ψ ≤ 0 with πP < πR, parameters πR and πP must
belong to the following constrained parameter space � =
{(πP,πR) : 0 ≤ πP < πR ≤ 1 if −θπR < ψ < 0,
(−ψ −θπR)/(1−θ) ≤ πP < πR < 1 if −πR < ψ ≤ −θπR,
and empty set otherwise}. Under the null hypothesis, the
probability density function (2.1) can be reexpressed by
πT = ψ + θπR + (1 − θ)πP with πR,πP and ψ being
nuisance parameters. These nuisance parameters can be
eliminated by maximizing the null likelihood over the
complete domain �. Similar to Tang and Tang [18], the
exact unconditional p-value for testing H0 : ψ ≤ 0 via
statistic Tj (j = W ,R, L) based on

(
xoT , x

o
R, xoP

)
is defined

as

pEUj
(
xoT , x

o
R, xoP

) = supψ≤0

{
sup(πR ,πP)∈�P

(
Tj ≥ toj |ψ ,πR,πP

)}
,

where

P
(
Tj ≥ toj |ψ ,πR,πP

)
=

nT∑
xT=0

nR∑
xR=0

nP∑
xP=0

× nT !
xT !(nT−xT )!

nR !
xR !(nR−xR)!

nP !
xP !(nP−xP)!

× (ψ + θπR + (1 − θ)πP)xT

× (1 − ψ − θπR − (1 − θ)πP)nT−xT

× π
xR
R (1−πR)nR−xRπxP

P (1− πP)nP−xP I

×
{
Tj(xT , xR, xP) ≥ toj

}
,

and I
{
Tj(xT , xR, xP) ≥ toj

}
is 1 if Tj(xT , xR, xP) ≥ toj and 0

otherwise.

(4) Approximate unconditional method (AUM)
According to Tang and Tang [18] and Tang, Tang and
Rosner [23], the exact unconditional test is always con-
servative, i.e., its corresponding type I error rate is always
less than or equal to the prespecified significance level.
Following Tang and Tang [18], these nuisance parame-
ters can be eliminated by evaluating their values at their
corresponding RMLEs under ψ = 0. The approximate
unconditional p-value for testing H0 : ψ ≤ 0 via statis-
tic Tj (j = W ,R, L) based on

(
xoT , x

o
R, xoP

)
can be defined as

pAUj
(
xoT , x

o
R, xoP

) = P
(
Tj ≥ toj |ψ = 0,πR = π̃R,πP = π̃P

)
.

(5) Bootstrap-resamplingmethod (BTM)
Hypothesis testing based on the bootstrap-resampling
method is usually recommended when sample sizes (i.e.,
nT , nR and nP) are small [24] or data structure is sparse
(e.g., xT or xR or xP is close to zero or nT , nR and nP,
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respectively). Given the observation
(
xoT , x

o
R, xoP

)
, we com-

pute the RMLEs π̃T , π̃R and π̃P of parameters πT ,πR and
πP, and calculate the observed value t0j of statistic Tj (j =
W ,R, L). Based on the RMLEs π̃T , π̃R and π̃P, we generate
B bootstrap samples

{(
xbT , x

b
R, xbP

)
: b = 1, . . . ,B

}
from

the following distribution: xbk ∼ Bin(nk , π̃k) for k = T ,R
and P. For each of the B bootstrap samples, we compute
the observed value tbj of statistic Tj (j = W ,R, L). Hence,
an approximate p-value for testing H0 : ψ ≤ 0 via statis-
tic Tj based on

(
xoT , x

o
R, xoP

)
is given by p̂BTj

(
xoT , x

o
R, xoP

) =
1
B

∑B
b=1 I

(
tbj ≥ t0j

)
.

For any given observation
(
xoT , x

o
R, xoP

)
, test statistic Tj

(j = W ,R, L) and p-value calculation method, we reject
the null hypothesis H0 at the significance level α if
pkj

(
xoT , x

o
R, xoP

) ≤ α for k =AM, SA, EU, AU and BT.

Simulation study
Simulation studies are conducted to investigate the per-
formance of various test statistics together with the five
p-value calculation methods in small-sample designs (e.g.,
n = 30 and 60, where n = nP+nR+nT with the allocation
ratios λP :λR:λT=1:nR/nP :nT/nP taking to be 1:1:1, 1:2:2
and 1:2:3) in terms of type I error rate and power. For each
(nP, nR, nT ), we consider the following probability settings
[19]: πP = 0.05, 0.10, 0.15, . . . , 0.50, πR = πP + 0.05,πP +
0.10, . . . , 0.95, and πT = θπR + (1 − θ)πP , which corre-
sponds to a total of 11,340 configurations of (πP,πR,πT ),
and the following two non-inferiority margins: θ = 0.6
and 0.8. The nominal level is taken to be α = 0.05. For the
given values of n and allocation ratio λP :λR:λT , nk is given
by n	 = nλk/(λP + λR + λT ) for 	 = P,R and T . Thus,
given n, allocation ratio and (πP,πR,πT ), the type I error
rate for testing hypothesis H0 : ψ ≤ 0 versus H1 : ψ > 0
via test statistic Tj (j = W ,R, L) at the significance level α
is calculated by

αk
j =

nT∑
xoT=0

nR∑
xoR=0

nP∑
xoP=0

f
(
xoT , x

o
R, xoP|πT ,πR,πP,H0

)

×I
{
pkj

(
xoT , x

o
R, xoP

) ≤ α
}

for k = AM, SAM,EUM,AUM and BTM, whilst the cor-
responding power can be evaluated by replacing H0 in
f
(
xoT , x

o
R, xoP|πT ,πR,πP,H0

)
by H1.

Results
Simulation study
To compare the performance of AM, SAM, EUM, AUM
and BTM together with test statistics TW , TR and TL
under the balanced and unbalanced designs, Figure 1
presents boxplots of their corresponding type I error
rates for n = 30 and 60, and λP :λR:λT=1:1:1, 1:2:2 and

1:2:3, where AMk, SAk, EUk, AUk and BTk represent
AM, SAM, EUM, AUM and BTM for test statistic Tk
with k=W, R and L, respectively. Here, each boxplot in
Figure 1 contains 2 (i.e., the number of non-inferiority
margins)×11, 340 (i.e., the number of configurations for
(πP,πR,πT ))=22,680 data points. From Figure 1, we have
the following findings. First, the medians of the type I
error rates based on AUM and BTM are closer to the pre-
specified nominal level α = 0.05 than those based on
the other three p-value calculation methods for all three
test statistics under consideration. Second, for AUM and
BTM, the medians of the type I error rates for test statis-
tics TW and TR, which are 0.0495 and 0.0501 for AUM
and 0.0494 and 0.0494 for BTM respectively, are closer to
α = 0.05 than those for test statistic TL, which are 0.0442
for AUM and 0.0442 for BTM. Third, for AM, SAM and
EUM, their corresponding medians of type I error rates
are 0.0649, 0.0455 and 0.0260 for test statistic TW , 0.0504,
0.0455 and 0.0488 for test statistic TR, and 0.0663, 0.1285
and 0.0332 for test statistic TL, respectively, which indi-
cate that (i) the AM is liberal for test statistics TW and
TL, whilst it is valid for test statistic TR; (ii) the SAM can
improve the accuracy of the normal approximation for test
statistics TW and TR; and (iii) the EUM is conservative for
all test statistics. Fourth, the proportions of configurations
whose type I error rates lie in the interval (0.045, 0.055)
for AM, SAM, EUM, AUM and BTM are 0.0747, 0.4691,
0.0710, 0.5154 and 0.7994 for TW , 0.5605, 0.4605, 0.4753,
0.7167 and 0.8370 for TR, and 0.0784, 0.0800, 0.0691,
0.4056 and 0.4889 for TL, respectively, which show that (i)
AUM and BTM outperform the other three p-value cal-
culation procedures, and (ii) TR behaves better than the
other two test statistics regardless of p-value calculation
procedures. Fifth, the median of the type I error rates
becomes more close to the prespecified nominal level as
the total sample size n increases, whilst at the same time
the variability of the type I error rates decreases. Sixth, the
variability of the type I error rates for unbalanced designs
is not significantly different from that for the balanced
designs.
To investigate the sensitivity of various p-value calcula-

tion procedures (i.e., AM, SAM, EUM, AUM and BTM) to
different test statistics, Figure 2 presents boxplots of their
corresponding type I error rates against πP for test statis-
tics TW , TR and TL. Examination of Figure 2 shows that
there is no significant effect of πP on the type I error rate.
We also calculate powers of the five p-value calculation

procedures together with the three test statistics at the
nominal level α = 0.05 when πT = πR and θ = 0.6 with
the following settings: n = 30 and 60, πP = 0.15 and
0.3, and πR = 0.5, 0.8 and 0.95 for the balanced allocation
1:1:1 and unbalanced allocation 1:2:3. Results are reported
in Table 1. Examination of Table 1 indicates that (i) TR
is generally more powerful than TW and TL for the EUM
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Figure 1 Boxplots of the type I error rates of various test procedures togetherwith three statisticswhen testing the non-inferiority hypothesis
(2.2) at α = 0.05. AMk, SAk, EUk, AUk and BTk represent the AM, SA, EU, AU and BT test procedures with test statistic Tk for k = W, R and T, respectively.

Figure 2 Boxplots of the type I error rates of various test procedures togetherwith three statistics againstπP when testing the non-inferiority
hypothesis (2.2) at α = 0.05. EUk, AUk and BTk represent the EU, AU and BT test procedures with statistic Tk for k = W,R and T, respectively.
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Table 1 Exact powers (%) of various test procedures together with three statistics when πT = πR with n = 30 and 60, θ = 0.6 and α = 0.05

AM SAM EUM AUM BTM

n λP :λR :λT πP πR TW TR TL TW TR TL TW TR TL TW TR TL TW TR TL

30 1:1:1 0.15 0.5 13.4 12.3 13.9 43.6 21.2 22.5 5.0 18.1 15.3 18.2 18.2 14.9 17.9 18.0 16.2

0.8 44.2 43.9 38.0 42.6 72.4 30.0 28.1 43.5 40.3 42.1 42.1 39.7 43.7 43.9 42.1

0.95 86.0 85.8 75.2 95.6 97.7 36.8 67.8 79.1 76.0 74.2 74.2 71.3 75.8 75.4 75.0

0.3 0.5 8.8 7.5 8.3 39.9 23.2 14.8 2.9 10.7 8.5 10.8 10.8 9.3 11.1 11.1 9.1

0.8 30.1 29.2 22.0 21.1 35.6 26.6 15.9 29.2 24.8 30.0 30.0 26.8 30.2 30.7 29.0

0.95 66.3 64.1 45.6 80.6 88.3 26.4 42.5 52.7 49.8 59.4 59.4 57.1 60.0 59.7 59.4

1:2:3 0.15 0.5 14.2 11.9 18.6 33.2 28.2 24.7 13.2 17.9 13.7 21.7 21.7 19.7 20.3 20.0 18.4

0.8 43.6 41.4 48.3 58.9 81.3 29.0 43.4 45.4 36.3 53.1 52.3 44.8 51.5 51.1 44.4

0.95 83.0 82.9 83.9 97.1 98.8 36.0 85.6 79.6 82.6 85.9 84.3 79.9 85.4 84.9 80.6

0.3 0.5 8.6 7.2 10.3 36.2 25.0 18.7 7.9 10.8 7.6 12.4 12.2 10.5 11.9 11.7 9.8

0.8 29.7 27.4 30.1 26.1 57.9 25.9 28.9 31.9 22.7 35.0 33.6 28.2 34.4 33.7 29.5

0.95 62.4 61.8 62.8 85.5 95.3 36.9 66.4 63.0 60.9 65.8 64.5 62.3 66.3 65.9 64.0

60 1:1:1 0.15 0.5 19.0 19.0 18.4 33.7 47.5 24.3 10.7 11.3 14.2 29.3 29.4 28.3 28.0 28.1 27.2

0.8 65.8 67.8 59.6 85.2 92.4 38.9 55.0 56.3 48.7 71.4 71.4 71.4 71.1 71.1 70.7

0.95 97.9 98.6 96.6 96.6 96.7 50.3 95.9 96.7 89.3 97.7 97.7 97.7 97.7 97.7 97.7

0.3 0.5 9.7 9.4 9.5 43.2 21.5 16.9 4.7 5.3 4.2 17.0 17.2 15.3 14.1 14.3 13.1

0.8 46.5 47.1 39.8 54.6 79.8 33.2 35.4 36.9 37.1 50.9 50.9 50.8 49.7 50.3 50.0

0.95 91.3 93.3 85.7 95.3 96.0 47.0 85.9 87.8 71.3 88.0 88.0 88.0 89.6 89.3 89.5

1:2:3 0.15 0.5 20.5 20.2 22.2 29.6 53.8 27.9 24.1 22.1 24.2 31.0 30.8 28.3 31.7 31.1 28.2

0.8 72.5 72.5 69.1 92.3 96.4 40.9 73.9 73.3 79.2 77.0 76.9 75.9 78.3 78.1 76.7

0.95 98.6 98.6 98.0 99.9 99.9 50.6 98.6 98.9 92.4 99.1 99.0 99.0 98.5 98.5 98.4

0.3 0.5 10.3 10.0 10.3 42.9 25.0 20.1 12.3 10.3 10.1 15.8 15.7 13.5 15.8 15.4 13.4

0.8 49.3 49.2 45.1 64.6 84.1 36.2 52.0 48.4 38.0 52.0 52.0 51.0 55.5 55.4 54.1

0.95 90.4 90.3 88.7 99.1 99.4 51.3 90.9 92.5 82.4 92.1 92.0 92.0 91.8 91.7 91.7
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Table 2 Various p-values for the pharmacological data set at the nominal level α = 5%

θ = 0.6 θ = 0.8

Test method TW TR TL TW TR TL

AM 0.173 0.162 0.164 0.234 0.229 0.230

SAM 0.494 0.494 0.140 0.497 0.497 0.162

EUM 0.185 0.181 0.192 0.233 0.202 0.210

AUM 0.166 0.165 0.186 0.232 0.230 0.249

BTM 0.504 0.502 0.519 0.516 0.514 0.530

except for πR = 0.95 with the unbalanced designs, (ii)
TW and TR have similar powers for AM, AUM and BTM
under our considered settings, (iii) a slight power differ-
ence is observed between TR and TL for AUM and BTM,
(iv) there is slight power difference between balanced and
unbalanced designs, and (v) power increases as n increases
regardless of p-value calculation procedures or test statis-
tics. Hence, we would recommend both AUM and BTM
with TR for hypothesis testing.

Real data example
An example from a pharmacological study of patients with
functional dyspepsia (FD) and a placebo-controlled trail
of subjects with acute migraine is used to illustrate our
proposedmethodologies. This example has been analyzed
by Holtmann et al. [25] and Tang and Tang [14]. In this
example, cisapride and simethicone can be regarded as
the existing reference and new experimental treatments,
respectively. In that study, among n = 178 patients of FD,
nP = 61, nR = 59 and nT = 58 were randomized and
treated in a doubly dummy technique with placebo, cis-
apride and simethicone, respectively; adverse events (e.g.,
diarrhea and pain) were happened in xP = 7, xR = 10 and
xT = 12 patients treated with placebo, cisapride and sime-
thicone, respectively. It is of interest to test if simethicone
is not inferior to cisapride in terms of rate of reporting
adverse event in the presence of placebo. Given θ = 0.6
and 0.8, the corresponding p-values for testingH0 : (πT −
πP)/(πR − πP) ≤ θ versus H1 : (πT − πP)/(πR − πP) > θ

based on the five p-value calculation procedures and three
test statistics are reported in Table 2. By Table 2, there
is no evidence to show that simethicone is noninferior to
cisapride in the presence of placebo at the nominal level
α = 0.05, which is consistent with that given in Tang and
Tang [14].

Discussion
Simulation results demonstrate that our proposed score
test statistic outperforms other test statistics in terms
of type I error rate and power under our considered
settings. The approximate unconditional and bootstrap-
resampling methods perform better than other p-value
calculation procedures in the sense that their corre-
sponding type I error rates are closer to the prespecified
nominal level and their corresponding powers are larger
than those of other p-value calculation procedures. The
exact unconditional method is conservative and time-
consuming when sample sizes are large (e.g., see the 6th
column in Table 3). The asymptotic tests are liberal since
their type I error rates are greater than the prespeci-
fied nominal level α = 0.05 in most cases. Comparing
the approximate and exact unconditional methods, the
approximate unconditional method provides a good alter-
native to the exact unconditional method in terms of
computing time (e.g., see the 6th and 7th columns in
Table 3) and type I error rate when sample sizes are
large. In contrast, the computing burden of the bootstrap-
resamplingmethod is heavier than that of the approximate
unconditional method (e.g., see the last two columns in
Table 3).
In this article, we concentrate on a three-arm non-

inferiority trial with binary endpoints in which the
marginal is defined as a fraction of the unknown dif-
ference in response probabilities between reference and
placebo. The corresponding hypothesis (i.e.,H0 : πT−πP

πR−πP
≤

θ orH0 : πT −θπR−(1−θ)πP ≤ 0) is considered since it is
simple and only one single hypothesis is involved (e.g., see
[6,9,14]). However, three-arm non-inferiority hypothe-
ses with the marginal defined as the prespecified differ-
ence between treatments have received a considerable
attention in recent years (e.g., see [5,7]). They can be gen-
erally classified as the union type hypotheses (i.e., HU0:

Table 3 Computing time (minutes) of the Type I error rates for 11340 configurations of (πP,πR,πT) together with three
test statistics under five test methods

λP :λR:λT θ n AM SAM EUM AUM BTM

1:2:3 0.6 30 3.3 269 2920 55.75 11700

60 3.8 356 130950 357.3 20700
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πR ≥ hP(πP) or πR ≥ hT (πT )) or the intersection type
hypotheses (i.e., HU0: πR ≥ hP(πP) and πR ≥ hT (πT )),
where hP(.) and hT (.) are any functions [15]. For spe-
cific choices of hP(.) and hR(.), this includes, for exam-
ples, hypotheses on the differences, the relative risks or
the odds ratio of the proportions. While the union type
hypotheses are suitable for showing both the superiority
of the standard treatment as compared to placebo and
the inferiority of the test treatment as compared to the
standard treatment, the intersection type hypotheses are
suitable for showing the test treatment is as effective as
the standard or placebo treatments. We are working on
statistical inference on a three-arm non-inferiority trial
with the margin being a prespecifided difference between
treatments when the primary endpoints are binary.

Conclusions
According to the aforementioned observations, we can
draw the following conclusions. In terms of type I error
rates and powers, the approximate unconditional and
bootstrap-resampling methods with score test statistic are
recommended for hypothesis testing purpose when sam-
ple sizes are small in a three-arm non-inferiority trial. In
terms of time-consuming and type I error rates and pow-
ers, the approximate unconditionalmethodwith score test
statistic behaves the best among our considered p-value
calculation procedures and test statistics.
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