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Abstract 

Background:  Renal cell carcinoma (RCC) is a complex disease and is comprised of several histological subtypes, the 
most frequent of which are clear cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma (PRCC) and chromo‑
phobe renal cell carcinoma (ChRCC). While lots of studies have been performed to investigate the molecular charac‑
terizations of different subtypes of RCC, our knowledge regarding the underlying mechanisms are still incomplete. As 
molecular alterations are eventually reflected on the pathway level to execute certain biological functions, character‑
izing the pathway perturbations is crucial for understanding tumorigenesis and development of RCC.

Methods:  In this study, we investigated the pathway perturbations of various RCC subtype against normal tissue 
based on differential expressed genes within a certain pathway. We explored the potential upstream regulators 
of subtype-specific pathways with Ingenuity Pathway Analysis (IPA). We also evaluated the relationships between 
subtype-specific pathways and clinical outcome with survival analysis.

Results:  In this study, we carried out a pathway-based analysis to explore the mechanisms of various RCC subtypes 
with TCGA RNA-seq data. Both commonly altered pathways and subtype-specific pathways were detected. To identify 
the distinctive characteristics of each subtype, we focused on subtype-specific perturbed pathways. Specifically, we 
observed that some of the altered pathways were regulated by several recurrent upstream regulators which present‑
ing different expression patterns among distinct RCC subtypes. We also noticed that a large number of perturbed 
pathways were controlled by the subtype-specific upstream regulators. Moreover, we also evaluated the relationships 
between perturbed pathways and clinical outcome. Prognostic pathways were identified and their roles in tumor 
development and progression were inferred.
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Background
Kidney cancer or renal cell carcinoma (RCC) is com-
prised of distinct histological subtypes which present 
different genetic characteristics, biological functions 
and clinical outcome [1]. RCC contains three major his-
tologic subtypes: clear cell RCC (ccRCC), papillary RCC 
(PRCC) and chromophobe RCC (ChRCC). ccRCC is the 
most common RCC subtype occupying approximately 
75% of RCC cases; PRCC accounts for about 15% and 
ChRCC represents about 5% of RCC cases [1]. Thus, the 
treatment of RCC is quite complicated due to the distinct 
molecular alterations, biological functions and clinical 
outcome. It is of great interest to explore the molecular 
basis as well as therapeutic targets for different subtypes 
of RCC in order to enhance our understanding of differ-
ent subtypes of RCC and provides new insights for tar-
geted therapy.

Genomic alterations lead to differential expression of 
genes and subsequently induce dysregulation of biologi-
cal functions to promote tumorigenesis and develop-
ment. To date, numerous studies have been carried out to 
investigate the molecular basis of each subtype and elu-
cidate potential mechanisms of tumorigenesis [1–7]. The 
Cancer Genome Atlas (TCGA) Research Network has 
performed a series of studies to investigate the molecu-
lar characterizations and altered pathways within differ-
ent subtypes of RCC [2, 3, 7]. Ricketts et al. [1] conducted 
a comprehensive analysis to compare the homogene-
ity and heterogeneity of molecular basis and perturbed 
pathways among distinct subtypes of RCC. Banumathy 
et  al. [6] summarized the known molecular alterations 
that lead to perturbations in signaling pathways. Further-
more, the metabolic basis of kidney cancer has also been 
investigated [8–13]. Despite these remarkable discover-
ies, the understanding about the mechanisms of various 
RCC subtypes are still incomplete and further compara-
tive studies are still desired. As genomic alterations are 
eventually manifested to biological functions, pathway-
based analysis can be a good choice to investigate the 
mechanisms of different subtypes of RCC, which greatly 
reduces complexity and increases interpretability [10, 12, 
13].

In this study, we systematically investigated the mecha-
nisms of various subtypes of RCC at the pathway level, 

identifying pathway perturbations as well as the poten-
tial upstream regulators and exploring the associations 
with clinical outcome. Previously, Ricketts et  al. [1] re-
evaluated the histologic subtypes of TCGA kidney can-
cer samples. With the re-classified histologic subtype 
samples, we first analyzed the gene expression of each 
RCC subtype against normal tissues and filtered dif-
ferentially expressed genes (DEGs) within pathways for 
further analysis. Considering that genes associated with 
multiple pathways can be a confounding factor to inves-
tigate the pathway perturbations with a specific function, 
correction analysis was performed for these promiscuous 
genes across linked pathways. Enrichment analysis was 
subsequently carried out based on promiscuity-corrected 
DEGs and significantly disturbed pathways versus nor-
mal tissues were obtained for each subtype, including 
both commonly altered pathways and subtype-specific 
disturbed pathways among different subtypes of RCC. 
Specifically, to identify the distinctive characteristics of 
each subtype, we focused our further analysis on sub-
type-specific perturbed pathways for both the upstream 
regulator analysis and survival analysis. It was shown that 
some of the recurrent upstream regulators were shared 
among distinct RCC subtypes, with different expres-
sion patterns. Additionally, a large number of perturbed 
pathways were regulated by subtype-specific upstream 
regulators. Furthermore, we examined the relationships 
between subtype specific perturbed pathways and can-
cer patient outcome (i.e., survival time). Prognostic path-
ways were identified for each subtype and their roles in 
tumor development and progression were inferred. In 
summary, our work explored the relationships among 
pathway alterations, upstream regulators as well as clini-
cal outcome for different subtypes of RCC. We hypothe-
sized that various upstream regulators together affect the 
downstream pathway perturbations that drive the tumor 
procession. Our findings provide new insights for tumo-
rigenesis and development of various RCC subtypes and 
provide promising targets for precision therapy.

Methods
Experimental design and statistical rationale
The main objective of this study was to investigate the 
pathway perturbations of various RCC subtypes against 

Conclusions:  In summary, we evaluated the relationships among pathway perturbations, upstream regulators and 
clinical outcome for differential subtypes in RCC. We hypothesized that the alterations of common upstream regula‑
tors as well as subtype-specific upstream regulators work together to affect the downstream pathway perturbations 
and drive cancer initialization and prognosis. Our findings not only increase our understanding of the mechanisms of 
various RCC subtypes, but also provide targets for personalized therapeutic intervention.
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normal tissue, identify potential upstream regulators and 
explore the relationships associated with clinical out-
come. The whole workflow was shown in Fig.  1. Firstly, 
we performed differential gene expression analysis based 
on re-evaluated RCC subtype samples and filtered the 
differentially expressed genes (DEGs) within pathway of 
each subtype. Secondly, we corrected the Wald t-value 
obtained from DESeq2 analysis for promiscuous genes 
that participated in multiple pathways. Thirdly, we car-
ried out the enrichment analysis based on the corrected-
t value of DEGs and acquired the significantly altered 
pathways of each subtype. Fourthly, we compared the 
pathway perturbations among various RCC subtypes. 
Then we identified the potential upstream regulators of 
subtype specific pathways with Ingenuity Pathway Analy-
sis (IPA) and summarized the recurrent upstream regu-
lators underlying various disturbed pathways. Finally, 
we explored the relationships among perturbed path-
ways, patient outcome, and the underlying upstream 
regulators.

Data sources and pre‑processing
The RNAseqV2 level 3 data including raw counts data, 
normalized scaled estimate data, and corresponding 
clinical data for TCGA Pan-kidney cohort were accessed 
from the Broad GDAC Firehose (https​://gdac.broad​insti​
tute.org). The histological subtype of each sample were 
re-divided based on the original pathology reports or re-
evaluated by urologic pathologists in Ricketts et  al. [1]. 
The reclassified TCGA kidney cancer samples contain 
839 RCC samples: 485 clear cell RCC (ccRCC), 273 papil-
lary RCC (PRCC), 81 chromophobe RCC (ChRCC), and 
129 matched normal samples were used in our analysis. 
The KEGG pathway knowledge information was down-
loaded from MSigDB database (http://softw​are.broad​
insti​tute.org/gsea/downl​oads.jsp) and included 5266 
genes and 186 pathways. Demographic and clinical char-
acteristics of the patients are described in Table 1.

Differential gene expression and pathway enrichment 
analysis
To obtain high-quality RNAseq data, raw counts data 
with a value of zero in more than 20% of the samples in 
each subtype were excluded from analyses. To obtain 

DEGs, raw RNAseq counts data of each subtype and 
normal samples were used to perform the differential 
expression analysis based on negative binomial general-
ized linear model with R package DESeq2 (version 1.24.0) 
[14]. In particular, for the differential expression analy-
sis in DESeq2, significance testing with Wald test, and 
multiple testing with Benjamini-Hochberg Procedure 
were used. Only genes with both Benjamini-Hochberg 
adjusted q-values < 0.05 and |fold change| > 1.5 were con-
sidered as DEGs. In addition, pathway DEGs were further 
filtered based on KEGG pathway knowledge information. 
DEGs were kept only if they were present in KEGG. The 
Wald t-value statistics for DEGs resulting from DESeq2 
analysis was chosen for subsequent analysis, with a 
higher t-value associated with a higher statistical signifi-
cance of differential expression.

As genes associated with multiple pathways can be a 
confounding factor when linking pathway alternations to 
a specific function, such kind of genes were subjected to 
a promiscuity correction [15]. Here, we adopted the same 
procedure as in Gaude et.al [15] to correct the Ward 
t-value for differential gene expression of promiscuous-
gene across pathways with the following calculation:

Furthermore, pathway enrichment analyses were also 
performed based on corrected Wald t-values of DEGs 
using the R package ‘piano’ (version 2.0.2) [16]. Here, the 
‘gsea’ method applying the Gene set enrichment analysis 
(GSEA) method was used, and significantly up-regulated 
and down-regulated pathway terms were identified with 
p-value less than 0.05.

Upstream regulator analysis by ingenuity pathway analysis 
(IPA)
To identify the potential upstream regulators of a par-
ticular pathway, we used the Ingenuity Pathway Analysis 
(IPA) software and performed the “Core” and “Upstream 
Regulator” analyses on IPA [17] based on DEGs within 
each given pathway. The potential upstream regulators 
were firstly identified based on experimentally observed 
interactions between upstream regulators and their 

corrected Ward t-value

= Wald t-value/associated pathway number.

(See figure on next page.)
Fig. 1  Study workflow: The workflow describes the method of pathway-based analysis to identify the pathway perturbations, the potential 
upstream regulators and prognostic pathways of various RCC subtypes. Based on re-evaluated RCC subtype samples, differential gene expression 
analysis was performed for each subtype against normal tissue; Differentially expressed genes (DEGs) within pathways (KEGG) were selected for 
further analysis for each subtype; Wald t-values for promiscuous-genes associating with multiple pathways was corrected; Enrichment analysis was 
performed based on corrected t-value of DEGs within pathways, and significantly altered pathways were identified for each subtype; Upstream 
regulators analysis was performed to explore the potential drivers of each subtype-specific pathway; survival analysis was carried out to evaluate 
the relationship between subtype-specific pathway and patient clinical outcome for each subtype

https://gdac.broadinstitute.org
https://gdac.broadinstitute.org
http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp
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target genes in human species which have been manu-
ally curated in IPA’s Knowledge Base and then further 
selected using the following criteria: (1) The predicted 

upstream regulators belong to transcription regulators 
(TFs), cytokines or growth factors; (2) The predicted 
upstream regulators showed statistical significance of 
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Fisher’s Exact Test with p-value < 0.01; (3) The predicted 
upstream regulators regulated more than 10% DEGs of a 
pathway in order to identify the drivers most likely affect-
ing this pathway; (4) The predicted upstream regulator 
itself was also a DEG.

Survival analysis
To assess the association between subtype-specific 
enriched pathways and patient survival information, 
overall survival (OS) analysis was performed based on 
pathway expression within each subtype. Here, we calcu-
lated the pathway expression based on the DEGs within 
each pathway. TCGA normalized scaled estimate data 
were firstly converted into TPM (multiplied by 1e6) value 
and then subjected to log2(TPM + 1) transformation for 
subsequent analysis. The expression of each pathway was 
measured by the average expression of all DEGs inside 
the pathway based on log2-transformed values. For each 
subtype-specific enriched pathway, the patient cohort for 
the corresponding subtype was divided into two groups 
(i.e. pathway high expression group and pathway low 
expression group) by average expression of the pathway. 
Then the Kaplan-Meier estimator was used for patient 
stratification and the log-rank test was applied to com-
pare the survival difference between two groups with R 
package ‘survminer’ [18]. A multiple testing correction 
with Benjamini-Hochberg false discovery rate (B&H 
FDR) was performed based on log-rank test p values 
across each subtype and pathways with p-values less than 
0.05 were considered as prognostic pathways.

Statistical analysis software
Except where noted above, all statistical analyses were 
performed in R version 3.5.1.

Results
Pathway perturbations among various RCC subtypes
To investigate the pathway perturbations of various RCC 
subtypes against normal tissues, we analyzed the expres-
sion of pathway genes of kidney cancer from TCGA, 
encompassing 485 ccRCC, 273 PRCC, 81 ChRCC and 
129 normal samples (see Fig.  1 for the overall work-
flow). Differential expression analysis was performed 
and differentially expressed genes (DEGs) within path-
ways were selected for the further analysis, including 
2198 DEGs for ccRCC, 2129 DEGs for PRCC, and 2243 
DEGs for ChRCC. These DEGs mapped to 186 path-
ways from the KEGG database. After examining these 
DEGs, we noticed that about 33% DEGs were related to 
multiple pathways (Fig.  2a, b). As the genes associated 
with multiple pathways can be a confounding factor, in 
order to reduce the chance of significantly altered path-
ways driven by the changes of promiscuous genes with-
out the changes of pathway-specific genes, promiscuity 
correction analysis was performed on the DEGs associ-
ated with multiple pathways (Fig. 2c, d, Additional file 1: 
Table S1). To identify the pathway perturbations of vari-
ous subtypes, gene set enrichment analysis was carried 
out based on the promiscuity-corrected DEGs between 
each RCC subtype and normal tissues. Significantly dys-
regulated pathways were identified in each subtype, with 
some pathways overlapping (Fig. 3a, b, Additional file 2: 
Table  S2). For ccRCC, 44 significantly perturbed path-
ways were identified, comprised of 10 upregulated path-
ways and 34 downregulated pathways. For PRCC, 31 
significantly altered pathways were identified, comprised 
of 8 upregulated pathways and 23 downregulated path-
ways. For ChRCC, 30 significantly disturbed pathways 
were identified, comprised of 15 upregulated pathways 
and 15 downregulated pathways.

Comparison of altered pathways among various RCC 
subtypes
We compared the significantly altered pathways of each 
RCC subtype against normal tissues. We noticed that 
most of the perturbed pathways for ccRCC were associ-
ated with immune- and metabolism-related pathways. 
While for PRCC and ChRCC, they were mainly associ-
ated with immune- and blood vessel-related pathways, 
and mRNA- and protein-synthesis related pathways, 
respectively. After examining the active pathways among 
various subtypes, both commonly perturbed pathways 
for RCC and subtype-specific perturbed pathways were 

Table 1  Demographic and  clinical characteristics of  RCC 
patients by subtype

a  Denotes some patients have missing information in these categories

Characteristics ccRCC​ PRCC​ ChRCC​

Patient No. 485 273 81

Age (years)a

  Range 26 ~ 90 28 ~ 88 17 ~ 86

  Median 61 61 51

AJCC Stagea

  Stage I 241 163 28

  Stage II 49 21 28

  Stage III 118 49 17

  Stage IV 77 15 8

Follow-up (days)a

  Range 0 ~ 4537 0 ~ 5925 30 ~ 4676

  Median 1200 750.5 1731

Vital_Status

  Living 325 233 65

  Deceased 160 40 16
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Fig. 2  Promiscuity correction of differentially expressed genes across the pathways. a The percentage of differentially expressed genes (DEGs) 
associated with various pathways in all DEGs. X-axis denotes the number of pathways. Y-axis denotes the percentage of DEGs linking with certain 
pathways in all DEGs. b The percentage of DEGs and non-DEGs in pathway genes. The red bar indicates the percentage of DEGs relating to a 
specific pathway in pathway genes. The blue bar indicates the percentage of non-DEGs in pathway genes. The green bar indicates the percentage 
of DEGs participating in multiple pathways in pathway genes, which were then subjected to promiscuity correction. c Non corrected and d 
promiscuity-corrected t-values of DEGs within certain pathways. Each column represents a pathway and each dot represents a gene. The value of 
each dot represents the c Non corrected and d promiscuity-corrected mean t-values of cancer vs normal for pathway genes across RCC subtypes. 
Specific genes (blue) of a certain pathway and promiscuous genes (red) associating with multiple pathways are highlighted in order to compare the 
effect of promiscuity correction

(See figure on next page.)
Fig. 3  Significantly perturbed pathways for different subtypes of RCC. Heatmap representation of the significantly altered pathways for three 
subtypes of RCC compared to normal tissues. X-axis lists the distinct subtype of RCC, and y-axis lists significantly altered pathways. Red and blue 
boxes indicate upregulated and downregulated pathways in different subtypes of RCC compared to normal tissues, respectively. b The Venn 
diagram for the overlap of significantly altered pathways among ccRCC, PRCC and ChRCC​
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achieved (Fig. 3a, Additional file 2: Table S2). There were 
five commonly altered pathways among the three sub-
types of RCCs, including one consistently upregulated 
pathway, three consistently downregulated pathways, 
and one dysregulated pathway (Fig. 3a, Additional file 3: 
Table  S3). Moreover, we observed that over 30% DEGs 
were overlapped among various subtypes of RCC for the 
commonly altered pathway (Additional file 4: Table S4). 
As for the subtype-specific altered pathways, there were 
25 dysregulated pathways for ccRCC (7 upregulated and 
18 downregulated), 11 dysregulated pathways for PRCC 
(3 upregulated and 8 downregulated), and 12 pathways 
for ChRCC (7 upregulated and 5 downregulated) (Addi-
tional file 3: Table S3). To identify distinctive characteris-
tics of each subtype, we further analyzed subtype-specific 
perturbed pathways.

The potential upstream regulators of perturbed pathways
Perturbed pathways involve several differentially 
expressed genes, which work together to activate abnor-
mal biological processes or dysregulate certain biologi-
cal functions. To systematically explore how changes of 
pathway components translated into the abnormal acti-
vation of certain pathways during tumorigenesis, we per-
formed IPA (Qiagen) Upstream Regulator Analysis based 
on DEGs within a pathway and the potential upstream 
regulators for each subtype-specific altered pathway were 
identified (Additional file  5: Table  S5). Note that these 
regulators regulated over 10% DEGs in a certain path-
way. An examples of the correlations between upstream 
regulators with the target gene is shown in Additional 
file  1: Fig. S1. A more comprehensive analysis of the 
potential upstream regulators indicated that some of the 
significantly altered pathways were regulated by several 
recurrent upstream regulators, including TP53, IFNG, 
TGFB1, TNF, TP63 and so on (Fig.  4). Moreover, a few 
of recurrent upstream regulators were shared among dif-
ferent subtypes of RCC. TP63 was an important regula-
tor which affected multiple perturbed pathways among 
three RCC subtypes (regulated 20, 9 and 17% signifi-
cantly altered pathways of ccRCC, PRCC and ChRCC, 
separately) (Fig.  4). TP53 was a predominant regula-
tor and controlled multiple altered pathways in ccRCC 
(regulated 36% significantly altered pathways of ccRCC) 
and PRCC (regulated 9% significantly altered pathways 
of PRCC) subtype, especially for ccRCC. TNF was also 
a predominant regulator and controlled multiple altered 
pathways in PRCC (regulated 9% significantly altered 
pathways of PRCC) and ChRCC (regulated 25% signifi-
cantly altered pathways of ChRCC) subtype, especially 
for ChRCC. In addition, subtype-specific upstream regu-
lators which affected a large number of perturbed path-
ways were also observed. IFNG and TGFB1 for ccRCC 

(both of them regulated 36% significantly altered path-
ways of ccRCC), SPP1, HDAC1 and CUX1 (all of them 
regulated 9% significantly altered pathways of PRCC) for 
PRCC, and STAT3, RB1, NUPR1 and MECP2 (all of them 
regulated 8% significantly altered pathways of ChRCC) 
for ChRCC. Specifically, the recurrent upstream regula-
tors presented distinct expression patterns among dif-
ferent subtypes of RCC (Fig. 5 and Table 2). Comparing 
with normal tissues, TP63 was downregulated in ccRCC, 
PRCC and ChRCC; TP53 was upregulated in ccRCC and 
PRCC; TGFB1 was overexpressed in ccRCC and down-
expressed in ChRCC. IL15 was overexpressed in ccRCC 
and ChRCC; TNF was overexpressed in PRCC and down-
expressed in ChRCC. Taken together, these results sug-
gest that some of the altered pathways were regulated by 
several recurrent upstream regulators which were shared 
among distinct RCC subtypes, while presented different 
expression patterns. In addition, each subtype also has its 
own specific upstream regulators for a large number of 
perturbed pathways. Based on above results, we hypoth-
esized that the various combination of a few common 
upstream regulators as well as a large number of subtype-
specific upstream regulators work together to influence 
the downstream pathway perturbation of each subtype.

Identification of prognostic pathways
Given the roles of activated pathways in cancer pro-
gression, we also investigated whether subtype-specific 
altered pathways were associated with patient survival 
within subtypes. As described in the Methods section, 
the pathway expression of each subtype was evaluated 
based on the expression of DEGs in a certain pathway. 
Then overall survival analysis was performed using the 
previously obtained pathway expression. A total of 23 
pathways were selected as prognostic pathways (P < 0.05). 
ccRCC, PRCC and ChRCC contained 17, 3 and 3 prog-
nostic pathways, respectively (Table  3). Examples of 
prognostic pathways of each subtype are shown in 
Fig.  6. After examining these survival-associated path-
ways, we found that all the prognostic pathways with 
lower expression associating with poor survival were 
observed in ccRCC. Moreover, all these pathways were 
also presenting lower expression compared with nor-
mal tissue, accounting 17 of 18 specific downregulated 
pathways (except for ENDOMETRIAL_CANCER) for 
ccRCC (Table 3). All the prognostic pathways with higher 
expression associating with poor survival were shown 
in PRCC and ChRCC. Particularly, for PRCC, the spli-
ceosome pathway was upregulated, and vascular smooth 
muscle contraction and arrhythmogenic right ventricular 
cardiomyopathy were downregulated. For ChRCC, pro-
tein export was overexpressed, and axon guidance and 
small cell lung cancer were downregulated (Table 3).
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Discussion
RCC consists of three major subtypes with differ-
ent molecular characteristics and biological functions. 
Although lots of studies have addressed the molecular 

basis of various subtypes, the understanding of pathogen-
esis is still incomplete. Given the importance of pathways 
in charactering the biological processes and biological 
functions, we performed a pathway-based analysis to 

Fig. 4  Potential upstream regulators of altered pathways in RCC subtypes. Heatmap representation of the upstream regulators across various RCC 
subtypes. The values in each box indicate the percentage of downstream altered pathways affected by the particular upstream regulator in each 
subtype
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systematically explore the relationships among pathway 
perturbations, upstream regulators and associations with 
clinical outcome.

Based on the pathway-level analysis, pathway per-
turbations of various RCC subtypes have been identi-
fied compared with normal tissues. Specifically, both 
commonly altered pathways and subtype-specific 
altered pathways were obtained. Among the commonly 
altered pathways of RCC, proximal tubule bicarbonate 

reclamation has been highlighted, which is strongly 
associated with proximal tubule structure (proximal 
tubule is the originates of RCC) [19] and is consistent 
with the biological kidney function. In order to iden-
tify the distinctive characteristics of each subtype, we 
focused on the subtype-specific perturbed pathways. 
Among these subtype-specific altered pathways, we 
noted that many of them have been observed by others. 
Zeng et  al. have highlighted that arginine and proline 
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Fig. 5  Heatmap of the expression patterns of the potential upstream regulators among various subtypes
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metabolism, butanoate metabolism, cardiac muscle 
contraction, fatty acid metabolism, selenoamino acid 
metabolism, tight junction were significantly down-
regulated pathways in ccRCC, and antigen processing 
and presentation, chemokine signaling pathway, natu-
ral killer cell mediated cytotoxicity were significantly 
upregulated pathways in ccRCC [20]. Perroud et al. also 
demonstrated that arginine and proline metabolism 
and butanoate metabolism were significantly downreg-
ulated in ccRCC with proteomics and metabolic profil-
ing [21]. Xiao et al. have shown that ubiquitin mediated 
proteolysis was upregulated in ChRCC compared with 
normal tissue [22]. Tan et al. revealed that ERBB sign-
aling pathway was upregulated in ChRCC [23]. All of 
these previous studies are consistent with our analy-
sis results. However, for beta alanine metabolism and 
histidine metabolism pathway, our analysis show that 
the former is significantly disturbed in ccRCC, while 
the later one is significantly disturbed in ChRCC. 
These results partially disagree with recent work from 
Schaeffeler et  al [24]. In their work, they showed that 
both pathways are significantly altered in ccRCC ver-
sus ChRCC [24]. The difference of histidine metabolism 
pathway may be due to the influence from downstream 
such as changing at proteomics levels, which result in 
the alterations of gene expressions that are not always 
consistent with the perturbations in metabolite levels. 
Taken together, we identified the significantly altered 
pathways of various RCC subtypes.

When we further investigate the potential upstream 
regulators of subtype-specific altered pathways, sev-
eral recurrent regulators controlling multiple pathways 
were identified, such as TP63, TP53, TGFB1, IFNG, IL1B 
and TNF. Furthermore, a few of them are shared among 
ccRCC, PRCC and ChRCC, while presenting heteroge-
neous expression patterns among subtypes. In our study, 
TP63 has been observed to play crucial roles in various 
RCC subtype and regulated multiply pathways. Tuna et al. 
have highlighted that TP63 has a close relationship with 
tumor stage, grade and survival time of RCC [25]. Besides, 
we also observed that TP53 as a critical tumor suppres-
sor regulated various pathways in ccRCC and PRCC, and 
is overexpressed within each subtype compared against 
normal tissue. TP53 protein overexpression is particu-
larly prevalent in RCC and is associated with higher tumor 
grades and poor survival [26]. Specifically, TGFB1, IFNG, 
IL1B and TNF are important proinflammatory cytokines, 
and have a close relationship with PD-L1 [27–30]. TGFB1 
is a key cytokine produced by proximal tubular and renal 
cancer cells, and regulates various vital processes and con-
tributes to tumor progression and aggression in ccRCC 
[31, 32] . In our study, we found that TGFB1 was one of the 
most active drivers, regulating about 36% perturbed path-
ways within ccRCC and showing higher expression com-
pared with normal tissue. Ruan et al. have also shown that 
TGFB1 is overexpressed in ccRCC against normal tissue 
[33]. IFNG is a major effector of immune therapy of cancer 
[34], and its high expression is correlated with poor prog-
nosis in ccRCC [35]. In addition, we have also observed 
that IL1B is upregulated in ccRCC. IL1B is produced by 
high malignancy ccRCC cells and its high expression has 
been shown to promote tumor aggressiveness [34, 35]. 
Taken together, we have identified the upstream regulators 
of various RCC subtypes, including both common and sub-
type-specific upstream regulators. Some of the recurrent 
upstream regulators controlling a few of the altered path-
ways were shared among distinct RCC subtypes, which 
presented different expression patterns. The recurrent reg-
ulators as well as subtype-specific regulators work together 
to promote tumor progression. As some of the recurrent 
regulators are also proinflammatory cytokines, blocking 
such kind of immune checkpoints would provide promis-
ing potential for personalized therapeutic intervention.

Since pathway perturbation plays vital roles for cancer 
progression, we also identified prognostically disturbed 

Table 2  The expression patterns of  recurrent upstream 
regulators associated with multiply pathways

Note: Values: log2FoldChange Value for each subtype compared with normal 
tissues; Ns: not significant differentially expressed comparing with normal 
tissues

The potential upstream 
regulators

ccRCC​ PRCC​ ChRCC​

TP63 −0.697 −2.514 −0.588

TP53 0.588 0.895 Ns

TGFB1 1.594 Ns −0.638

IL15 0.9236 Ns 1.300

TNF Ns 0.960 −0.876

IFNG 4.925 Ns Ns

SPP1 Ns 1.563 Ns

STAT3 Ns Ns −1.145

Fig. 6  Identification of prognostic pathways based on pathway expression coupled with survival information for different subtypes of RCC. Left: 
Kaplan–Meier curves for prognostic pathways. Right: Heatmap of prognostic pathway among RCC subtypes and normal tissue based on the 
differentially expressed genes within the pathway. Blue indicates RCC subtype and red indicates normal tissue. a Example of a prognostic pathway 
in ccRCC; b Example of a prognostic pathway in PRCC; c Example of a prognostic pathway in ChRCC​

(See figure on next page.)
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pathways. Among these pathway predictors, we found 
that pathways with lower expression linked to poor out-
come were presented in ccRCC. Meanwhile, we also 
observed that these prognostic pathways exhibited down-
regulation in ccRCC. Thus, we hypothesize that the alter-
ation of upstream regulators induced the downregulation 
of such kind of prognostic pathways, thus contributing 
to the tumorigenesis and progression of ccRCC. Instead, 
pathways with higher expression linked to poor outcome 
were present in PRCC and ChRCC. Among these path-
way predictors, we noticed that spliceosome and protein 
export were upregulated in PRCC and ChRCC compared 
to normal tissue, respectively. Given that frequent splic-
ing and export of protein are necessary events for tumor 
proliferation, we hypothesize that the overexpression 
of spliceosome and protein export functions promote 
tumorigenesis and progression of PRCC and ChRCC, 
respectively. As for vascular smooth muscle contraction 
and arrhythmogenic right ventricular cardiomyopathy 
both of them were downregulated in PRCC compared to 

normal tissue. Considering the highly vascularized nature 
of the kidney tissue, we hypothesize that these perturba-
tions reflect a disruption in the biological and physiologi-
cal functions of the kidney.

Despite the extensive observations and results gener-
ated from our analysis, some limitations of this study 
should be noticed as well. First, the mRNA levels of 
pathway may not represent all the biological func-
tion due to lack of large-scale downstream informa-
tion, such as protein expression levels and modulation 
(for example, acetylation and phosphorylation) and 
metabolite abundance. Secondly, there are complex 
interactions between pathways and they often func-
tion together to contribute tumorigenesis and progres-
sion. Therefore, pathway perturbation analysis based 
on individual pathways may only estimate a portion of 
its activity. Thirdly, while the significantly altered path-
ways of various subtypes have been defined, further 
research is needed to explain the underly mechanistic 
meaning and implications of the altered pathway in the 

Table 3  Prognostic pathways of various subtypes

Pathways Log-rank test p-value Benjamini-
Hochberg FDR 
q-value

Expression status 
associated with poor 
survival

Dysregulation 
against normal 
tissues

Subtype

PEROXISOME 6.30E-11 1.57E-09 Lower expression Downregulated ccRCC​

FATTY_ACID_METABOLISM 3.17E-10 3.16E-09 Lower expression Downregulated ccRCC​

ASCORBATE_AND_ALDARATE_METABOLISM 3.82E-10 3.16E-09 Lower expression Downregulated ccRCC​

TERPENOID_BACKBONE_BIOSYNTHESIS 5.06E-10 3.16E-09 Lower expression Downregulated ccRCC​

BETA_ALANINE_METABOLISM 7.84E-09 3.92E-08 Lower expression Downregulated ccRCC​

DRUG_METABOLISM_CYTOCHROME_P450 3.78E-08 1.57E-07 Lower expression Downregulated ccRCC​

BUTANOATE_METABOLISM 4.82E-08 1.72E-07 Lower expression Downregulated ccRCC​

ARGININE_AND_PROLINE_METABOLISM 7.71E-07 2.41E-06 Lower expression Downregulated ccRCC​

TIGHT_JUNCTION 6.81E-06 1.89E-05 Lower expression Downregulated ccRCC​

SELENOAMINO_ACID_METABOLISM 1.14E-05 2.85E-05 Lower expression Downregulated ccRCC​

METABOLISM_OF_XENOBIOTICS_BY_
CYTOCHROME_P450

3.13E-05 7.11E-05 Lower expression Downregulated ccRCC​

TYROSINE_METABOLISM 7.69E-05 0.000160213 Lower expression Downregulated ccRCC​

PROSTATE_CANCER 0.001937092 0.003725177 Lower expression Downregulated ccRCC​

CARDIAC_MUSCLE_CONTRACTION 0.003658082 0.006532289 Lower expression Downregulated ccRCC​

EPITHELIAL_CELL_SIGNALING_IN_HELICO‑
BACTER_PYLORI_INFECTION

0.010330511 0.017217519 Lower expression Downregulated ccRCC​

FOLATE_BIOSYNTHESIS 0.021334521 0.033335189 Lower expression Downregulated ccRCC​

GLUTATHIONE_METABOLISM 0.035577554 0.052319932 Lower expression Downregulated ccRCC​

SMALL_CELL_LUNG_CANCER 0.014468144 0.102927174 Higher expression Downregulated ChRCC​

AXON_GUIDANCE 0.021736945 0.102927174 Higher expression Downregulated ChRCC​

PROTEIN_EXPORT 0.025731793 0.102927174 Higher expression Upregulated ChRCC​

VASCULAR_SMOOTH_MUSCLE_CONTRAC‑
TION

0.0302394 0.14745595 Higher expression Downregulated PRCC​

ARRHYTHMOGENIC_RIGHT_VENTRICULAR_
CARDIOMYOPATHYARRHYTHMOGENIC_
RIGHT_VENTRICULAR_CARDIOMYOPATHY

0.04406722 0.14745595 Higher expression Downregulated PRCC​

SPLICEOSOME 0.04564237 0.14745595 Higher expression Upregulated PRCC​
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tumorigenic process of RCCs. Last but not least, even 
though the potential upstream regulators of a certain 
pathway have been identified and their roles in various 
subtypes have been confirmed in many recent studies, 
further confirmation of how changes in upstream reg-
ulators affect pathway alterations still requires experi-
mental validation.

Conclusions
In summary, we performed a pathway-based analysis 
among different RCC subtypes, and both the commonly 
altered pathways and subtype-specific altered pathways 
were identified. We found that some of the recurrent 
upstream regulators controlled a few of the altered path-
ways and exhibited different expression patterns among 
various RCC subtypes. Each subtype also has its own 
specific upstream regulators for a large number of per-
turbed pathways. In addition, prognostic pathways were 
also identified. We hypothesized that the dysregulation of 
recurrent upstream regulators as well as subtype-specific 
upstream regulators work together to affect pathway per-
turbations and further influence cancer prognosis among 
various RCC subtypes. Our findings can catalyze a better 
understanding of the mechanisms of various RCC sub-
types and provide promising potential targets for person-
alized therapeutic intervention.
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