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Abstract
Hematopoietic stem and progenitor cells reside within the bone marrow (BM) microenvironment. By a well-balanced
interplay between self-renewal and differentiation, they ensure a lifelong supply of mature blood cells. Physiologically, mul-
tiple different cell types contribute to the regulation of stem and progenitor cells in the BM microenvironment by cell-extrinsic
and cell-intrinsic mechanisms. During the last decades, mesenchymal stromal cells (MSCs) have been identified as one of the
main cellular components of the BM microenvironment holding an indispensable role for normal hematopoiesis. During aging,
MSCs diminish their functional and regenerative capacities and in some cases encounter replicative senescence, promoting
inflammation and cancer progression. It is now evident that alterations in specific stromal cells that comprise the BM
microenvironment can contribute to hematologic malignancies, and there is growing interest regarding the contribution of
MSCs to the pathogenesis of myelodysplastic syndromes (MDSs), a clonal hematological disorder, occurring mostly in the
elderly, characterized by ineffective hematopoiesis and increased tendency to acute myeloid leukemia evolution. The
pathogenesis of MDS has been associated with specific genetic and epigenetic events occurring both in hematopoietic stem
cells (HSCs) and in the whole BM microenvironment with an aberrant cross talk between hematopoietic elements and stromal
compartment. This review highlights the role of MSCs in MDS showing functional and molecular alterations such as altered
cell-cycle regulation with impaired proliferative potential, dysregulated cytokine secretion, and an abnormal gene expression
profile. Here, the current knowledge of impaired functional properties of both aged MSCs and MSCs in MDS have been
described with a special focus on inflammation and senescence induced changes in the BM microenvironment. Furthermore, a
better understanding of aberrant BM microenvironment could improve future potential therapies.
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Introduction

In the bone marrow (BM), the hematopoietic stem cell

(HSC) subset is involved in the production of mature blood

cells throughout an individual’s lifetime1. A small popula-

tion of HSCs reside within the BM niche and are able to self-

renew and differentiate into all blood cell types supplying

the required number of mature hematopoietic elements

throughout an individual’s life span.

HSCs are basically quiescent, but they can reversibly

enter cell-cycle depending on both intrinsic transcriptional

pathways and extrinsic elements such as cell-to-cell interac-

tions and secreted factors1. According to the conventional

hierarchical system, HSCs give rise to both lymphoid and

myeloid progenitors which in turn generate all the mature

immune and blood elements2. However, this model has been

partially reconsidered, as recent studies demonstrated that

the HSC population is not homogeneous and that different

HSC subtypes with distinct lineage differentiation potential

can be identified1.
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More in detail, HSC may present increased propensity to

differentiate toward myeloid (myeloid-biased HSC) or lym-

phoid (lymphoid-biased HSC) lineage.

In healthy conditions, this system is balanced; during

aging, its equilibrium is lost and myelopoiesis improves to

the detriment of lymphopoiesis leading to the decline in the

adaptive immune system with increased strain on the innate

immune system. This phenomenon leads to augmented lev-

els of basal inflammation modifying the entire BM micro-

environment which normally regulates the maintenance of

HSC quiescence and long-term reconstitution capability1.

Therefore, when age-related changes occur, HSCs are

exposed to an aberrant pattern of extrinsic factors such as

oxygen concentration, cytokines, and hormones that can

induce genetic and epigenetic alterations increasing the ten-

dency of hematological malignanciy insurgence3,4.

Studies performed in animal models showed that old HSCs

are located farther from the endosteum with respect to their

younger counterpart and that they are subjected to a higher

oxygen concentration that causes DNA damage which

increases the mutational rate4. Furthermore, old HSCs have

been demonstrated to be less efficient and to have reduced

homing and engraftment capacity. In a microenvironment

where the efficiency of resident cells is compromised and

their overall fitness is reduced, the probability to select a

clone harboring an adaptive oncogenic mutation is increased4.

It is well known that the accumulation of somatic DNA

mutations is a hallmark of aging, particularly in proliferating

tissues, which over time become a mosaic of cells with dif-

ferent genotypes due to the clonal expansion of single de

novo mutations5. Recent human studies have shown that

normal aging is associated with an increased frequency of

somatic mutations in the hematopoietic system, which pro-

vide a competitive growth advantage to the mutant cell and

allow its progressive clonal expansion (clonal hematopoi-

esis)6–10. This acquired clonal mosaicism in the hematopoie-

tic system of healthy individuals predicts an increased risk of

subsequent hematological malignancies6–8, but it has also

been associated with a higher prevalence of vascular com-

plications of diabetes, greater incidence of atherosclerotic

conditions, and increased frequency of cardiovascular

disease-related death11.

According to this hypothesis, the incidence of myeloid

hematological malignancies is increased in the elderly and

seems to be related to the accumulation of mutations in

replicating HSCs12.

Myelodysplastic syndromes (MDSs) are a heterogeneous

group of age-related hematological malignancies affecting

BM HSCs13, characterized by aberrant hematopoiesis, per-

ipheral blood cytopenia, and a tendency for acute myeloid

leukemia (AML) evolution.

In early-stage MDS, enhanced apoptosis, increased pha-

gocytosis, and reduced differentiation of HSCs result in per-

ipheral blood cytopenia. During the progression of the

disease, accumulation of mutations in HSCs leads to a dif-

ferentiative arrest and to an enhanced proliferation of clonal

cells with reduced apoptosis rates adn a tendency for high-

risk/AML evolution14.

Although the most important event in MDS pathology

appears to be a molecular defect in HSCs, evidence suggests

that ineffective hematopoiesis may also result from abnorm-

alities in the BM microenvironment, including hematopoie-

tic–stromal interactions with deregulated production of

secreted factors and altered immune regulation15.

The BM niches are defined as cellular and molecular

microenvironments that cooperate with cell-intrinsic

mech anisms to maintain and regulate stem cell functions16.

The complexity of the niche is attributed to the fact that it

simultaneously contains stem cells, progenitor cells, and

terminally-differentiated cells, such as HSCs, precursors for

osteoclasts, responsible for bone reabsorption, and mesench-

ymal stromal cells (MSCs) that progressively differentiate to

give rise to adipocytes or to mature osteoblasts producing the

BM matrix16. Functional and dynamic relationships among

different cells found in the BM allow autocrine, paracrine, and

endocrine activities via locally produced soluble factors, con-

trolling the activity of the BM microenvironment17,18.

Recently, BM-MSC biology in MDS has been well

investigated, and data obtained from both in vivo and in

vitro models reported altered molecular and functional fea-

tures of these cells, such as altered cell-cycle regulation

with impaired proliferative potential, abnormal cytokine

secretion, and a dysregulated gene expression profile19–21.

Moreover, data from in vivo murine models suggested that

the pathogenesis of MDS involves BM-MSCs demonstrat-

ing the presence of an aberrant cross talk between hemato-

poietic and stromal compartments that could be responsible

for ineffective hematopoiesis22,23. This active relationship

between HSC and BM microenvironment could be con-

trolled by several bioactive factors secreted from the stro-

mal cellular compartment, involving immunomodulatory

effects, maintenance of stemness activity, apoptosis, and

senescence regulation24–29. However, little is known about

the aged MSC secretome and its potential autocrine/para-

crine role.

In this review, typical senescence-associated markers

(SAMs) and impaired functional properties of aged MSCs

have been described, focusing on altered microenvironments

in aging-related pathological conditions, such as MDS. Here,

the changes that occur in the BM microenvironment and in

MSCs will be discussed in more detail, and how these

changes affect HSC fate will be analyzed. A detailed under-

standing of these mechanisms may help to define novel tar-

gets for diagnosis and possibly therapy.

MSCs and Aging-associated Alterations

Human MSCs/stem cells are nonhematopoietic cells capable

of self-renewal and multilineage differentiation into various

tissues of mesodermal origin. Located in the hematopoietic

niche, BM-MSCs represent together with osteoblasts an

essential population that provides to maintain HSC
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homeostasis and contributes to support hematopoiesis. In par-

ticular, MSC and osteoblasts express a number of adhesion

molecules and secreted factors that regulate blood regenera-

tion throughout life by contributing to HSC and progenitor

cell maintenance, self-renewal, and differentiation15.

Aged MSCs generally perform less well than their

younger healthy counterparts,30 and growing evidence

strongly suggests that cellular senescence contributes to

aging and age-related diseases. Senescence is a persistent

cell-cycle arrest that occurs in response to stressful signals

in cells previously able to replicate in order to prevent cancer

insurgence and progression31.

Mitotically competent cells respond to many stressors

adopting a state of permanent cell-cycle arrest by cellular

senescence. These stressors can be represented by oxidative

stress32,33, chemotherapeutic agents34–36, genotoxic stresses/

DNA damage, perturbations to chromatin organization, and

strong mitogenic signals. Senescence cells undergo irreversi-

ble growth arrest but continue to be metabolically active. They

develop a large, flat morphology showing a senescence-

associated b-galactosidase activity30. Additionally, they show

changes in gene expression profile, dysfunctional telomeres,

persistent DNA damages, and a distinct heterochromatin struc-

ture, indicating a specific senescence-associated phenotype37.

Moreover, senescent cells secrete factors that affect vital

and tightly regulated processes, such as cell growth and

migration, tissue architecture, blood vessel formation, and

differentiation and their inappropriate presence can disrupt

tissue structure and function.

Among these secreted factors, there are high levels of

several potent inflammatory cytokines able to affect the

behaviors of neighboring cells38, involving chronic inflam-

mation in the initiation or support of several age-related

diseases. In particular, the strong oxidants produced by some

immune cells can alter and remodel the tissue environment,

promoting cell/tissue dysfunction and stem-cell niche

impairment (Fig. 1). Oxidative damage and the general

inflammatory environment can initiate carcinogenesis and

promote cancer by suppressing immune surveillance and

stimulating malignant phenotypes39–41.

The molecular mechanisms that characterize senescence

are still poorly understood. Two fundamental mechanisms

have been hypothesized to describe the ways this process

may be regulated: replicative senescence might either be the

result of a specific program driven by genes or rather be

evoked by stochastic events42,43.

Analysis of the gene expression profile identified more

than 5,000 genes, including 31 microRNA (miRNA), differ-

entially expressed in senescent MSCs compared to proliferat-

ing cells. These genes affect several cellular functions, including

cell growth and proliferation, cell cycle, cell death, and cellular

movement. Senescent cells showed an enrichment of

Fig. 1. Aged bone marrow microenvironment. Oxidative stress and the increment of reactive oxygen species during aging stimulate the
secretion of inflammatory cytokines by mesenchymal stromal cells (MSCs) through Nuclear factor Kappa-light-chain-enhancer of activated
B cells (NFkB) pathway. Increased levels of inflammatory cytokines lead to infiltration of immune cells like T cells and macrophages.
Altogether, these changes in the composition of bone marrow microenvironment result in an osteoblast-to-adipocyte shift in MSC
differentiation potential which through secreted inflammatory cytokines and adipokines keep maintaining this inflammatory circle.
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upregulated genes in pathways which regulate the cellular mor-

phology, while genes involved in the cell-cycle activities were

mostly downregulated. These categories are perfectly in line

with the reduced proliferation potential and changes in cellular

cytoskeleton observed in senescent cells43. These data

strengthen the hypothesis that senescence follows a fixed pro-

gram where genes involved in the proliferation machinery are

downregulated. On the other hand, these findings do not rule out

the possibility that the activation of a specific “senescence

program” could be the consequence of accumulation of cellular

defects such as oxidative stress, telomere loss, or DNA

damage43.

The factors that might mediate this process are yet

unknown but epigenetic modifications involving DNA

methylation changes are clearly affected by cellular senes-

cence44, in particular along promoter regions, which become

either hypermethylated or hypomethylated44–46. Reports evi-

denced that DNA methylation status changes in genes

related to DNA replication, cell-cycle regulation, DNA

repair, differentiation, and several metabolic processes.

For example, it has been demonstrated that the homeobox

gene distal-less homeobox 5 gene (DLX5), involved in osteo-

blastic differentiation47, becomes hypermethylated upon

long-term culture affecting the differentiation capability of

MSCs48,49. Methylation changes have also been described in

several tumor suppressor genes whose reduced expression

may increase the tendency to malignant transformation50.

Some of these changes can be observed both in MSCs

isolated from old patients and in cells aged in “in vitro mod-

els” and are highly reproducible, suggesting that cellular

senescence represents a specific epigenetic developmental

program rather than an ensemble of stochastic events and

that it can occur physiologically during aging or be the con-

sequence of environmental stressors51.

Many reports investigated the effect of MSC senescence

on migratory ability, differentiation potential, immunomo-

dulation ability, and tumor progression. On one hand, senes-

cent MSCs retained an aptitude to regulate the inflammatory

response on macrophages in vitro and, in part, retained their

ability to inhibit lymphocyte proliferation, but on the other

hand they had a severely reduced migratory capacity in

response to pro-inflammatory signals52. Notably, many of

the senescence-associated secretory phenotype components

oversecreted by senescent MSCs, such as leptin, Tumor

growth factor-alpha (TGF-a), Interleukin 8 (IL-8), eotaxin,

Interferon gamma (IFN-g), Vascular cell adhesion molecule

1 (VCAM1), Interferon beta (IFN-b), Interleukin 4 (IL-4),

and Monocyte chemotactic protein (MCP-1), are involved in

the systemic inflammatory response, decreasing the immune

modulation activity of MSCs and promoting either prolifera-

tion or migration of cancer cells52.

Moreover, the accumulation of oxidative stress and dys-

regulation of key differentiation regulatory factors determine

decreased differentiation potential of senescent MSCs. Age-

related bone loss begins as early as 20 y in young adults, long

before hormonal changes can affect bone strength and

density53. Recent studies have shown that oxidative stress

in aging mice may be an important pathogenic mechanism

that leads to age-related bone loss and reduced bone strength.

In addition, loss or reduced levels of sex hormones in aging

mice accelerate the effects of aging on the bone by decreas-

ing defense against oxidative stress54. Even though it is not

clear whether oxidative stress is the main reason for age-

related bone loss in humans, an increasing number of experi-

mental and epidemiological evidence links osteoporosis to

accumulated reactive oxygen species (ROSs) in the BM55.

These ROSs not only cause tissue damage and cell senescence

but also lead to BM inflammation through redox sensitive

transcriptional factors such as nuclear-k B (NF-kB)56–58.

NF-kB is one of the most important transcription factors that

respond directly to oxidative stress conditions. After receiving

an appropriate signal, NF-kB is activated and translocated to

the nucleus where it stimulates the expression of IL-1, IL-6,

TNF-a, and other cytokines essential to trigger an inflamma-

tory response59. ROS stimulation enhances the signal transduc-

tion pathways for NF-kB activation in the cytoplasm and

translocation to the nucleus56–58. Under physiological condi-

tion, NF-kB activation in response to extracellular signals is

short lived, and the reaction stops quickly once the signal is

removed59,60. However, if the activation of the signal persists,

such as accumulation of ROS in aged BM, the effect of NF-kB

signal becomes persistent thus leading to elevated levels of pro-

inflammatory cytokines in the BM. Pro-inflammatory cyto-

kines such as TNF-a, IL-6, and MCP-1 promote a cascade of

events that result in the recruitment of inflammatory T lym-

phocyte subsets, mast cells, monocytes, and macrophages

from the blood61. These infiltrated immune cells in BM

secrete more pro-inflammatory factors and together contrib-

ute to an inflammatory microenvironment. It is known that

pro-inflammatory cytokines such as TNF-a and IL-1 also

stimulate ROS generation through mitochondrial and

NADH system62. Therefore, oxidative stress and inflamma-

tion together promote a positive feedback loop that charac-

terizes the pathological microenvironment of aged BM63.

In conclusion, the knowledge of the physiological and

pathological factors that influence the MSC activity is of

fundamental importance to better understand the microenvir-

onment key role in pathological conditions such as in MDS.

Moreover, aging and cellular senescence are associated

with inflammation and the increased frequency of cancer

progression; the analysis of the microenvironment secre-

tome, mediating senescence, and the mechanisms that drive

toward MSC growth arrest are important to develop efficient

therapeutic approaches that can preserve a functional stem-

cell pool and microenvironment.

Phenotypic and Functional Alterations
of MSC-MDS

Although a universal senescence marker has not yet been

defined, MSC-MDS in vitro display several features which

suggest that these cells are encountering senescence64. These
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cells have been described as large, flat, granular, and disor-

ganized with impaired proliferative potential and increased

b-galactosidase expression19,21,65,66.

All these features are considered typical SAMs; therefore,

many authors improved the characterization of this process,

exploring more in detail the molecular and functional

mechanisms behind induced cellular senescence (Table 1).

The morphology of MSC-MDS has been studied through

an immunofluorescence assay, which describes the actin

architecture within the cells. Cells in culture displayed a

deformed cytoskeleton, an increased size, numerous and lon-

ger podia, and disordered distribution of F-actin, coherently

with a senescent cellular morphology68.

Beside altered morphology, MSC-MDS presented an

impaired proliferative potential, and it was studied at both

functional and molecular levels. In particular, Cyclin depen-

dent kinase inhibitor 2B (CDKN2B), a cyclin-dependent

kinase inhibitor, that if overexpressed leads to premature

cell-cycle arrest, resulted in significantly upregulated in

MSC-MDS21. This gene has also been evaluated HSC-

MDS, demonstrating that its hypermethylation could be

associated with a poor patient prognosis76–78. These data

suggest that HSC-MDSs are able to modify their methylation

pattern to escape the CDKN2B-mediated cell-cycle arrest,

evading the inhibitory signals from the BM microenviron-

ment and taking advantage of healthy HSCs79.

Interestingly, in patients in complete hematological

remission after azacitidine treatment, MSCs in culture

recover a proliferative potential similar to donors together

with a downregulation of CDKN2B67. A specific CDKN2B-

mediated cell-cycle modulation in an age-related disease

such as MDS is not surprising; indeed, this gene regulates

several tumor suppressor pathways and influences key phy-

siological processes such as replicative senescence,

apoptosis, and stem-cell self-renewal80. The proliferative

potential of cells is normally associated with telomere

length, and their shortening as the consequence of recurring

cellular divisions leads to a gradual loss of DNA at the end of

chromosomes81,82. This aspect has been analyzed in MDS

and it has been shown that MSC-MDS presented signifi-

cantly shortened telomeres in young donors, but no signifi-

cant differences were found in old donors21. However, some

authors reported that telomere length was even increased in

patients69. These data suggest that MSC-MDS before

encountering telomere erosion caused by cumulative cellular

replications is subjected to a premature cellular senescence

that is presumably environmentally induced.

As part of the hematopoietic niche, MSCs in healthy con-

ditions secrete factors that protect, renew, and maintain adult

stem cells. Yet in hematological malignancies, the cytokine

secretion pattern is dysregulated, and there is evidence of

ongoing inflammatory processes that correlate with high

concentration of TNF-a, IFN-g, IL-1a, IL-6, IL-17, and

TGF-b in peripheral blood of patients83–86.

The establishment of an inflammatory microenvironment

may affect resident stem cells modifying their gene expres-

sion profile and inducing genomic and epigenetic alterations

involved in malignant transformation87–91. TGF-b, for

example, regulates cellular proliferation and differentiation

and affects both early and late stages of hematopoiesis exert-

ing suppressive effects on both erythroid and myeloid cells.

TGF-b pathway is constitutively activated in CD34þ cells of

MDS patients together with the activation of the downstream

mediator Smad2, an important pathway inhibitor in MDS.

Interestingly, it has been shown that the suppression of TGF-

b signaling is sufficient to improve hematopoiesis in vitro

and in vivo in a murine model of BM failure demonstrating a

relevant role of this cytokine in hematological disorders92.

Table 1. MSC-MDS alterations.a

Molecular and Functional
Features Model References

Global hypermethylation status Primary in vitro cells 67

Increased b galactosidase expression Primary in vitro cells 19,21,65,66

Reduced hematopoietic supporting ability Primary in vitro cells 19,21

Reduced proliferative potential Primary in vitro cells 19,21,65,66

Deformed cytoskeleton and disordered distribution of F-actin Primary in vitro cells 68

Altered morphology Primary in vitro cells 68

CDKN2B overexpression Primary in vitro cells 21

Normal/increased telomere length Primary in vitro cells 21,69

CXCL12 upregulation Primary in vitro cells 14,70

Interleukin 6 (IL6) upregulation Primary in vitro cells 71

Secretion of damage-associated molecular pattern molecules In vivo mouse model 22

p53 Tumor suppressor pathway activation Primary in vitro cells/in vivo mouse model 68

Dysregulated miRNA content in extracellular vesicles Primary in vitro cells 72

Altered expression of endonucleases regulating miRNA biogenesis Primary in vitro cells/in vivo mouse model 72–74

Altered transcriptome Primary in vitro cells 75

LIF upregulation Primary in vitro cells 75

aThis table summarizes the alterations revealed in MSC-MDS and the model in which they have been studied. MSC ¼ mesenchymal stromal cells; MDS ¼
myelodysplastic syndromes; LIF ¼ leukemia inhibitory factor.
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CXCL12 is another chemokine produced by MSCs and

by other cells of the niche and it is involved in HSC homing

and maintenance. This regulation is mediated via C-X-C

chemokine receptor type 4 (CXCR4) binding, a receptor

expressed on the surface of both leukemic and healthy

HSCs. In pathological condition, the C-X-C motif chemo-

kine 12 (CXCL12) expression can be higher in HSC-MDS in

healthy subjects, and its interaction with CXCR4 keeps cells

anchored inside the niche furnishing them protection and

support14,70. In vitro studies also demonstrated that pediatric

MSC-MDS secretes higher levels of IL-6 when compared

with control71. IL-6 has been associated with MSC senes-

cence and chronic inflammation; its overproduction may

reduce the quiescence of HSCs and may promote their pro-

liferation, depleting the marrow of hematopoietic progeni-

tors. While in healthy condition, this results in an exhaustion

of the normal hematopoietic system; in hematological

malignancies, elevated concentration of IL-6 may lead to

increased proliferation of leukemic cells93.

These data demonstrate that the hematopoietic niche in

hematological malignancies is modified to the advantage of

leukemic stem cells that are continuously fed and protected

by the neighboring stromal cells; indeed, several preclinical

studies are directed toward the mobilization of leukemic

stem cells from their protective niche94.

The role of inflammation was also evaluated by studying

an MDS murine model, in which a modification of MSCs

was sufficient to establish a chronic pro-inflammatory BM

microenvironment22. It has been shown that some inflamma-

tory signals derive specifically from the mesenchymal com-

partment and may create a premalignant microenvironment

increasing mutation rate in HSC and facilitating disease

initiation. In more detail, the damage associated molecular

pattern molecules, S100A8 and S100A9, secreted by altered

MSCs drive mitochondrial dysfunction, oxidative stress, and

DNA damage response in HSC, predisposing the BM to

leukemic evolution. Coherently with these data, an activa-

tion of p53 tumor suppressor pathway, consequently to DNA

damage in MSC-MDS, has been reported, from both in vitro

and in vivo models68.

Beside cytokines, miRNA and extracellular vesicles

(EVs) are topics of increasing interest among secreted fac-

tors for their capacity to influence the neighboring cellular

population both at functional and molecular levels. EVs can

be classified for size and origin. They can be separated in

exosomes, small vesicles (40 to 100 nm) released as the

consequence of multivesicular bodies fusion with plasma

membrane, and microvesicles, bigger in size (50 to 1,000

nm) and secreted by cells as plasma membrane blebs95. In

healthy conditions, a therapeutic potential of MSC-derived

EVs has been widely demonstrated in both in vitro and in

vivo models96,97. Data obtained from murine models showed

that MSC-EVs can mitigate radiation injury in the BM,

improving HSC proliferation and differentiation and accel-

erating their engraftment. This recovery may be exerted by

proteins, nucleic acids, lipids, and metabolites contained in

EV, but the basic biological mechanisms of their positive

paracrine effect still need to be elucidated.

On the other side, this supporting capacity of MSC secre-

tome may have a negative consequence in pathological con-

dition; indeed, it was demonstrated that EV isolated from a

serum deprived culture of MSC carry antiapoptotic, prolif-

erative proteins, and tumor sustaining miRNA98. Accord-

ingly, EV isolated from primary cultures of MSC-MDS

has been demonstrated to harbor 21 miRNA upregulated in

donor, and it was shown that these miRNA can be incorpo-

rated within HSC in vitro72. This mechanism produces an

upregulation of miRNA 10a and miRNA 15a in the target

cells that in turn lead to p53 gene overexpression73. This

dysregulation in the miRNA content is related to the altered

expression of endonucleases DICER and DROSHA. These

genes encode for 2 endonuclease that regulate miRNA bio-

genesis, and it has been shown that a deletion of the RNase III

Dicer1 in mesenchymal osteolineage cells is sufficient to pro-

duce a murine model with altered MSC osteogenic differen-

tiation capability, altered texture of the bone matrix, and a

significantly decreased number of osteoblasts74.

This animal model, even without any specific genetic

alteration of HSCs, presented peripheral cytopenia with dys-

granulopoiesis and marked dysplasia both in peripheral

blood and in the BM consistently with MDS diagnosis.

These data strongly suggested that an alteration in HSCs

compartment might be sufficient to initiate the pathogenesis

of MDS. Transplantation experiments performed in this

work further confirmed the involvement of microenviron-

ment in the disease insurgence; indeed, when leukemic

HSCs from mutant mice was transplanted into wild-type

animals, no signs of disease were assessed, but when wild-

type HSCs were transplanted in lethally irradiated mutants,

they developed leukopenia, anemia, and thrombocytopenia.

These results show that hematopoietic progenitor cells them-

selves are not able to trigger the MDS pathogenesis, but they

likely require a permissive microenvironment that supplies

the needs for malignant HSC clones to propagate.

Consistent with this hypothesis, several attempts to pro-

pagate human MDS-HSC in animals to develop xenograft

models just transplanting malignant hematopoietic progeni-

tor clones did not yield satisfactory results99–101.

Recently, another work of Medyouf and colleagues

demonstrated, after having performed transplantation

experiments, that the presence of MSC-MDSs improves the

engraftment of HSC-MDSs in mice, confirming the neces-

sity of a favorable microenvironment for the expansion of

the disease75. However, it has also been shown that the

injected MSCs remained in the recipient mice only 4 wks

and localized in the injection site, contrary to HSC-MDS,

which was able to expand and establish the disease also in

noninjected bones. This observation (further confirmed by

an in vitro coculture experiment performed by the same

author) suggests that some HSC-MDSs after initial engraft-

ment could be able to reprogram the BM niche and modify

the mesenchymal stromal compartment to reconstruct a
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permissive microenvironment suitable for disease progres-

sion102. This hypothesis was further confirmed studying

healthy MSCs after the exposure to HSC-MDS cells. It has

been observed that after coculture with malignant HSCs,

MSCs increased the expression of leukemia inhibitory fac-

tor; and the analysis of primary MSC-MDS transcriptome

revealed that 1,008 genes were differentially expressed in

donors and presented a significant enrichment in genes

involved in response to an inflammatory environment.

This model really stresses the importance of mesenchymal

compartment in MDS but raises the question of which is the

first responsible of the normal cross-talk disruption among

the cells of the niche. Studies of MSC isolated from patients

after therapeutic treatment revealed that cells recover their

physiological properties in patients who reached complete

hematological remission.

In more detail, the hematopoietic supporting capacity, the

proliferation capability, and gene expression of cells seem to

be restored to the level of healthy MCSs67,103.

These data, assumed that the effect of the therapy is

directed only toward HSC compartment, suggest that leuke-

mic cells are able to modify the BM microenvironment tak-

ing advantage on normal HSC; however, it cannot be

excluded that a pharmacological effect is exerted also on

MSCs. It has been shown that the methylation levels of

MSC-MDSs decrease after treatment with demethylating

agents67; therefore, the improved outcome observed in

patients could be the consequence of a therapeutical synergic

effect on both stromal compartment and HSCs.

Balderman and colleagues showed how in a murine model

of MDS the hematopoietic function is improved normalizing

the microenvironment23. They observed that transgenic mice

beside defect of HSCs presented increased numbers of non-

functional MSCs and higher level of CCL3 and Vascular

endothelial growth factor (VEGF) similarly to what was

observed in human MDSs104,105. In addition, the exposure

of HSC-MDS to a wild-type microenvironment improved the

hematopoietic function in wild-type animals, demonstrating

that a normal microenvironment can reduce the negative

effect of pathological cells. On the other hand, if the MDS

engraftment is high, the exposure to a healthy microenviron-

ment is not sufficient to improve cytopenias, but it is more

likely that leukemic cells affect the BM, which becomes sup-

portive for leukemic HSC more than for healthy HSCs.

Such information becomes critical in consideration of

future therapeutic approaches able to target both HSC and

BM microenvironments. Several preclinical and early phase

studies are directed toward the inhibition of CXCR4/

CXCL12 axis between stroma and AML cells to mobilize

leukemic cells out of their protective niche depriving the

malignant clones from the MSC-derived survival signals94.

In conclusion, all data coming from in vitro and in vivo

studies revealed that MDS pathogenesis results from a com-

plex interaction between stromal and hematopoietic ele-

ments that together are able to instruct and modify their

surrounding microenvironment. It is therefore assumable

that, even if further studies are required, new strategies that

develop synergic therapies directed both toward stromal and

hematopoietic compartments are needed.
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95. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and

intercellular interactions of exosomes and other extracellular

vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289.
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