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Epigenetic reprogramming is an independent mode of gene expression that often involves
changes in the transcription and chromatin structure due to tumor initiation and
development. In this study, we developed a specifically modified peptide array and
searched for a recognized epigenetic reader. Our results demonstrated that BRD4 is
not only an acetylation reader but of propionylation as well. We also studied the
quantitative binding affinities between modified peptides and epigenetic regulators by
isothermal titration calorimetry (ITC). Furthermore, we introduced the Fgfr2-S252W
transgenic mouse model to confirm that this acetylation is associated with the
activation of c-Myc and drives tumor formation. Targeted disruption of BRD4 in Fgfr2-
S252W mouse tumor cells also confirmed that BRD4 is a key regulator of histone 3
acetylation. Finally, we developed a tumor slice culture system and demonstrated the
synergy between immune checkpoint blockade and targeted therapy in triple-negative
breast cancer (TNBC). These data extend our understanding of epigenetic
reprogramming and epigenetics-based therapies.

Keywords: epigenetic, BRD4, FGFR2, TNBC, posttranslational modifications, immunotherapy
INTRODUCTION

Posttranslational modifications (PTMs) of histone proteins are key reactions in the regulation of the
epigenetic machinery. They contribute to changing the structure and dynamics of chromatin and,
hence, control gene transcription initiation and crucial events such as DNA replication,
recombination, and repair (1–5). Among these, the acetylation of lysine residues is by far the
most abundant and is known to be involved in regulating many important cellular functions,
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making the PTMs highly similar to protein phosphorylation
regarding its prevalence and importance (6, 7). Other
mod ifi ca t i on s t yp i c a l l y in c lude me thy l a t i on (8 ) ,
phosphorylation, ribosylation, biotinylation, citrullination, and
SUMOylation (9–11), as well as the more recently discovered
crotonylation, propionylation, butyrylation (12), and
succinylation (13). Histone acetylation is also known to induce
the recruitment of transcription factors and chromatin
remodeling factors, leading to an enhanced transcriptional
activity (14). These factors are usually recruited by an
epigenetic reader domain in the proteins, known as
bromodomain (BRD), which specifically recognizes N-
acetylated lysine residues (15). Currently, BRDs are the only
known interaction modules that specifically recognize the N-
acetylation of lysine residues (16, 17). However, the ability of
BRDs to recognize other modifications of lysine residues,
especially those discovered most recently, has not been
thoroughly studied so far. Flynn et al. reported on the ability
of certain human BRDs to recognize the butyrylation and
crotonylation modifications of histones (18). Here, we intend
to further explore the affinity of BRDs to the recently discovered
PTMs of lysine in histones by using peptide arrays as a tool to
study peptide–protein interactions. We explore five
modifications of histone 3 (H3) proteins, namely, acetylation,
propionylation, butyrylation, crotonylation, and succinylation, at
two different lysine positions (H3K9 and H3K56) and report on
their recognition by two bromodomains: BRD4 (1) and BRD4
(2). Our approach, depicted in Figure 1, consists in immobilizing
previously modified peptide sequences on a glass surface,
incubating them with fluorescently labeled BRD4 (1) and
BRD4 (2), and profiling the binding affinity via fluorescence
measurement. Finally, we validate these findings using the Fgfr2-
S252W triple-negative breast cancer (TNBC) mouse model.
Frontiers in Immunology | www.frontiersin.org 2
MATERIAL AND METHODS

Preparing Functionalization Avidin
Glass Slides
Firstly, an amine slide was prepared. The glass slides were
immersed in the silane solution for at least 1 h with constant
stirring. Secondly, the amine slides were functionalized with
carboxylic acid using succinic anhydride. Thirdly, the
carboxylic-functionalized slides were modified by N-
hydroxysuccinimide (NHS), which were called NHS slides.
Finally, the NHS slides were reacted with avidin to obtain
avidin slides.
Peptide Synthesis and Identification
The Liberty CEM Peptide Synthesizer was introduced to
synthesize a range of peptides. The peptides were purified via
semi-preparative HPLC and their characteristics were identified
using the Applied Biosystems 4800 Plus MALDI-TOF/TOF
(matrix-assisted laser desorption/ionization–tandem time of
flight) analyzer.

Protein Expression
Histidine (6×)-tagged BRD4A-c002 (1) and BRD4A-c011 (2)
bromodomain expression constructs were used in this study. All
constructs were transformed into competent Escherichia coli
BL21 cells. Protein expression was induced with 0.1 mM IPTG
overnight at room temperature. Thereafter, purification of the
protein was performed with Ni-NTA agarose beads (Qiagen,
Hilden, Germany) according to the manufacturer’s protocols.
The protein concentration was measured using the BCA Protein
Assay Kit (#23225). The proteins were labeled with Cy3-NHS
ester. The purity of the protein was determined with 12% SDS-
FIGURE 1 | Overall screening workflow of the different acylated histone peptides by bromodomains.
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PAGE gel, followed by both in-gel fluorescence scanning and
Coomassie staining.

Microarray Preparation
For the peptide immobilization experiment, the concentrations
of peptides in the spotting buffer (phosphate-buffered saline/
dimethyl sulfoxide, PBS/DMSO = 1:1) were prepared in 384 wells
before the spotting process. Proteins were prepared in PBS buffer
before the spotting process. The spotting process was performed
using an ESI SMA arrayer (Ontario, Canada), followed by
incubation in a humidity chamber with different periods. After
the incubation process, the PBST buffer was used to wash the
slices, rinsed with deionized water, and dried with nitrogen. The
slides were finally scanned with a microarray scanner.

Isothermal Titration Calorimetry Assay
The Malvern Panalytical Ltd. microcalorimeter was used to
determine the binding affinity of BRD4 to different peptides.
There are several steps to this assay, including protein and
peptide preparation, instrument washing, sample loading,
titration, and data analysis.

Animal Experiments
All animal experiments were approved by the University of
Macau Animal Ethics Committee (under the protocol
UMARE-015-2019). The generation of Fgfr2-S252W mice was
described in a previous work (19). Transgenic mice were
continually checked to accelerate the growth of mammary
tumors. Tumor samples were cut using sharp blades into small
pieces of about 0.1–0.3 cm in diameter and processed three ways,
as follows: 1) two larger pieces were fixed in 10% formalin and
processed for histology and immunohistochemistry (IHC)
staining with antibodies; 2) three pieces were immediately
frozen in liquid nitrogen and used for subsequent DNA, RNA,
and protein isolation; and 3) all the remaining pieces were placed
in a freezing medium [10% DMSO/25% serum/65% Dulbecco’s
modified Eagle’s medium (DMEM)], slowly frozen to −80°C, and
transferred into liquid nitrogen a few days later. Our data
indicated that the tumor tissues were well preserved under this
condition and can be used for initiating tissue culture and
xenograft tumors in nude mice at a later time. Primary FGFR2
tumor cells were derived from the Fgfr2-S252W mouse model
using a standard procedure and maintained in F-medium.

Generation of Lentivirus BRD4 and
Infection of Fgfr2-S252W Tumor Cells
Unique sgBRD4 sequences were individually cloned into the
lentil-CRISPR v2 vector (Addgene plasmid #52961) with a
puromycin resistance marker, and are listed in Table S3. For
BRD4 lentivirus production, 9µg DNA(plasmid: pCMVR8.2
(addgene plasmid #12263): pMD2-VSVG =4: 3: 2) was used
for transfection per 10-cm dish, and the virus was filtered with a
0.45-µm filter 48 h later. Then, Fgfr2-S252W mammary tumor
cells were infected with the virus 24 h later. Infected cells were
selected after 3 days with 4 µg/ml puromycin (Invitrogen,
Frontiers in Immunology | www.frontiersin.org 3
Carlsbad, CA, USA). After selection, the cells were switched to
F-medium for the subsequent experiment.

Tumor Slice Culture
A tumor slice culture method was performed in tumors
developed from the Fgfr2-S252W mouse model, as previously
described. In brief, the tumors were collected and extracted by
punch biopsy. Thick tissue slices (250 mm) were obtained with a
vibratome (Leica VT1200 S). Then, the tissues were placed on
inserts with a culture medium. After 4–6 days, the tissues were
stained with MTT and the slice viability was measured.

Western Blot Analysis
Total proteins of tumors or cells were extracted using RIPA
buffer with phosphatase and a protease inhibitor. Following a
previously described protocol, immunoblotting was carried out
using ChemiDocTM with corresponding antibodies. The
antibodies used for IHC and Western blot are listed in
Supplementary Table S2.

Real-Time PCR
The total RNAs of tumors or cells were extracted using TRIzol®

Reagent, then reversed to complementary DNA (cDNA) (kit
#205313; Qiagen). Then, the transcriptional levels of the target
genes were examined with specific primers using the
QuantStudio™ 7 Flex Real-Time PCR System (Thermo Fisher
Scientific, Waltham, MA, USA). Gene-specific data were
normalized to 18S expression. The primers are listed in Table S3.

Statistical Analysis
All values were presented as the mean ± SEM of individual samples.
The samples were analyzed using unpaired two‐tailed t‐tests. A p <
0.05 was considered statistically significant. All analyses were
conducted in GraphPad Prism 7 (GraphPad Software, La Jolla,
CA, USA).
RESULTS

Synthesis and Preparation of Histone 3
Modification Peptides
Firstly, the fully protected peptide sequences Biotin-GGIRRYQK
(ivDde)STELL (H3K56) and Biotin-GGKQTARK(ivDde)
STGGK (H3K9) were synthesized via conventional solid-phase
chemistry using Fmoc-based synthesis (Figure 2). In both
sequences, the ivDde group of lysine was then selectively
removed on resin using 4% hydrazine in dimethylformamide
(DMF). Subsequent modifications of the free lysine residue were
carried out using 10% of the appropriate anhydride in toluene.
The final biotin-containing peptides were then cleaved from the
resin with concomitant removal of the protecting groups under
optimized trifluoroacetic acid (TFA) cleavage conditions. In
total, 12 modified peptides of H3 were synthesized in this
study. Applied Biosystems 4800 Plus MALDI-TOF/TOF
analysis was used to confirm the identity of the final peptides
(Supplementary Figure S1 and Table S1).
April 2022 | Volume 13 | Article 861221

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lei et al. FGFR2-BRD4 Axis in TNBC
Histone 3 Modification Peptide
Recognition of the Human Bromodomain
by Peptide Array
The peptides were then immobilized on a glass surface via the
use of a highly chemoselective avidin–biotin ligation reaction. In
this concept, an avidin-functionalized glass slide was quickly
produced through some sequential chemical modification steps
(Figure 3A). The peptides were then site-specifically
immobilized onto the functionalized surface in 12 distinct
subgrids. BRD4 (1) and BRD4 (2) were purified using Ni-NTA
agarose beads (Qiagen) for purification (20). The proteins were
labeled with Cy3-NHS and characterized using SDS-PAGE and
Coomassie gel (Figure 3B). Each subgrid was then incubated
with fluorescent-labeled BRD4 (1) and BRD4 (2) for half an
hour. Then, the slide was washed copiously using 0.5% PBST
buffer and scanned using a microarray scanner (Figure 3C).
Frontiers in Immunology | www.frontiersin.org 4
Based on the fluorescent intensity, we concluded that BRD4
could bind to various H3-modified peptides.

Analysis of Histone3 Modification Peptide
Binding Affinity to BRD4 by Isothermal
Titration Calorimetry
The profiling experiment revealed several potent peptide binders
for H3K56, wi th two pept ide sequences , namely ,
GGIRRYQKacSTELL and GGIRRYQKprSTELL, showing
particular affinity to both BRD4 (1) and BRD4 (2)
(Figures 3C, D). A similar binding profile was observed with
H3K9, but with fluorescence intensity lower than that for H3K56
(Supplementary Figure S2). In order to compare these results
with better accuracy, the quantitative binding affinities of the
H3K56 peptides in solution were measured by isothermal
titration calorimetry (ITC). The ITC data for the two binding
FIGURE 2 | Synthetic pathways for the preparation of modification peptides. (a) With 20% piperidine/DMF. (b) Fmoc amino acid, HBTU, HOBT, and DIPEA.
(c) With 4% hydrazine and DMF. (d) With 10% acetic anhydride and toluene. (e) With 10% propionic anhydride and toluene. (f) With 10% butyric anhydride and
toluene. (g) With 10% crotonic anhydride and toluene. (h) With 10% succinic anhydride and DMF. (i) With 95% TFA, 2.5% TIS, and 2.5% H2O. DIPEA, N,N-
diisopropylethylamine; DMF, N,N-dimethylformamide; Fmoc, fluorenylmethyl carbamate; Boc, tert-butyloxycarbonyl; HOBT, hydroxybenzotriazole; HBTU, N,N,N9,N9-
tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate; TFA, trifluoroacetic acid; TIS, triisopropylsilane.
April 2022 | Volume 13 | Article 861221
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peptides, KAc- and KPr-modified H3K56, are shown in Figure 4.
The dissociation constants (Kd) for the acetylated peptide
H3K56Ac were found to be 23.0 and 49.2 µM for binding to
BRD4 (1) and BRD4 (2), respectively, which were similar to
values previously reported in the literature (21). The
propionylated sequence H3K56Pr showed an approximately
10-fold increase in binding affinity to BRD4 (1) and BRD4 (2)
(Kd = 44.8 and 21.9 µM, respectively) compared with the
previously reported Kd values for propionylated lysine peptides
derived from histone H3 (13). Altogether, our peptide array
experiments and ITC studies showed that BRD4 binds not only
to N-acetylated lysine residues, as previously reported, but also to
propionylated lysine residues. These results together
Frontiers in Immunology | www.frontiersin.org 5
demonstrated that peptide array technology is a powerful tool
for studying peptide–protein interactions.

BRD4 Regulates Histone 3 Modification in
the Fgfr2-S252W Triple-Negative Breast
Cancer Mouse Model
Recently, we have found that the activation of FGFR2 induces
TNBC with multiple signaling, such as cancer stem cells (CSCs),
epithelial–mesenchymal transition (EMT), and the tumor
microenvironment (TME) (19). Thus, we examined whether
BRD4 is involved in regulating the histone acetyltransferase
(HAT) activity inactivation in the Fgfr2-S252W TNBC mouse
model. We found that BRD4 was highly expressed in mouse
A

C D

B

FIGURE 3 | (A) Peptides with N-terminal biotin immobilized on avidin-functionalized slides. (B) Fluorescent and Coomassie gel images of representative fluorescent-
labeled bromodomains (BRDs). (C) Microarray images of fluorescent-labeled BRD4 (1) binding to a small peptide library based on H3K56 or H3K9 modifications.
(D) Microarray images of fluorescent-labeled BRD4 (2) binding to a small peptide library based on H3K56 or H3K9 modifications.
April 2022 | Volume 13 | Article 861221

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lei et al. FGFR2-BRD4 Axis in TNBC
tumors by multiple methods, such as RT-PCR (Figure 5A) and
immunoblot (Figure 5C). Subsequently, we used specific H3K9ac
and H3k56ac antibodies to examine whether BRD4 regulates the
acetylation of the lysine residues in H3 in Fgfr2-S252W tumors.
Our data showed that BRD4 was positively correlated with
acetylated H3K9, and this acetylated residue was associated with
open chromatin and active c-Myc (Figures 5B, D). The knockout
of BRD4 resulted in the suppression of H3K9ac acetylation activity
(Figure 5D). Taking all these data together, we believe that FGFR2
activates the MAPK signaling pathway and regulates BRD4 and c-
Myc expressions (Figure 5C). These data suggest that BRD4 is a
potential target gene for cancer treatment. Afterward, we
investigated whether BRD4 degradation is a targeted strategy for
Fgfr-S252Wmammary tumors. We obtained an Fgfr2-S252W cell
line from the mouse model. The cells with Fgfr2-S252W were not
very sensitive to the BRD4 inhibitor (BRD4i) JQ1 when compared
to their response to the fibroblast growth receptor (FGFR)
inhibitor (FGFRi) BGJ398 under the cell culture conditions
(Figure 5E). Therefore, we combined FGFRi and BRD4i; the
Frontiers in Immunology | www.frontiersin.org 6
data showed that low concentrations of FGFRi (1 mM) and
BRD4i (1 mM) had synergistic effects. However, Fgfr2-S252W
tumor cells still showed resistance to BRD4i. Previous studies have
shown that an elevated level of programmed death-ligand 1 (PD-
L1) confers resistance to FGFRi. Thus, we next examined whether
PD-L1 would induce BED4i resistance. We examined the levels
of PD-L1 in various treatment groups (Figure 5F). We found that
PD-L1 was significantly decreased only when FGFRi (BGJ398) was
combined with a high concentration of JQ1 (5 mM). These
findings suggest that PD-L1 promotes resistance to targeted
therapy. Thus, we examined the expressions of inflammatory
genes such as IL-1a, IL-1b, and IL-6. The data indicated that
these pro-inflammatory mediators could induce the expressions of
chemokines and the recruitment of macrophages (F4/80, CD206)
to produce C–C motif chemokine ligand 2 (CCL2) or CCL5
(Figure 5G). Fgfr2 activation created an immunosuppressive
environment and enhanced tumor progression. Thus,
combination strategies using inhibitors targeting both FGF/
FGFR and the bromodomain and extraterminal (BET) proteins
BA

DC

FIGURE 4 | (A) Isothermal titration calorimetry (ITC) data of the acetylated histone peptide H3K56 (Ac) binding to BRD4 (1). (B) ITC data of the propionylated
histone peptide H3K56 (Pr) binding to BRD4 (1). (C) ITC data of the acetylated histone peptide H3k56 (Ac) binding to BRD4 (2). (D) ITC data of the propionylated
histone peptide H3k56 (Pr) binding to BRD4 (2).
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with immune checkpoint blockade (ICB) may provide a useful
approach for cancer treatment.

Tumor Slice Culture System for the
Synergy Between Immune Checkpoint
Blockade and Targeted Therapy
It is important to establish quick and reliable models to assess
targeted therapy or the combinations of immunotherapy for
clinical therapeutics. To this end, we introduced the tumor slice
culture platform to overcome PD-L1-mediated resistance due to
this platform being able to maintain the activity of immune cells
under the tissue culture condition (19). Firstly, equal-sized slices
of mammary tumors were prepared from Fgfr2-S252W mice
(Figure 6A) using a Biopunch (#15111-50). Thereafter, the slices
were placed into a tissue slice culture insert with F-medium and
treated with various drugs or in combination with ICB targeting
tumor cells. The slices were then stained with MTT for 4–6 days
after the culture. The data revealed that targeted therapy
combined with ICB significantly increased the killing efficacy
(Figure 6B). The data were also confirmed by colorimetric
detection (Figure 6C). In addition, we performed IHC staining
against BRD4, c-myc, IFN-g, Ki67, and PD-L1 to explore the
Frontiers in Immunology | www.frontiersin.org 7
mechanisms underlying the synergistic actions between FGFR/
BRD4 inhibitors and immunotherapy. As shown in Figure 6D,
the levels of BRD4, c-Myc, PD-L1, and Ki67 significantly
decreased, while the level of INF-g markedly increased in the
anti-programmed cell death 1 (PD-1)/PD-L1 group compared
with the controls. Therefore, the tumor slice culture system can
be used to quickly evaluate the efficacy and provide a versatile
platform for immuno-oncology and drug discovery.

In summary, we have used a peptide array to demonstrate that
BRD4 can recognize not only acetylated lysine residues of H3 but
also propionylated lysine residues.We have successfully developed a
fast and selective strategy to profile the binding affinity of lysine-
modified peptides and proved that the immobilization method
could serve as a powerful tool for mapping protein/substrate
specificity. Furthermore, we validated this finding in the TNBC
mouse model. The knockout study of BRD4 in Fgfr2-S252Wmouse
tumor cells suggested that BRD4 is a key regulator of H3K9
acetylation in TNBC. This acetylation is associated with the
activation of c-Myc and drives tumor formation. Furthermore, we
found that the combination of FGFR2i and BRD4i with ICB could
significantly increase the sensitivity of cancer cells to
immunotherapy.
BA

D

E

F

G

C

FIGURE 5 | (A, B) RT-PCR analysis of the mRNA levels of Brd4 (A) and c-Myc (B) in tumors from the activation of Fgfr2-S252W transgenic mice. (C)
Immunoblots with antibodies specific for the H3K9 acetylated lysine residues of histone H3 and pathway analysis of the activation of FGFR2 tumors or wild type
(WT). (D) Immunoblots with antibodies specific for the H3K9 acetylated lysine residues of histone H3 and pathway analysis after knockout of BRD4 by the
CRISPR-Cas9 system and non-target as the control. (E) Assessment of the drug response of BGJ398, JQ1, or the combined treatment of Fgfr2-S252W tumor
cells with the Alamar blue assay. (F) Western blot analysis revealing that BGJ398 and JQ1 inhibit BRD4, c-Myc, and PD-L1. (G) Inflammation analysis using real-
time RT-PCR from Fgfr2-S252W or WT mouse. P-values by using GraphPad Prism 7 Software. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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DISCUSSION

Historically, the study of epigenetic development (22–24)
included genomic methylation (both histone and DNA),
Frontiers in Immunology | www.frontiersin.org 8
histone modification, and loss of heterochromatin (25). The
mechanisms by which these changes occur remain relatively
unclear (26), although histone acetylation, methylation,
phosphorylation, and ubiquitination have been studied and
B

D

C

A

FIGURE 6 | (A) Three-dimensional tissue slice culture workflow for quick, reliable models assessing immunotherapy. (B) Visualization of the antitumor response
revealed by MTT analysis. (C) MTT assay evaluating the proliferation of Fgfr2-S252W tumor tissues. Data are shown as the mean ± SEM. p-Values by two-tailed
Student’s t-test. (D) Immunohistochemistry (IHC) staining against BRD4, c-Myc, IFN-g, Ki67, and PD-L1 in the indicated treatment groups.
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are well known (1, 2, 25). In general, histone PTMs are added
using specific enzymes, which are categorized as writers. The
writers include HATs, histone methyltransferases (HMTs)/
histone lysine methyltransferases (KMTs), protein arginine
methyltransferases (PRMTs), kinases, and ubiquitin ligases,
among others. Readers are defined as the specialized domain-
containing proteins which are capable of identifying and
interpreting these modifications. Examples of readers include
methyl CpG binding domains (MBDs), Tudor, plant
homodomain (PHD), chromodomain, and bromodomain.
Erasers belong to the group of enzymes that remove these
chemical tags, including histone deacetylases (HDACs), histone
demethylases (HDMs)/histone lysine demethylases (KDMs),
phosphatases, and deubiquitinating enzymes (DUBs). In this
study, we explored the readers, especially bromodomain
(BRD4), which belongs to the BET family, and identified that
it can read various acetylated lysine marks at H3 and H4 as well
(17). Furthermore, in our study, we also found that BRD4 can
recognize the propionyl group attached to a lysine amino acid
residue of H3K9/56 by peptide array, which was further
confi rmed by ITC exper iment s . Impor t an t l y , we
demonstrated that BRD4 is the key enzyme responsible for
controlling the status of lysine acetylation at H3K9 in the Fgfr2-
S252W TNBC mouse model. On the other hand, it has been
reported (27) that BRD4 not only recognizes histone
acetylation but also serves as a HAT. Our results suggest that
histone modification in the TNBC mouse model may serve as a
biomarker of cancer progression.

Recently, crosstalk of the BRD4/c-Myc axis in a TNBC
subtype through integrin/FAK-dependent signaling has been
reported (28). The BRD4/c-Myc axis also plays a significant role
in the TME and in the maintenance of immunity; in addition,
the expression of PD-L1 was suppressed by BRD4 inhibition in
TNBC (29). Previously, we reported that the Fgfr2-S252W
mouse model induced the high expression of PD-L1,
suggesting that combining FGFR inhibitors (BGJ398 or
AZD457) and a BRD4i (JQ1) may be beneficial for patients
who show resistance to high PD-L1 expression. Besides, breast
cancer 1 (BRCA1)-deficient cells were sensitized to the BET
inhibitor, which reversed the MYC/TXNIP axis by inhibiting
the activity of thioredoxin and elevating cellular oxidative
stress, causing DNA damage that led to the death of BRCA1-
deficient breast cancer cells (30, 31). On the other hand, Fgfr2-
S252W also suppressed the expression of BRCA1 (19), which
signified that BRD4 inhibition may be synthetically lethal with
FGFR or PARP inhibitors through the induction of
homologous recombination deficiency or the STAT3 and
MAPK signaling pathways. In addition, several pathways are
involved in cancer cell resistance to BET inhibitors, including
the activation of receptor tyrosine kinases (RTKs), JAK-STAT,
phosphatidylinositol 3-kinase (PI3K), AKT/mTOR, and
MAPK/ERK pathways (32). In a previous study, we
demonstrated that Fgfr2 activation could induce downstream
pathways, including PI3K, MAPK, AKT, and STAT3. The
Frontiers in Immunology | www.frontiersin.org 9
activation of multiple pathways is always linked to drug
resistance (33, 34). Given all the factors above, combination
strategies using inhibitors targeting both FGF/FGFR and BET
proteins with ICB may provide a useful approach for
personalized therapy in clinical studies.
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