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Abstract

We propose a new computational method for exploring chromatin structural organization

based on Markov State Modelling of Hi-C data represented as an interaction network

between genomic loci. A Markov process describes the random walk of a traveling probe in

the corresponding energy landscape, mimicking the motion of a biomolecule involved in

chromatin function. By studying the metastability of the associated Markov State Model

upon annealing, the hierarchical structure of individual chromosomes is observed, and cor-

responding set of structural partitions is identified at each level of hierarchy. Then, the notion

of effective interaction between partitions is derived, delineating the overall topology and

architecture of chromosomes. Mapping epigenetic data on the graphs of intra-chromosomal

effective interactions helps in understanding how chromosome organization facilitates its

function. A sketch of whole-genome interactions obtained from the analysis of 539 partitions

from all 23 chromosomes, complemented by distributions of gene expression regulators

and epigenetic factors, sheds light on the structure-function relationships in chromatin,

delineating chromosomal territories, as well as structural partitions analogous to topologi-

cally associating domains and active / passive epigenomic compartments. In addition to the

overall genome architecture shown by effective interactions, the affinity between partitions

of different chromosomes was analyzed as an indicator of the degree of association

between partitions in functionally relevant genomic interactions. The overall static picture of

whole-genome interactions obtained with the method presented in this work provides a

foundation for chromatin structural reconstruction, for the modelling of chromatin dynamics,

and for exploring the regulation of genome function. The algorithms used in this study are

implemented in a freely available Python package ChromaWalker (https://bitbucket.org/

ZhenWahTan/chromawalker).

Author summary

A new era in chromatin research started with the availability of Hi-C data and new experi-

mental techniques driving improvements in data resolution enable us to achieve a deeper

understanding of the chromatin structure and function, while calling, at the same time,
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for the development of more advanced analytical methods. Though instrumental in the

analysis of Hi-C data, both model-driven polymer models and data-driven statistical

approaches are always based on several assumptions and require tweaking parameters.

We interpret the Hi-C frequencies of chromatin interactions in terms of pairwise contact

energies, obtaining corresponding energy landscape that represents the structure and

interactions in chromatin. The ruggedness of this landscape is explored by the random

walk of a travelling probe, which is formalized in the framework of a Markov State Model.

The multilevel energy landscape induces metastability in the Markov process, revealing

the hierarchy of chromatin structural organization. Structural partitions determined by

the basins in the energy landscape are, thus, naturally obtained at different levels of hierar-

chy without any preliminary assumptions. Effective interactions between partitions

are evaluated, providing a blueprint of the whole-genome organization and functional

interactions, which is further substantiated by mapping of information on gene expression

regulators and different epigenetic factors. The notion of affinity between partitions com-

plements the picture by reflecting the degrees of association between partitions, calling for

the modelling of chromatin dynamics and exploring its functional modulation.

Introduction

The packing of two meters of DNA in the few-micrometer nucleus results in a structure that

performs multiple roles, from forming a structural scaffold of chromatin to facilitating active

expression and silencing of genetic material [1, 2]. The beginning of interest in the biophysical

characterization of chromatin dates to about 50 years ago, spanning from experimental mea-

surements of DNA persistence length [3–5] and thermal stability [4] to pulling individual

DNA-protein (DNP) fibrils by convection flows in solution [6], exploring fibril morphology

and stability under different media conditions [7], and exposure to ionizing radiation [5].

Before the chromosome conformation capture (3C) [8] era, the classical view of chromatin

organization included several successive levels of packing with archetypal structural patterns,

ranging from the compaction of nucleosome-bound 10nm fibers [9] with a roughly 200 base-

pair periodicity, to the transient 30nm solenoid (hard to detect in vivo) presumably working in

the regulation of gene expression [10, 11], then to the 30-100kbp loops/domains that are

apparently instrumental in shaping large-scale chromatin organization and gene expression

[1, 12–19]. With the development of the chromosome conformation capture (3C) protocol [8],

it has become possible to study chromatin interactions between distant genomic loci. In less

than a decade, the original 3C protocol evolved from the analysis of selected pairs of genomic

loci to the detection of pairwise interactions between loci and the rest of the genome using

chromosome conformation capture on-chip (one-to-all, 4C, [20]), carbon copy (many-to-

many, 5C, [21]), and high-throughput 3C (all-to-all, Hi-C, [22]). Finally, improvement of the

signal-noise ratio was achieved by performing DNA proximity ligation before nuclear lysis,

implemented in in-situ Hi-C [23].

Computational approaches for the analysis of chromatin interaction data developed in

recent years can be classified as model-driven or data-driven [24]. Generally, the goal of

model-driven studies is to validate physical polymer simulations using Hi-C data. Among

them are models of chromatin as a crumpled (fractal) globule [22, 25–27], scenarios of loop

formation [28, 29], analyses of the role of epigenetic factors in driving the chromatin organiza-

tion [30–34], to name a few. In data-driven studies, on the other hand, experimental Hi-C

interaction maps are used for extracting information on statistically significant chromatin
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interactions, for defining topologically associating domains (TADs) and A/B compartments

[35, 36], and for the 3D reconstruction of chromatin. Several algorithms have been introduced

to study the hierarchical organization of chromatin and its correlation with the distribution of

various epigenetic features [37–40], including graph-based approaches for exploring sparse

networks of Hi-C interaction peaks, as well as ChIA-PET and HiChIP interaction pairs [41–

43]. A recent work by Pancaldi et al. defined chromatin assortativity as a metric for the analysis

of correlation between distributions of epigenetic marks and chromatin structure [44]. To

date, many methods developed for domain detection [23, 45–47] essentially adopt an image

segmentation approach aimed at identifying domain regions as a function of short-range

interactions along the chromosome, and domain boundary positions are often highly sensitive

to the choice of heuristic tuning parameters [48]. Recent network-based methods incorporate

effects of long-range interactions in characterizing structural organization [37, 39, 49] and

observe spatial couplings at multiple scales associated with the regulation of gene expression

[50]. Spatial reconstructions of chromatin using Hi-C interaction data yield consensus struc-

tures [51, 52] or ensembles of possible chromosomal conformations [53, 54], providing an

overall picture of chromatin organization [55].

In this work, we propose a new approach for extracting robust genomic partitions from Hi-

C data, seeking to capture the footprints of chromatin structure and organization by consider-

ing the entire interaction landscape of this complex system. Specifically, our objectives here

are to identify and study structural features of chromatin from Hi-C interaction data and to

find a connection between these features and data on epigenetic regulation. Introducing a

Markov State Model (MSM) with minimal assumptions and parameters on the chromatin

interaction network, we aim to identify structural partitions and interactions between them.

By analogy with a biomolecule moving and interacting in condensed chromatin, the MSM

allows one to explore chromatin structure using a “probe” randomly walking in the contact

energy landscape derived from Hi-C data. Given the multiscale nature of the data-derived con-

tact energy landscape and the metastability of the corresponding MSM, we can identify regions

of dense intra- and inter-chromosomal interactions, linkers between these regions, as well as

the overall topology of individual chromosomes and the complex structures that chromosomes

form by interacting with each other. We found that multiple levels of hierarchy exist in the

structure of each chromosome with a layer-by-layer splitting of partitions into subunits with

distinct structural and epigenetic features, and presumably, distinct roles. The notion of effec-

tive interaction between partitions is introduced and shown to be instrumental in uncovering

the hierarchical organization, as well as functional dynamics and epigenetic modulation, of

individual chromosomes. Looking at the whole-genome picture, the matrix of effective inter-

actions delineates how chromosomal partitions form a major cluster—with several chromo-

somes linked by significant inter-chromosomal interactions—as a structural scaffold for

genome architecture. The notion of affinity between partitions complements the picture of

effective interactions by evaluating the degree of association between partitions, which may

contribute to the formation of topologically associated domains, transcription factories and

other functional elements, thereby organizing the regulation of genome expression.

Results

In this paper, we propose a novel computational method for exploiting Hi-C data in the study

of chromatin organization. Since Hi-C reads represent interactions between pairs of loci, it is

natural to consider Hi-C data as an undirected network of contacts between genomic loci,

which, as a highly complex system at a resolution of 50kbp, contains tens of thousands of

nodes at the whole-genome level. In the following, we first provide the motivations for
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adopting a Markov State Model approach for the analysis of Hi-C data, then introduce a toy

model of a chromosome that serves to elucidate the most important notions associated with

the method. Finally, a specific description of the major steps in the proposed Markov State

Model approach is presented for the case of a single chromosome (human chromosome 17),

followed by a genome-wide analysis.

Markov State Modelling: A toy chromosome as an example

A common strategy to study complex network data structures is to combine them with a dis-

crete state Markov process, commonly called a Markov State Model (MSM), with the goal of

characterizing hidden network properties [56–58]. MSMs enable one to systematically explore

network structure via random walks, where traveling probes form virtual trajectories through

the whole network by connecting pairs of nodes. It has been shown that studying the spectral

and metastability properties of the network-associated MSM allows one to obtain a reduced

description of the underlying complex data.

In order to illustrate how MSMs can be used for studying Hi-C data, we introduce here a

toy model of a chromosome. Let us consider a linear system characterized by a discrete set of

loci S = {1,. . .,N}, with N = 500. We assume that the number of loci N determines the maximal

resolution of this relatively large system. Each locus of the system is associated with an energy

Ei, which is linked to the intrinsic stability of the locus i at the given resolution. For the sake of

argument, we assume the intrinsic stabilities Ei to follow a hierarchically shaped energy profile

(Fig 1A). The energy profile considered here contains 18 wells separated by barriers ranging

from 0.5 to 2 energy units. On the first level of hierarchy, there are two basins separated by a

barrier of 2 energy units (black diamonds in Fig 1A), each divided into three sub-basins (indi-

cated as red circles in Fig 1A), which in turn are split into three basins on the third level of

hierarchy (black circles in Fig 1A).

A traveling probe in such an energy profile is assumed to make two types of moves: sliding

between adjacent loci and hopping between non-adjacent ones. We do not make any assump-

tion about the three-dimensional structure of the system and assume a power law contact

probability between non-adjacent loci, namely (d0/dij)α, where d0 and dij are the distance

between adjacent and any non-adjacent loci respectively, which is equivalent to the genomic

distance between loci i and j and such that dij = d0 for adjacent loci. Thus, for each pair of loci

i and j, we define the contact energy landscape Eij = (Ei + Ej)/2 − αln d0/dij with α = 1.5.

Assumptions on the power law dependence and the value of exponent α are made on the basis

of empirical observations on Hi-C data and polymer models of chromosomes [22]. The con-

tact energy landscape is represented in Fig 1B.

To construct the MSM describing the motion of a probe, we define the corresponding Mar-

kov generator L for transitions between loci i! j by the Laplacian Lij ¼ e� bðEj � EiÞ=2eblnðd0=dijÞ
a

and Lii = −∑j6¼iLij, with transition matrix pij = Lij/∑j6¼iLij,pii = 0(∑jpij = 1), flux πij = Lijμj, where

steady state probabilities are given by mi ¼ e� bEi=
P

je
� bEj , and β is an inverse temperature

parameter. A network of nodes (loci) and edges (contacts) is obtained from the matrix of fluxes

πij, which represents the symmetric probability of contact between a pair of loci. With the set

of rules given by the above Markov generator, a probe will tend to explore regions of the net-

work in the neighborhood of the loci that are more stable, i.e., within an energy well, and will

rarely connect loci in different energy wells. This property relates to the “metastability” of the

corresponding Markov process. Specifically, in a metastable MSM only a few nodes function

as “hubs” of the network, which means that the probe tends to spend most of the time in the

neighborhood of these hub nodes, instead of anywhere else. In other words, a probe departing

from a generic node in the network is likely to hit the closest hub node in the set hub-nodes
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M. Additionally, the probability for a probe departing from a hub-node in M to return to

itself is larger than that for the probe to reach another hub-node in M. As a result, nodes in

the neighborhood of hubs tend to cluster together in a modular manner. This is a condition

that allows one to find a reduced size MSM that approximates the original Markov process

associated with the initial network. One can quantify how well the probe motion satisfies this

condition by defining a metastability index rM. A metastability index is the ratio of two proba-

bilities (see Eq 6 in Methods for a precise definition): the probability Pout for a probe to con-

nect two different hubs in the set M (as small as possible) over the probability Pin for a walker

to hit any hub in the set M irrespective of the starting point (as large as possible) [59]. In a

metastable MSM the metastability index is expected to be a small number (rM ¼ Pout=Pin < 1)

characteristic of the hub set M.

Fig 1. The toy model of a chromosome with a hierarchical energy landscape. (A) The energy landscape with three levels of hierarchy considered here.

(B) Pairwise contact energy landscape for the toy model of a chromosome of length 500. (C) Illustration of the effect of annealing on the mean-first

passage time (MFPT) between the states. (D) Optimization of the metastability index results in profiles, revealing three levels of hierarchy corresponding

to three hub sets Mð2Þ
;Mð6Þ

, and Mð18Þ
, respectively. (E, top) A network representation of the toy chromosome interactions with nodes colored

according to the partitions associated with the hub set Mð6Þ
; (E, bottom) reduced network constructed from the partitions associated with the hub set

Mð6Þ
, with links depicting effective interactions between partitions calculated via Eq 11 in Materials and methods.

https://doi.org/10.1371/journal.pcbi.1006686.g001
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To understand how metastability works, it is instructive to consider the large changes in

kinetic properties of the MSM upon increase of the inverse temperature parameter β (anneal-

ing condition). These changes are clearly illustrated by the mean first passage time MFPT τij,
which is the average time (number of steps) a probe takes to connect the pair of states i and j
(where states represent loci of the toy chromosome, see Eq 4 in Methods). Fig 1C shows the

MFPT matrices in the case of low β = 1 and high β = 10, respectively. A clear separation of

time scales emerges upon increasing β, as reflected in the partitioning of the MFPT matrices.

The nested squares emerging in the MFPT matrix (Fig 1C) at high β identify pairs of states/

loci (i,j) with comparable values of the MFPT τij, which is a result of the hierarchically shaped

energy profile. As β is increased, the emerging separation of time scales in the MFPT matrix is

the result of the dominant barrier that separates a given pair of loci in the energy landscape

(see Fig 1A): each of the separated regions contains one or more hubs that cause probes to stay

within its vicinity. As a result, the effect of high β on the MFPTs of the MSM elucidates how

dominant interactions in the system can be captured using just a subset of loci, the hub set M.

To quantitatively identify the hub set, an optimization procedure is performed in order to

find the sets M that minimize the metastability index rM (see details in Materials and Meth-

ods) as a function of increasing β. Fig 1D shows the optimized profile of the index rM as a

function of the hub set sizes, and at different values of β. All the profiles of rM clearly show

three minima corresponding to the hub sets Mð2Þ
; Mð6Þ

, and Mð18Þ
(of sizes 2, 6 and 18,

respectively), which correctly identify locations of the energy wells in the hierarchically shaped

energy landscape in Fig 1A. The hub sets obtained by optimizing the index rM are suitable as

cores of partitions, which characterize the coarse-grained state space of an approximated

MSM. Fig 1E (top) depicts the toy network associated with the contact energy landscape

shown in Fig 1B. Nodes are colored according to the partitions constructed around nodes in

the hub set Mð6Þ
. A reduced network corresponding to the hub set Mð6Þ

is also shown in Fig

1E (bottom). The nodes in this network are defined as soft partitions of the initial set of loci S,

whereas the links characterize the “effective interactions” between nodes with values Fab =

∑i2Sqa(i)πib (see Eq 11 in Materials and Methods). The quantity qa(i) is a committor probabil-

ity, which is the probability for a probe departing from a locus i to hit the locus a 2M before

any other locus in the hub set M (see Eq 8 in Materials and Methods).

Using the intuition acquired with the help of this toy model, we describe in the following

section how a MSM can be constructed from the Hi-C dataset of a single chromosome and

how metastability analysis can be performed in order to infer chromosomal architecture and

effective interactions between partitions.

Hi-C data and Markov State Modelling: From a single chromosome to the

whole genome

We now consider the random walk through the interaction network of a single chromosome,

using the example of Hi-C data on human chromosome 17 in the human B lymphoblastoid

cell line GM12878 at 50kbp resolution [23] and describing it via a Markov process. To do that,

we start from the number of times fij a pair of genomic loci i and j is found in a contact. After

applying a Gaussian smoothing filter on the raw data (see Hi-C data preprocessing in Materials

and Methods), a pairwise contact energy Eij = −lnfij is defined for each pair of genomic loci.

With this interpretation, the larger the contact frequency the more stable (lower contact

energy) pair of genomic loci is involved. The representation of this two-dimensional contact

energy landscape is shown in Fig 2A.

A probe moving in such a landscape is expected to spend most of the time in pairs charac-

terized with low contact energy and rarely connecting across high contact energy pairs. In the
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toy model presented in the previous section, a pairwise contact energy landscape (Fig 1B) was

constructed from the one-dimensional energy landscape (Fig 1A). Here, we use a reverse logic

and consider the one-dimensional projection (Fig 2B) of the two-dimensional contact energy

landscape (Fig 2A). To do that we define the contact energy of a genomic locus i as Ei = −lnfi,
where fi = ∑jfij is the total number of times a genomic locus i is found in any contact, hence loci

involved in more contacts are more stable as they exhibit lower contact energy. Fig 2B shows

the 1D projection of the pairwise contact energy landscape (for both raw and Gaussian-

smoothed data), which presents multiple features—minima, maxima, and barriers—character-

izing the architecture of the chromosome.

Here, we briefly describe the metastability analysis applied to chromosome 17 (steps 1–4)

and consider whole-genome interactions (step 5) using a coarse-grained approximation.

Fig 2. Analysis of human chromosome 17 using a MSM-based computational framework. (A) Pairwise contact energy landscape of human chromosome 17. (B)

1D projection of the chromosome 17 energy landscape. (C) Effect of annealing on the mean-first passage time (MFPT) between loci. (D) Optimization of the

metastability index rM under different annealing conditions (β = 1 to 9). (E) Partitioning of chromosome 17 determined by the hub set Mð12Þ
(left, visualization

obtained by the Fruchterman-Reingold visualization algorithm implemented in Gephi [60]) and schematic illustration of the effective interactions between 12

observed partitions (right).

https://doi.org/10.1371/journal.pcbi.1006686.g002
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Step 1. In order to explore chromosomal architecture, the MSM describing the motion of a

probe in the contact energy landscape Eij is implemented by introducing the Maxwell-Boltz-

mann probability pijðbÞ ¼ e� bEij=ZðbÞ, where ZðbÞ ¼
P
ði;jÞe

� bEij is the partition function, β is

the inverse temperature parameter, and πij is the symmetric flux of probes between pairs of

loci. Using a 50kbp resolution for the Hi-C dataset, a total of N = 1625 genomic loci comprise

the state space S of the MSM for chromosome 17. The transition matrix associated with the

MSM is defined as pij = πij/μi, where μi(β) = ∑jπij(β) is the Boltzmann weighted probability

(steady state probability distribution) of observing locus i involved in any contact. The effect of

annealing (increasing the inverse temperature β) on the kinetics of a random walker is clearly

reflected in the MFPT matrices (Fig 2C), obtained at low and high β, respectively. While at low

β (β = 1) MFPTs show no partitioning, a separation of time scales becomes evident at high β
(β = 9). Indeed, the 1D projection of the pairwise pseudo-energy landscape (Fig 2B) shows

that, apart from the centromere that naturally separates the two chromosome arms, the highest

barrier in the 1D projection is about 1.5 in β−1 units (see Fig 2B). Therefore, partitioning of

MFPTs scales is observed only for significantly higher values of β.

Step 2. Optimization of the metastability index rM (see details in Materials and Methods)

over the hub set M of different sizes was performed as a function of the inverse temperature

parameter β, revealing the levels of structural hierarchy of chromosome 17. The rM profiles

upon increasing β (Fig 2D) converge towards five minima, which correspond to the hub sets

Mð2Þ;Mð5Þ;Mð8Þ;Mð12Þ; and Mð27Þ, of sizes 2, 5, 8, 12, and 27, respectively. The Mð2Þ hub set is

not considered as it trivially identifies the chromosome arms separated by the centromere. It

should be noted that the locations of the obtained hub sets correspond to the locations of the

multiple wells present in the projected contact energy landscape, as shown in Fig 2B.

Step 3. Given the hub sets obtained at different levels of structural hierarchy, one can identify

chromosomal partitions, namely regions of the chromosome compacted around corresponding

hubs and, at the same time, separated from one another. Soft partitions are defined around corre-

sponding hubs using the committor probability qa(i) [59], which in this case is interpreted as the

probability for a locus i to belong to the partition defined by the hub a 2 M. To identify physical

partitions of the chromosome in relation to other chromosomes, a coarse-grained description is

adopted here by considering hard partitions. In this case, a step function θA(i) characterizes

whether a locus i belongs to a partition A, specifically θA(i) = 1 if i 2 A, θA(i) = 0 otherwise, and

∑AθA(i) = 1 for any locus i (see Eq 9 in Materials and Methods). Fig 2E illustrates the partitioning

of the network for human chromosome 17 that is obtained from the hub set Mð12Þ.

Step 4. To complete the description of chromosome structure, one needs also to character-

ize the strength of interactions between the partitions obtained at different levels of hierarchy.

As in the example illustrated in the toy model, we consider the effective interaction between

two soft partitions located around the hub loci a and b of a chromosome as the mean contact

energy acting between them, which corresponds to the weighted flux connecting loci a and b
via the committor probability qa(i), namely Fab = ∑i2cqa(i)πib (see Eq 11 in Methods).

Step 5. In the context of whole-genome interactions, a coarse-grained description is

adopted (see Step 3) for estimating the mean contact energy between pairs of partitions in the

23 chromosomes: FAB = ∑i2gθA(i)∑j2gπijθB(j), where θA(i) and θB(i) are step functions and πij is

the flux of probes between corresponding loci (see Materials and Methods for details).

Effective interaction between eu- and heterochromatic partitions in the

structural hierarchy of chromosome 17

Fig 3A–3C show the partitioning of chromosome 17 at three levels of hierarchy with corre-

sponding effective interaction matrices (Fig 3D–3F), and the band representation of partitions
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at all three levels (Mð5Þ
; Mð12Þ

;Mð27Þ
; Fig 3G). The major partition boundaries that emerge at

the first level of hierarchy persist through the other levels (Fig 3G; similar for all chromosomes,

see S1 Fig) and show a qualitative agreement with the borders of euchromatic and heterochro-

matic bands obtained from Giemsa staining (Fig 3G and S1 Fig). Unfortunately, as Giemsa

staining is a very basic and crude cytological method for identifying densely-packed (hetero-

chromatic, dark stain) and low-density (euchromatic, light stain) genomic regions, it is not

possible to perform an accurate quantitative analysis on staining bands [61, 62].

At the lowest level of hierarchy (Fig 3A), we observed the bulk topology of the chromosome

where two chromosomal arms are brought together via strong interactions between partitions

1, 4, and 5. Most partitions at the lowest levels of hierarchy are found to contain both euchro-

matic and heterochromatic bands, and they have highly distinct structural and/or functional

characteristics. At the second level of hierarchy (Fig 3B), partitions 1.2, 4.1, 4.2, 5.1, and 5.4

form several non-adjacent contacts, working as hubs responsible for most of the network

structure. The third level of hierarchy (Fig 3C) yields further details of chromosomal architec-

ture: the p-arm is loosely connected and is weakly centered on 1.2.2 and 1.2.4, while the q-arm

is densely connected by multiple hubs (4.1.1, 4.2.2, 4.3.1, 5.1.2, and 5.4.1). At this level many

partitions are homogeneous, either eu- or heterochromatic, interacting more strongly with

partitions with similar packing densities, resembling the phenomenology of the so-called A/B

(active/inactive) chromatin compartments [22]. For instance, partition 1.2 is split into mostly

euchromatic (1.2.2, 1.2.3) and heterochromatic (1.2.1, 1.2.4) partitions, while partition 4.1 is

split into predominantly euchromatic (4.1.1, 4.1.2, 4.1.3) and heterochromatic (4.1.4, 4.1.5)

ones. Partition 4.1.1 is the largest among these, forming significant interactions with the p-arm

through partition 1.2.2. Another noticeable interaction between chromosomal arms occurs via

the partition 4.3.1, which links heterochromatic partitions 5.1.1–2 and 1.2.4. Interestingly, the

mostly euchromatic partition 1.2.2 is responsible for many non-adjacent contacts with the q-

arm, whereas heterochromatic 1.2.4 forms non-adjacent contacts only with 4.3.1 and 3.1.1.

With these observations, one may conclude that heterochromatic partition 1.2.4 acts as a struc-

tural foundation that link the mostly euchromatic partitions 1.2.2, 1.2.3, 2.1.1, 2.1.2, and 3.1.1.

Structure-function relations between partitions of chromosome 17:

Partition sizes and distributions of CTCF and cohesin

To investigate how the hierarchical organization of chromosomes facilitates their function, we

first analyzed the average density of various epigenetic factors in partitions (Fig 4 and S3 Fig),

using chromosome 17 as an illustration for this analysis and operating at the third level of

structural hierarchy. Fig 4A, in which node sizes depict partition sizes, shows that heterochro-

matic partitions 5.1.1 and 5.1.2 apparently form a structural foundation of chromosome 17

architecture, linking the p- and q-arms through the large mixed partition 4.3.1 and the hetero-

chromatic partition 1.2.4. Next, we consider two transcription factors commonly associated

with chromatin structure studies, namely CTCF (transcriptional repressor, Fig 4B) and

RAD21 (cohesin, S3H Fig). The CTCF graph (Fig 4B) shows that the heterochromatic parti-

tions (1.2.4, 5.1.1, 5.1.3, and 5.2.2) and the pericentromeric partition 3.1.1 have the lowest

CTCF levels, while the highest CTCF levels were found on 4.2.2, 4.2.1, and 5.4.3. The euchro-

matic or mostly euchromatic partitions 1.1.1, 1.2.2, 2.1.2, 2.2.1, 4.2.3, 5.4.1, and 5.4.2 show

average levels of CTCF in the overall eight-fold variation in the density of this transcription

factor across partitions. Among the hub partitions, namely those that form extensive non-adja-

cent contacts, only 4.2.2 shows high CTCF levels. Unlike CTCF, RAD21 (a component of

cohesin) exhibits only a two-fold variation in densities across partitions at this level of hierar-

chy. The correlation between CTCF and cohesin binding sites has been noted previously [63,
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Fig 3. Architecture of the chromosome 17 at three levels of structural hierarchy. (A-C) Graph representation of three levels of structural hierarchy. The

nodes represent partitions, the node sizes scale with partition sizes, and pie charts in nodes indicate the euchromatin/heterochromatin composition of

corresponding partitions obtained from the Giemsa staining (with red denoting the centromere). The color gradient (25, 50, 75, and 100%) corresponds to

heterochromatic bands with corresponding degrees of compactness. The width of edges indicates the effective interaction strength, which is obtained from

the effective interaction matrices at each level of hierarchy (D-F). Partitions are labelled at each level to reflect the strict hierarchy: partition 1 contains sub-

partitions 1.1 and 1.2, partition 1.2 contains sub-partitions 1.2.1, 1.2.2, 1.2.3, and 1.2.4, and so on. Weak interaction edges are omitted for clarity (see

Materials and Methods for details). (G) Band representation of partitioning at the three levels of hierarchy (Mð5Þ
; Mð12Þ

;Mð27Þ
). Partition boundaries
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64], and indeed the distribution of RAD21 (S3H Fig) chiefly follows the same general trends as

that of CTCF. The strongest among the few exceptions are the increased density of RAD21 in

4.2.3 and decreased density in 5.4.3.

Abundance and potential functional role of histone modifications in

partitions of chromosome 17

Turning to histone modifications, we note that H3K9ac (Fig 4C) and H3K9me3 (S3A Fig) are

associated with activation and silencing of transcription in corresponding promoter regions

observed at the lowest level persist in higher levels of hierarchy, indicating the presence of a strict hierarchy in the chromosome structural organization. To

guide the eye on how the different types of chromatin packing are distributed across partitions, Giemsa staining bands are also shown on top of the

partition diagrams for all levels of hierarchy.

https://doi.org/10.1371/journal.pcbi.1006686.g003

Fig 4. Distribution of epigenetic factors in partitions of chromosome 17 at the third level of structural hierarchy. Partitions are represented as

pie-charted nodes depicting the presence of eu- and heterochromatin (on the basis of Giemsa-staining) within the partition. The node sizes are set

according to the partition size or Z-scored density of the factor in the corresponding partitions (see scales in corresponding panels). Edge widths

correspond to effective interaction strengths, while node sizes in each panel represent the (A) partition size, and factors’ Z scores for (B) CTCF, (C)

H3K9ac, and (D) DNase-Seq epigenetic factors. Visual legends show how the values corresponding to each partition scale with the node size.

https://doi.org/10.1371/journal.pcbi.1006686.g004
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and, therefore, are expected to show opposite density trends. Indeed, densely packed hetero-

chromatic partitions (1.2.4, 5.1.1, 5.1.3) and pericentromeric 3.1.1 show very low levels of the

activating H3K9ac histone modification, while the silencing H3K9me3 modification shows

increased density in these partitions (highest in the case of 3.1.1). At the same time, euchro-

matic and mostly euchromatic partitions 1.1.1, 1.2.2, 2.1.2, 4.1.2, 4.2.2, 5.4.2, and 5.4.3 show an

increased density of both epigenetic factors, with some slight variations. The opposing trends

are observed in heterochromatic partitions for the activating H3K27ac (decreased density, S3B

Fig) and inhibiting H3K27me3 (increased density, S3C Fig) modifications, with the most pro-

nounced effects being on 1.2.1, 4.1.4, 4.1.5, 5.1.1, and 5.1.3. Distributions of the H3K4me1

(S3D Fig) and H3K4me3 (S3E Fig) modifications—both activators—show higher densities in

most euchromatic partitions, and in few heterochromatic ones—1.2.1, 4.2.1, and 5.1.2. Inter-

estingly, the heterochromatic partitions 1.2.1, 4.2.1, and 5.1.2 are enriched in all activating his-

tone modifications considered here (H3K4me1, H3K4me3, H3K9ac, H3K27ac), and, at the

same time, are depleted in the inhibiting modifications H3K9me3, H3K27me3. These trends

suggest that the above partitions may contain facultative heterochromatin that switches

between active and repressed states.

DNA accessibility and density of RNA polymerases II and III in partitions

of chromosome 17

Overall, the DNA accessibility graph, indicating the DNase-Seq signal (Fig 4D), shows that

most of the euchromatic partitions (1.1.1, 1.2.2, 2.1.2, 4.2.2, 5.4.2, and 5.4.3) are rather open

and accessible for contacts or interactions. Increased accessibility observed for partitions 4.2.1

and 1.2.1 is consistent with the conclusion that these partitions may contain facultative hetero-

chromatin, which was inferred from the distribution of activating and inhibiting histone mod-

ifications. The partition 5.1.2, on the contrary, is less accessible, suggesting that it contributes

mostly to the structure formation. Finally, the distributions of RNA polymerases II and III

(S3F and S3G Fig) complement the picture of the potential functional involvement of different

partitions in chromosome 17. RNA polymerase II (POL2), crucial component of mRNA syn-

thesis, is distributed quite evenly in both euchromatic and heterochromatic partitions (except

the high level in 2.2.1). The synthesis of tRNA, 5S rRNA, and small RNAs through the action

of RNA Polymerase III (POL3) is distributed in a more specific way across different partitions.

The POL3 signal is high in euchromatic partitions 1.2.2, 4.1.2, 4.2.3, in mixed 4.2.1 and 5.3.1,

as well as in some heterochromatic ones (4.1.4, 4.1.5, 5.1.2, 5.1.3, and 5.2.2).

The whole-genome interactions between partitions of all chromosomes

Peculiarities in distributions of epigenetic factors, DNA accessibility, and RNA polymerases

revealed in the analysis of individual chromosomes should be further considered in the frame-

work of whole-genome organization, exploring the interplay between intra- and inter-chro-

mosomal interactions in the regulation of gene expression. To this end, we moved from single-

chromosome analysis to studying the whole-genome effective interaction matrix. Given that

chromosomes are spatially segregated into chromosomal territories (CTs), one can approxi-

mate the whole-genome organization by merging single-chromosome partitioning schemes at

appropriate levels. Using a selected representative level from each chromosome (see Materials

and Methods: Chromosome partitioning), we formed a whole-genome description with 539

partitions, with an average partition size of about 5Mbp (S2 Table).

The matrix of effective interactions between chromosomal partitions (Fig 5) provides a gen-

eral view of the overall physical interactions in chromatin. It shows that chromosome 1 and

small chromosomes (14–20 and 22) massively interact with others, while chromosomes 4, 5, 9,
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21, and X appear to be relatively isolated from the rest of the genome (Figs 5 and 6). Several

partitions form consistently stronger intra- and inter-chromosomal interactions with other

partitions. We classified interaction strengths into 5 layers with equally-spaced threshold val-

ues: the scaffold layer is the strongest, followed by layers 1, 2, etc. (see also Materials and Meth-

ods for the definition of the interaction strength at different layers).

Fig 6A shows the major cluster in the whole-genome partition set: partitions from different

chromosomes form tight sub-clusters highlighted by color and marked by chromosome labels.

All displayed partitions are linked by the two strongest layers of interactions (scaffold interac-

tions are represented by black edges, and layer 1 by grey edges).

It is easy to see that most of the intra-chromosomal contacts and some inter-chromosomal

interactions are established on the scaffold layer, giving rise to a structural foundation for

genome-wide architecture (Fig 6). Specifically, chromosomes 1, 14, 16, 17, 19, 20, and 22 are

Fig 5. Matrix of whole-genome effective interactions between 539 partitions. Effective interactions between partitions, calculated according to Eq 12

(see Materials and Methods) and plotted on a logarithmic color scale. Massive interactions are formed by chromosomes 14–20, 22, and 1 (clusters of dark

pixels), whereas chromosomes 4, 5, 9, 21, and X are not involved in many interactions (lighter pixels). To construct a representation of inter-chromosomal

interactions via partitions of comparable sizes, we used partitions of the third level of hierarchy in chromosomes 1–12 and X, second level in chromosomes

13–21, and first level in chromosome 22.

https://doi.org/10.1371/journal.pcbi.1006686.g005
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Fig 6. The major cluster in whole-genome partition interactions. The nodes represent (A) partition sizes and (B) CTCF Z-scores. Tight sub-

clusters of partitions show chromosomal territories, which are differentiated by the node colors characteristic for different chromosomes. Black

edges between nodes represent scaffold-layer interactions, and grey edges, layer 1 interactions (see also S4 Fig and corresponding explanations on

the classification of effective interaction strengths in “Data sets, processing, and visualization” of the Materials and Methods). The chromosomes

that are not shown here form only single-chromosome clusters that do not strongly interact with chromosomes of the major cluster.

https://doi.org/10.1371/journal.pcbi.1006686.g006
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densely interconnected, while other chromosomes in the major cluster are linked to them via

only a few interactions. Partitions 1–2.1.2, 14–3.4, and 22–6, for example, act as contact hubs

between these massively interacting chromosomes and others. On the other hand, partitions

such as 3–2.2.2, 8–6.2.1, 10–3.4.1, connect less-strongly interacting chromosomes to the

strongly interacting ones (see S3 Table for interaction strength layers for these interactions

between chromosomes). Notably, chromosomes 1 and 2, the two largest ones (about 250Mbp

each), behave differently in the context of the whole-genome interactions. While chromosome 1

serves as a hub in the interactions between the highly- and less-interacting chromosomes, chro-

mosome 2 does not show many interactions with other chromosomes (Fig 6A). Turning to

functional regulation, most of the partitions involved in significant inter-chromosomal interac-

tions exhibit higher densities of several epigenetic factors, such as CTCF (Fig 6B), H3K9ac (S5A

Fig), and DNase accessibility (S5B Fig). These partitions may participate in the formation of

active epigenetic compartments facilitated by the structural role of CTCF [65]. Active process-

ing of genomic information taking place in these structures is regulated by the activating histone

modifications (H3K9ac) and transcriptional repressors (CTCF). The opposite trend is observed

for partition 14–3.4, which is coupled with a higher density of the silencing H3K9me3 histone

modification. Therefore, partition 14–3.4 and its interactions with partitions in other chromo-

somes, for instance 10–3.4.1, with low activating factor densities may indicate the formation of

dense structural heterochromatin and/or silencing facilitated by Polycomb bodies [1, 66].

Correlation between epigenetic signal and effective interactions

To evaluate how the distribution of epigenetic signals may be associated with interaction

between partitions, we calculated correlations between effective interaction strengths and the

expected enrichment of factor densities across partition pairs that are mostly euchromatic

(EC) or heterochromatic (HC). The enrichment of factor densities is estimated here as the

product of factor densities per partition (S12 Fig). To obtain the strongest signals, we limited

our consideration to interactions between partitions that are dominated by either eu- or het-

erochromatin (see legend for S12 Fig for the definition of EC and HC partitions): EC-EC pairs

(S12A Fig), HC-HC pairs (S12B Fig), and EC-HC pairs (S12C Fig). Despite the relatively weak

correlations, general trends appear to be quite clear, with the strongest ones seen between

euchromatic (EC-EC) partitions (S12A Fig). Transcription factors CTCF and RAD21 are

always positively correlated, as well as POL2 in EC-EC (S12A Fig) and EC-HC (S12C Fig)

pairs, whereas POL3 shows no correlation. The positive correlation for CTCF and RAD21

with effective interaction strength agrees with current literature on the role of CTCF and cohe-

sin in mediating chromatin structure through looping interactions [65, 67, 68]. Stronger inter-

actions between EC partitions appear to be linked to higher transcriptional activity, as

suggested by the positive correlation with active histone modifications and POL2. Absence of

correlation for HC-HC pairs in the case of POL2 can be related to the fact that transcriptional

activity is suppressed in heterochromatin. Potential active involvement of interacting euchro-

matic partitions in the formation of transcription factories is corroborated by the most pro-

nounced correlation observed for DNA accessibility in pairs of euchromatic partitions (S12A

Fig). Activating histone modifications, except for H3K4me3, show positive correlations in all

types of interacting partition pairs. Interestingly, silencing histone modifications appear also

to be weakly correlated with effective interactions between partitions.

Partitioning analysis on biological replicates and other cell lines

The original partitioning analysis was performed on the GM12878_primary (B lymphoblas-

toid) Hi-C dataset by Rao et al. [23] (GEO accession GSE63525). We also applied our model to
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four other datasets: GM12878_replicate (a biological replicate of GM12878_primary dataset),

IMR90 (lung fibroblast), HUVEC (umbilical vein endothelial cells), and HMEC (mammary

epithelial cells). Our goal in this analysis was two-fold: (i) to benchmark robustness and repro-

ducibility of the method using the replicate dataset; (ii) to examine the sensitivity of the

method in detecting alterations in chromatin organization in different cell lines, associated

with corresponding genome functional states and gene expression levels. S13 Fig shows side-

by-side comparisons of the partitioning schemes for GM12878_primary and the other data-

sets, and S6 Table shows some indicative statistics comparing the results from each case. First,

we observed a high consistency between the biological replicates of GM12878: S13A Fig shows

that the partitioning was highly consistent between the two sets of Hi-C data, with partition

boundaries being identical in most cases, resulting in the high Rescaled Mutual Information

(RMI) of 0.70 (see Chromosome partitioning in Materials and Methods for definition of

RMI). The composition of the major cluster was also largely identical. Comparing the results

from other cell lines, we observed significant differences: IMR90, HUVEC and HMEC cells

each had significantly shifted partition boundaries compared to GM12878_primary, leading to

lower RMI values of 0.39 to 0.48. The major-cluster structures in these cell lines are also signifi-

cantly different (see S16 Fig for IMR90 and HUVEC), especially that of HMEC, where no

strong inter-chromosomal interactions were observed between partitions, and the chromo-

somes remained isolated in the whole-genome network. Notably, in both IMR90 and HUVEC,

a large partition on chromosome 9 forms extensive inter-chromosomal interactions: the over-

lapping region (chr9:1268000000–1412500000) contains two genes (OLFM1 and MVB12B)

with the RNA-expression profiles different from that of GM12878. The MVB12B (a compo-

nent of endocytic protein system [69]) gene is activated in both IMR90 (lung fibroblast) and

HUVEC (umbilical vein endothelial cells) cell lines, and OLFM1 (lung cancer marker [70]) in

IMR90, while both genes are silenced in GM12878. These preliminary observations call for

future in-depth investigation of the structural basis, functional mechanisms, and specifics of

epigenetic regulation behind the observed differences between cell types.

Affinity between partitions as an indicator of associations and potential

functional interactions in the genome

While effective interactions between partitions characterize the overall architecture of genome

organization, it may not fully discriminate functionally relevant interactions between chromo-

somes and their parts. Indeed, most partitions are presumably in constant motion within the

nucleus, and as Hi-C experiments are typically conducted on unsynchronized cell populations,

effective interactions capture the average contact probability arising from both random diffu-

sion and specific transient interactions. Therefore, in addition to effective interactions, the

affinity between partitions was also calculated, which reflects how the observed interaction fre-

quency differs from the expected frequency (from random diffusion), because of possible asso-

ciations between partitions. Defined as the ratio between observed and expected contact

probabilities between pairs of partitions (see Eq 15 in Methods), the affinity is indicative of the

degree of association between partitions, and high affinity values may serve as a manifestation

of biologically-relevant contacts. Fig 7 contains the whole-genome matrix of pairwise affinities

(blue: high affinity, white: low affinity) between corresponding partitions. Like the observa-

tions in the whole-genome effective interaction matrix (Fig 5), the largest chromosomes 1 and

2 exhibit different behavior, with chromosome 1 containing partitions with high affinity to

those in several other chromosomes (especially with chromosomes 14–22) and chromosome 2

generally showing low affinity to partitions in other chromosomes. Smaller chromosomes 14–

22 form more, presumably functional, contacts with each other, compared to other
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chromosomes. At the same time, the number of partition pairs with high affinity is much

lower than number of pairs with significant effective interactions (compare Fig 5 and Fig 7). In

total, we observed 687 high-affinity pairs (S4 Table), which are seemingly crucial for whole-

genome structural organization and function.

Interestingly, several large partition pairs (>2Mb) with high effective interactions and affin-

ity are located in the telomeric regions of corresponding chromosomes (yellow cells in S5A

Table), having moderately high densities of epigenetic/transcription factors and increased

DNA accessibility (S5A Table). Two other groups of partitions with high affinities are charac-

terized by smaller partition sizes and highly elevated concentrations of various transcription

factors and epigenetic modifications (S5B Table): (i) pericentromeric partitions (red cells in

Table) show high concentrations of activating (H3K4me3) and silencing (H3K27me3 and

H3K9me3) histone modifications and high levels of POL3 and RAD21; (ii) telomeric partitions

(yellow cells in Table) show strongly increased concentrations of all activating histone modifi-

cations, POL2, and CTCF, as well as high DNA accessibility. This separation between types of

activating histone modifications, transcription factors, and DNA accessibility in centromeric

and telomeric regions signals a specificity of functional interactions between partitions with

high affinities to each other. Examples of partitions involved in high-affinity interactions and

characterized by the over-representation of different epigenetic factors and modifications are

collected in Fig 8 and S6 Fig, where high-affinity clusters of partitions enriched in these epige-

netic marks are plotted.

Fig 7. Matrix of the whole-genome affinity between 539 partitions. A color gradient from white to blue is used to show

the affinity change from low to high.

https://doi.org/10.1371/journal.pcbi.1006686.g007
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A comparison of the inter-chromosomal interactions in the major cluster of effective interac-

tions (Fig 6) with interactions in affinity clusters (Fig 8 and S6 Fig) highlights several relatively-

small partitions, e.g. 9–5.6.3, 9–5.6.5, and 11–5.1.3, that act as junctures between different chromo-

somes. These partitions yield increased density of CTCF along with other juncture-partitions (3–

2.2.2, 6–1.4.3, 8–6.2.1 to name a few), pointing to the potential importance of these partitions in

Fig 8. High-affinity clusters enriched in various histone modifications. Node sizes represent the factor Z scores, and edge widths represent affinity values.

The following histone modifications are considered; (A) H3K9ac, (B) H3K9me3, (C) H3K27ac, (D) H3K27me3, (E) H3K4me1, and (F) H3K4me3. In each

case, only partitions with factor Z-scores above 2 and only edges connecting partition pairs with high affinity C> 2 are shown.

https://doi.org/10.1371/journal.pcbi.1006686.g008
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whole-genome structural organization. This inference is further supported by multiple interac-

tions detected for partitions 8–6.2.1, 9–5.6.5, and 11–5.1.3 in the CTCF affinity graph (S6D Fig).

Additionally, H3K9ac (Fig 8A) and H3K27ac (Fig 8C) affinity graphs hint at the functional impor-

tance of some of these partitions: the central part of the H3K9ac graph is formed by partitions

9–5.6.3, 9–5.6.5, and 11–5.1.3, while 9–5.6.3 and 11–5.1.3 are also present in the H3K27ac graph.

Focusing on individual epigenetic factors, the activating H3K4me3 mark links more parti-

tions than the activating H3K4me1 histone modification. The silencing H3K9me3 histone

modification functionally links many centromeric partitions, whereas the activating H3K9ac

modification works in both mostly euchromatic and mixed euchromatic/weakly-heterochro-

matic non-centromeric regions. Similarly, the activating H3K27ac modification affects mostly

non-centromeric partitions, unlike the very active silencing H3K27me3, for example, in parti-

tions 1–4.11.1, 2–3.1.1, and 10–2.1.1 (Fig 8). These partitions are also characterized by the high

levels of POL3 (S6B Fig) and RAD21 (cohesin, S6C Fig), whereas the insulator CTCF links sev-

eral euchromatic partitions across different chromosomes (S6D Fig).

It is evident that centromeric partitions 1–4.11.1, 2–3.1.1, and 10–2.1.1 are enriched with

almost all regulatory factors (see Fig 8 and S6 Fig), yielding high affinities to other partitions and

pointing to important functional interactions and intense regulation taking place in these parti-

tions. Interestingly, while activating histone marks (Fig 8A, 8C, 8E and 8F) are dominant in sev-

eral euchromatic partitions, these marks are also present in partitions containing large sections of

heterochromatin and centromeres, which are commonly associated with dense packing and tran-

scriptional repression. Similarly, silencing histone marks (Fig 8B and 8D) are dominant not only

in heterochromatic and centromeric partitions, but also in some partitions that are mostly euchro-

matic. Furthermore, dominating regions for the transcription factors CTCF and cohesin (S6C

and S6D Fig) appear to have significant overlap with activating and silencing histone marks,

respectively. These overlaps show the complexity of functional interactions in chromatin, even at

the coarse-grained level of partitions: opposing factors are found acting in the same regions, allow-

ing for switching between transcriptional states in response to other biochemical cues.

Discussion

We proposed here a computational framework for exploring chromatin organization based on

Markov State Modelling of chromatin interactions. Given the multilevel hierarchical packing

of chromatin, we introduced a reduced description of the complex network of chromatin

interactions and its organization via interactions between structural units at different levels of

hierarchy. By interpreting Hi-C data as a pairwise contact energy landscape, a Markov State

Model approach was used to explore the chromatin interaction network through the random

walk of a probe. While steady-state distributions obtained from the Markov process of ran-

domly-moving molecules can serve as a measure of the chromatin accessibility for epigenetic

factors [71], taken alone they describe neither the genome architecture, nor structural and

functional interactions between genome partitions and regulatory factors. In this work, analy-

sis of the Markov State Model under thermal annealing shows the key role played by the rug-

gedness of the contact energy landscape in shaping chromosome structural organization.

Specifically, metastability analysis of the Markov State Model associated with the chromatin

interaction network allowed us to identify levels of structural hierarchy and to observe struc-

tural units—partitions of different scales. These structural partitions serve as a coarse-grained

description of chromosomes, which form the basis for introducing the notion of intra- and

inter-chromosomal network of effective interactions. The analysis of effective interaction net-

works across levels of hierarchy in individual chromosomes shows that chromosomes adopt

highly varied topologies. While the lower levels reveal an overall architecture of the folded
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chromosome, the higher levels can provide structural details in relation to functional organiza-

tion and regulation of gene expression.

Biological insight on the structural organization of chromosomes can be obtained with our

method by considering peculiarities in the distributions of transcription and epigenetic factors

in eu- and heterochromatic partitions in relation to interactions between them. Partitions at

the highest levels of hierarchy may be seen as analogous to TADs, or to the so-called A/B

(active/inactive) epigenomic compartments [72]. In the future, with the development of com-

mon standards and benchmarks by the community, it would be important to compare results

and insight obtained from various genomic segmentation approaches. In this work, however,

we based our analysis on the obtained sets of partitions, showing how studying distributions of

activating and silencing histone modifications in these partitions can help to understand the

role of structural organization of chromosomes in the regulation of gene expression.

Shifting our focus from structural analysis of individual chromosomes and the functional

involvement of partitions to whole-genome architecture, we considered the set of 539 parti-

tions obtained at high levels of hierarchy in corresponding chromosomes with effective inter-

actions between them, which were obtained by adopting a fast “mean field” approximation. In

the context of the “partition space”, an analysis of genome-wide effective interactions provides

a blueprint of inter-chromosomal contacts, showing that despite the strong crowding of parti-

tions in chromosome territories, most chromosomes are significantly connected with each

other, giving rise to a bulky cluster in the core of the effective interaction network. The stron-

gest interactions were observed between chromosomes 14–22, which are characterized by

small chromosome sizes. Heterochromatic partitions are apparently mostly involved in the

formation of chromosomal territories, interacting within the corresponding chromosomes

and providing structural integrity, and showing only low levels of activating factors. On the

other hand, most of the inter-chromosomal juncture partitions, while relatively small in size,

are enriched with CTCF, H3K9ac, and DNase-Seq, which may lead one to conclude that these

partitions are involved in the formation of inter-chromosomal active epigenomic compart-

ments [72]. Correlations of effective interactions between partitions with distributions of epi-

genetic factors in these partitions show that: (i) most active regulation apparently takes place

in pairs of interacting euchromatic partitions; (ii) DNA accessibility, CTCF and activating his-

tone modifications H3K4me1, H3K9ac, and H3K27ac are major potential contributors in the

regulation of genome function. Additional biological insight was obtained by determining par-

titions that may form transient function-related contacts, thereby triggering alternate chroma-

tin states. To this end, the affinity measure was introduced here to evaluate the level of

association between partitions, so as to identify partitions with functionally-related interac-

tions. Irrespective of the effective interaction strength, high affinity between partitions point to

the mutual functional involvement of corresponding partitions. Since different factors are

likely to play dominant roles in different genomic regions, our affinity analysis is complemen-

tary to the concept of chromatin assortativity introduced by Pancaldi et al. [44], which may

identify epigenetic factors associated with multiple high-affinity communities across the whole

genome.

There are different challenges in extending the original analyses of the Hi-C data to explor-

ing the structure-function relationships in the genome. Several previous studies using a hierar-

chical clustering approach for the analysis of Hi-C data are based on the a priori assumption of

the existence of structural hierarchy in chromatin [38–40]. While the work by Boulos et al. is

free from such an assumption [37], it employs a tunable scale parameter in establishing the

hierarchy. Our approach is based on an energy landscape representation of the chromatin

interaction network, which is formalized and explored via a Markov State Model. Metastability

analysis of the Markov State Model allows one to detect natural levels of hierarchy in

Markov State Modelling of Chromatin

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006686 December 31, 2018 20 / 35

https://doi.org/10.1371/journal.pcbi.1006686


chromatin structure. The novelty of our approach does not free it, however, from certain limi-

tations. For example, the “mean-field” approximation for coarse-graining of whole-genome

interactions, rooted in the computational challenge in calculating committor probabilities on

very large networks, is currently a necessary step for processing massive whole-genome data-

sets. On the other hand, because of its rapid computational time, this approximation allows us

to explore higher resolution Hi-C datasets and to obtain partitions of smaller sizes and, ulti-

mately, uncovering higher levels of hierarchy. Further, as the rugged morphology of the energy

landscape is key to determining chromosomal partitions, the effect of noise associated with the

Hi-C data is of critical importance. For example, all contact frequencies and derived quantities

are affected by the characteristic noise, since most Hi-C experiments are conducted on unsyn-

chronized cell populations. While a possible solution would be to study single-cell Hi-C [73]

data, which shows great promise in capturing differences between transient states in chroma-

tin organization, the current protocol yields too few interaction pairs for a meaningful analysis

of the interaction network. Although specialized variants of the Hi-C protocol, such as capture

Hi-C (cHi-C) [74], do not provide a full view of the physical organization of chromatin, they

can nonetheless be useful in targeting specific subsets of genomic loci, such as promoters. The

biological implications of our analysis, particularly on the relationship between factor enrich-

ment and effective interaction strength and affinity, may also be strengthened by incorporating

additional experimental approaches, such as ChIA-PET [75] and HiChIP [76], which identify

interacting genomic elements that are concurrently associated with specific binding proteins.

Genome architecture mapping (GAM), a newly devised experimental protocol that determines

the frequency at which genomic loci lie on the same spatial plane by sequencing fragments iso-

lated in cryosections of the nucleus [77], can be a great source of constraints for future 3D

whole-genome reconstruction.

To conclude, there is no doubt that scientific interest in chromatin structure will continue

to drive the development of a variety of specialized experiments and computational

approaches in the field of 3D genomics. The method presented here, aimed at detecting and

characterizing the hierarchical organization of chromatin, is a step towards unravelling causal

relationships in chromatin structure and dynamics of function-related transient molecular

phenotypes. The great potential of new experimental data combined with constant methodo-

logical improvement are critical in the quest for a more detailed understanding of chromatin

architecture, 3D reconstruction, dynamics, and epigenetic regulation.

Materials and methods

Ethics statement

No human or animal subjects and/or tissue were used in the work.

Ethics rules of the Bioinformatics Institute, A�STAR were followed during the work on the

project and preparation of the paper.

Markov State Model of the genome

In the following, a Markov jump process is introduced to describe a random walk in the chro-

matin interaction network, where a probe connects pairs of interacting genomic loci, which

represent the states of the Markov State Model (MSM). We first focus on a single chromosome

c and denote the corresponding matrix element of Hi-C counts fij for a pair of loci (i,j). We

define a pairwise interaction pseudo-energy Eij = −lnfij, which characterizes a strength of inter-

action between a pair of loci (i,j): the higher the observed counts the more stable the corre-

sponding interactions (lower pseudo-energy) are. Therefore, a Maxwell-Boltzmann
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probability distribution of counts is defined as

pijðbÞ ¼
1

ZðbÞ
expð� bEijÞ ð1Þ

where Z(β) = ∑(i,j)2c exp(−BEij) is the partition function and β is the thermal parameter (inverse

of a temperature). Eq 1 evaluates the joint interaction probability of a pair of loci (i,j), which

can be modulated by the thermal parameter β. For low values of β (high temperature), the

interaction energies tend to contribute equally in the exponential, whereas for high values β
(annealing, low temperature) only the highly interacting loci contribute significantly in the

exponential. The transition probability associated with the Markov jump process is defined by

the following conditional probability

pij ¼
pij

mi
ð2Þ

where

mi ¼
X

j2c

pij ð3Þ

is the probability for the genomic locus i to form any interaction in chromosome c. Additionally,

μi is the steady state distribution of the transition matrix pij. The transition probability matrix in

Eq 2 uniquely identifies a discrete time Markov jump process that governs the trajectories of a

random walker across the state space. A random walker is interpreted as a probe particle traveling

between genomic loci, for instance a protein such as a transcription factor. Accordingly, the steady

state distribution μi can be interpreted as a distribution of probes in a locus i, whereas the distribu-

tion pcij in Eq 1 describes an undirected flux of probes connecting the loci i and j.
The kinetic distance between pairs of loci is the mean first passage time (MFPT), the mean

number of discrete steps τij between two different genomic loci (i,j) in chromosome c, which is

obtained by solving the system of equations [78]

tij ¼ pij þ
X

k6¼i;j

pikð1þ tkjÞ ð4Þ

If the departure and arrival states coincide, the MFPT is called mean recurrence time MRT τi,
which gives the mean time for a walker to return to its initial state i. The MRT is obtained

from the MFPTs in Eq 4 via the formula

ti ¼ pii þ
X

k6¼i

pikð1þ tkiÞ ð5Þ

S7 Fig shows the MFPT matrices (with the MRTs in diagonal) for chromosomes 1, 17, and 20

at β = 1 (left) compared to annealing condition at high β (right). A separation of time scales

emerges upon increasing the β parameter, which is reflected in the partitioning of the MFPT

matrices. The squares depicted in the annealed MFPT matrices identify sets of pairs (i,j) with a

similar τij, which are the results of the partitioning in the network of interactions. S8 Fig shows

the MFPT matrices for all chromosomes at corresponding high β. For each chromosome, the

value of β was chosen as large as possible to observe the fine partitioning structure in the chro-

mosome, while at the same time avoiding singular values in the calculations of the MFPTs and

MRTs. The values of β used are listed in S1 Table.
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Metastability and optimal hub sets

Metastability index. The major goal of associating a Markov process with Hi-C network

data is to use a random walk as a tool to explore chromosomal structure. By traveling across

the chromosome, a random walking probe connects pairs of genomic loci. Among the loci

that the probe encounters, some are more special than others. These special loci are the hubs

in the underlying network structure that correspond to highly interacting and centrally located

loci, which implies that they act as attractors of the MSM. Typically, a probe departing from a

non-hub locus will likely hit a hub and stay around it, whereas a probe departing from a hub

locus will likely stay around it rather than hitting another hub. This property points to the

metastability of the corresponding Markov process, as described elsewhere [59]. The metasta-

bility of the MSM that is associated with a chromatin interaction network is reflected in the

multiple highly-connected hubs that form the cores of partitions of different sizes. In the fol-

lowing we present an optimization method for identifying hub sets in metastable networks.

The method was previously introduced and justified in the context of metastable dynamical

systems [59], and is adapted here to the context of chromatin.

The method is essentially a complexity reduction scheme: to identify the hub set M that

best captures the metastable dynamics of the network, a metastability index rM is optimized

across all possible candidate hub sets. Briefly, the metastability index is defined as the ratio of

two distinct probabilities: the probability for a walker to connect two hub loci (as small as pos-

sible in a metastable hub set) and the probability for a walker to hit any hub locus (as large as

possible in a metastable hub set). In mathematical terms, for a given chromosome c the meta-

stability index can be defined as

rM ¼
maxi2M maxj2M figΓ ij

mini=2M maxj2MΓ ij
ð6Þ

where Γij is a pairwise committor probability, which is the probability for a probe departing

from locus i to hit locus j before returning to i, and it is expressed in terms of the MFPT and

MRT values in Eqs 4 and 5 [59]

Γ ij ¼
ti

tij þ tji
ð7Þ

The probabilities Γij and the metastability index rM are functions of the thermal parameter

β. In particular, upon annealing conditions (high β) the time scales associated with the MSM

random walks increase exponentially with β, which, in turn, increases metastability. As

pointed out above, β values that are too high can lead to numerical instabilities which can

result in singularities in the calculation of the MFPTs and MRTs and, consequently, on the

pairwise committor probability Γij of Eq 7. Thus, for each chromosome, the highest integer

value of β was chosen under the condition that singular values in the MFPTs calculations are

avoided.

Optimization procedure. The procedure for optimization of the metastability index rM

and for finding the optimal hub sets for each chromosome starts from constructing putative

trial hub sets of increasing size n, which are, then, processed via a Monte Carlo (MC) minimi-

zation/optimization scheme to find the hub set of size n with the lowest metastability index.

The procedure consists of three steps. Step 1. The first hub set {a,b} is putatively constructed

such that a = argmaxi μi (see Eq 3), i.e. the locus with the highest density of probes, and b = arg-

mini ρ{a,i}, as b minimizes the corresponding metastability index. Step 2. The MC scheme is

applied to the current hub set by combining two types of move sets in order to sample trial

hub sets. In the first move set type, a random hub locus a is replaced according to the rule

\
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a†(a) = argmaxi Γai, whereas in the second type α is replaced with a random locus that is not

present in the current hub set. Since both move sets can, in principle, generate duplicate

loci in the trial hub set, the move is rejected and a new one casted if duplicate loci are gener-

ated. The metastability index is calculated on the trial hub sets, which are accepted or

rejected according to a Metropolis criterion. The number of iterations for the MC optimiza-

tion is 500. Among all the hub sets sampled, only the optimal one with the lowest rM is

selected as the hub set of size n. Step 3. A trial hub set of size n + 1 is constructed by adding

one more locus to the optimal hub set of size n. Subsequently, step 2 is performed to obtain

the optimal hub set of size n + 1.

Steps 2 and 3 are iterated until the upper limit for hub set size is reached. The upper limit of

hub set size was set to 50 for each of the chromosomes as this was sufficient for defining 3 lev-

els of hierarchy for each chromosome (see section Chromosome partitioning).

The final goal of the above optimization procedure is to obtain a profile of the metastability

index rM as a function of set size. S14 Fig shows the metastability index profiles for each of the

chromosomes in the dataset calculated for increasing values of the inverse temperature param-

eter β. Each of the profiles exhibits multiple minima that correspond to hub sets of different

sizes. As discussed below, the hub sets corresponding to minima can be used as starting points

for constructing the hierarchy of chromosome partitions.

Chromosome partitioning

Committor probability. From the optimization procedure of the metastability index, a

list of optimal hub sets can be obtained for each of the chromosomes. An optimal hub set M is

a concise map of the intra-chromosomal network of interactions at a given resolution. The

map is accurate as much as it identifies highly interacting regions in the chromosome—parti-

tions. A way to identify soft partitions out of the hub set M is to use a committor probability

qa(i) [59], which is the probability for any locus i to belong to the partition defined by hub a 2
M rather than that by any other hub in M fag, with the normalization

P
a2MqaðiÞ ¼ 1 for

any locus i. Given chromosome c and the hub set M; qaðiÞ solves the following system of

equations with boundary conditions

X

j2c

LijqaðjÞ ¼ 0; i=2M

qaðiÞ ¼ 0; i 2M fag

qaðiÞ ¼ 1; i ¼ a

ð8Þ

8
>>>><

>>>>:

where Lij is the Laplacian associated with the transition matrix such that Lij = pij − δij. The low-

ercase index a indicates both a hub locus in the hub set M and its related soft-partition charac-

terized by the committor qa(i). If the hub set M is a good representation of the network, i.e.
rM is low, hard-partitions can provide a coarse-grained representation of the chromosome

(see S9 Fig for illustration of the difference between the concepts of hard and soft partitions).

A hard partition is defined when a locus either belongs to it or not, with corresponding com-

mittor defined as

yAðiÞ ¼
1; a ¼ argmaxbqbðiÞ; i 2 A

0; otherwise; i=2A
ð9Þ

(

such that
P

a2MyAðiÞ ¼ 1 and with the uppercase index A denoting the hard partition linked

to a hub locus a 2M, which is the set of loci i where θA(i) = 1. In this work, we obtain the par-

tition set P linked to the hub set M using the hard-partition scheme.

\
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Detecting hierarchical levels in a chromosome. For a given chromosome c, since the

metastability index rM is a measure of how accurately the hub set M represents the intra-

chromosomal network of interactions, only sets M corresponding to minima in the profile

rM are considered. In determining the levels of structural hierarchy for each chromosome

corresponding to different hub sets, an operational threshold is used to select the hub sets

corresponding to minima with rM < 0:8 (S10 Fig). Ignoring the trivial level n = 2, a hierar-

chy of levels of sizes ni is established according to the empirical rule ni� 2ni−1, which

ensures that hub sets across consecutive levels are not too similar. For the largest chromo-

somes 1 and 2, the second-smallest n at which rM is minimum is chosen as the first level of

hierarchy, n1, in order to have an average partition size in these chromosomes comparable

to those of smaller chromosomes.

Consistency of the chromosome partitioning. In order to check the robustness of our

chromosome partitioning method, the same analysis was performed on two biological rep-

licates of the Hi-C data set [23], and the consistency between partitioning schemes across

data sets was tested using mutual information. Briefly, to be consistent, similar portions

of chromosomes’ genomic loci should be shared across partitions in the partition sets

obtained on the different data replicas. Given chromosome c and two partition sets P1 and

P2 corresponding to two replicas of the Hi-C data, we define the normalized mutual infor-

mation

IðP1;P2Þ ¼
1

HðP1Þ þ HðP2Þ

X

A2P1 ;B2P2

nABln
nAB
nAnB

ð10Þ

where νAB is the normalized fraction of loci that are present in both partitions A 2 P1 and

B 2 P2; nA; nB are the normalized fractions of loci that are present in A 2 P1 and B 2 P2,

respectively, and HðP1Þ and HðP2Þ are the Shannon entropies associated with the parti-

tion sets. The normalized mutual information between two data sets is greater than 0.9 for

most chromosomes. The consistency between partitioning schemes was also checked

across Hi-C data resolutions and upon annealing of the thermal parameter β: using the

interaction matrices at 25kbp, 100kbp, and 200kbp resolution does not affect the partition

boundaries significantly; hard-scheme partition boundaries do not change for β � 4 (see

S15 Fig). We calculated the mean normalized mutual information between partitioning

schemes with random boundaries, which for 2000 random samples resulted in 0.77.

Therefore, we report a rescaled mutual information (RMI) between partitioning sets as

RMIðP1;P2Þ ¼ ðIðP1;P2Þ � 0:77Þ=0:23, which assumes values between 0 and 1 (S6

Table). The RMI is also used here as a quantitative measure of similarity between parti-

tioning schemes across different cell lines.

Effective interactions between partitions

The optimization of the metastability index upon annealing conditions allows one to obtain an

optimal hub set M. It has been shown that in a MSM with a large state space, an optimal hub

set and its corresponding partitions can be used for reducing the state space and obtaining a

smaller MSM [59]. In the context of our model of chromosome interactions, we introduce a

scheme for coarse-graining chromatin structure and quantifying effective interactions between

the obtained partitions. In the previous section, we have described the interaction network of a

chromosome c in terms of a MSM with transition matrix pij (Eq 2), representing the probabil-

ity for a probe to reach locus j from locus i, with the steady-state distribution of probes μi in

locus i (Eq 3), and with the undirected flux of probes πij between loci i and j defined in Eq 1.

Considering the optimal hub set M with its associated committor probability qa(i) in the
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chromosome c, the effective flux of probes between any two soft-partitions a,b is given by

Fab ¼
X

i2c

qaðiÞpib ð11Þ

where πib is the undirected flux of probes between the loci i and b (Eq 1) in chromosome c. In

other words, Eq 11 measures the portion of flux between any locus i and hub b passing through

hub a (see S2 Fig for illustration of the notion of effective interactions). Eq 11 is an exact calcu-

lation on a single chromosome.

We are also interested in evaluating the effective fluxes between hub loci in different chro-

mosomes. However, Eq 11 cannot be simply extended to the whole genome as the committor

is by construction qa(i) = 0 for any locus i =2 c. As computational limitations do not allow us to

calculate the exact committor for the entire genome, a mean field formulation of Eq 11 was

used to estimate the effective flux between any two partitions A,B in the genome. To this end,

the effective flux between partitions, irrespective of the chromosomes to which they belong is

calculated as

FAB ¼
X

i2g

yAðiÞ
X

j2g

pijyBðjÞ; ð12Þ

where the summations are carried over the entire genome g, πij is the flux of probes between

any pair of i and j in the genome (Eq 1 with fij the Hi-C matrix of paired-end reads of counts is

now extended to the entire genome), and θA(i) the hard-partitioning committor defined in Eq

8. The rationale of Eq 12 is to efficiently, though indirectly, estimate the flux between any two

partitions A, B in terms of all the intermediate pairwise fluxes πij. Within the logic of a MSM,

the effective fluxes in Eq 12 serve as a measure of chromatin effective interactions.

Affinity between partitions

Chromosome partitions are obtained from the optimal hub set as a result of the metastability anal-

ysis upon annealing conditions. They offer a coarse-grained description of the genome as the

interactions between partitions are characterized via effective interaction strengths (Eq 12). Given

a genome-wide set of partitions obtained above, a putative reduced model of the major partition

interactions can be constructed by directly coarse-graining the matrix of counts fij for the entire

genome. The observed joint probability of interaction between two partitions A and B is

PðA \ BÞ ¼
P

i2A

P
j2Bfij

P
ðX;YÞ;X 6¼Y

P
i2X

P
j2Yfij

; A 6¼ B ð13Þ

where the summation in the denominator is carried out on the pairs (X,Y) of distinct partitions to

ensure proper normalization. Because of the law of total probability, the probability for a partition

A to be involved in any interaction other than itself is

PðAÞ ¼
X

Y 6¼A

PðA \ YÞ ð14Þ

which by construction adds up to one over all possible partitions A. In general, in the case of inde-

pendent partitions, namely with no association between them, the relation P(A \ B) = P(A)P(B)

would hold for the interaction probability. Therefore, to provide a measure of the degree of associ-

ation between partitions, we define the following affinity as

CAB ¼
PðA \ BÞ
PðAÞPðBÞ

ð15Þ

Markov State Modelling of Chromatin

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006686 December 31, 2018 26 / 35

https://doi.org/10.1371/journal.pcbi.1006686


which is a positively defined quantity. This quantity is also known as the observed to expected

ratio o/e where P(A \ B) and P(A)P(B) are the observed and expected probabilities, respectively.

In the case of CAB> 1 where the observed probability exceeds the expected, this is interpreted as a

degree of association between partitions, either a contact or functional relationship. On the con-

trary, if CAB� 1 observed and expected probabilities either coincide or the expected probability

exceeds the observed one. These situations are interpreted as either no association (between parti-

tions CAB = 1) or dissociation (partitions repel each other for CAB< 1). Thus, high values of affin-

ity indicate a high degree of association between partitions, suggesting the presence of active

binding and/or co-localization mechanisms. Intra-chromosomal pairs show very high affinities,

typically with CAB> 10, while inter-chromosomal pairs have affinities CAB< 4.

Data sets, processing, and visualization

In this work, we analyzed 50kbp in-situ Hi-C interaction maps obtained by Rao et al. [23] for

human B lymphocyte cells (GM12878, two replicates) at both single-chromosome and whole-

genome levels (GEO accession GSE63525). Three other datasets listed under the same GEO

accession were also analyzed: IMR90 (lung fibroblast), HUVEC (umbilical vein endothelial

cells), and HMEC (mammary epithelial cells). Epigenomic data tracks for GM12878 were

obtained from the ENCODE Consortium web portal, with signal tracks for transcription factor

ChIP-Seq from ENCODE/Stanford/Yale/USC/Harvard, histone ChIP-Seq from ENCODE/

Broad Institute, DNase-Seq from ENCODE/OpenChrom (Duke).

Z-scored fractions of epigenetic factors were calculated in order to investigate their distri-

butions within partitions. In the single-chromosome case, for a given signal track density xf(A)

of factor f in a partition A of chromosome c, the Z-scored density of factor f is:

Zf ðAÞ ¼
xf ðAÞ � mf

sf
ð16Þ

where μf and σf are the weighted mean and standard deviation of densities of factor f across

partitions in the chromosome c. For the Z-score calculations on the whole-genome, the

weighted mean and standard deviation across all 539 partitions were used.

For the network representation of the effective interactions, the force-directed layout in

Cytoscape was used [79] with the force constants parametrized as logFAB, where FAB is the

effective interaction between partitions (Eqs 11 and 12). The node sizes are proportional to the

partition size or Z-scored epigenetic factor density, respectively. Only partitions of size larger

than 2Mbp are shown. Edge width scales with logFAB and only interactions above a certain

threshold are shown. For intra-chromosomal networks, width of edges is defined according to

fixed thresholds of the interaction strength at each level of hierarchy.

In the whole-genome network of effective interactions, given the large number of partition

pairs with a wide spread of effective interaction strengths, we classify interaction strengths into

discrete levels and ignore weaker interactions. Histograms of the distribution of effective inter-

action strengths are plotted in S4 Fig, with intra-chromosomal (red), inter-chromosomal

(green), and all (blue) interactions shown on the same axis. Layers of successively weaker inter-

actions provide finer details to the interaction network structure (see S4 Fig): (i) Scaffold-

Layer interactions are the strongest 2000 interactions, or the top 1.35% of all interactions; (ii)

Layer 1 interactions comprise the top 1.35% to 1.5% of all interactions, compared with the

Scaffold Layer; (iii) Layer 2 interactions represent the top 1.5% to 1.7% of interactions; (iv)

Layer 3 interactions represent the top 1.7% to 2.0% of interactions. In our analysis for the

GM12878_primary network, we considered only the scaffold and Layer 1 interactions (the top

1.5% of all interactions) to be significant.
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Hi-C data preprocessing

Before performing the MSM analysis for single chromosomes, a Gaussian Filter (GF) was

employed to reduce the effects of sampling noise and systematic errors in Hi-C data: the matri-

ces of raw interaction counts were convolved with a Gaussian kernel. With the interaction

matrix at 50kbp resolution, a width parameter in the Gaussian kernel σ = 200kbp was used,

truncated at 4σ. S11 Fig shows a comparison of the raw Hi-C matrices with those after the GF

preprocessing on chromosomes 1, 17, and 20. Performing partitioning analysis with and with-

out GF preprocessing showed that both approaches yielded similar hub sets and partitions,

and also when σ is varied within reasonable bounds, but the optimization on filtered datasets

converged more rapidly. The Gaussian kernel width σ was chosen to balance between retaining

structural information and computation speed: while increasing σ improved convergence rate,

doing so smears out structural information in the high-resolution interaction matrices. Com-

putation of effective interactions between partitions (Eq 12) is not affected directly by GF as

the raw interaction matrices are used for obtaining the πij values.

Software implementation details

The algorithms used in this study are implemented in a freely available Python package Chro-

maWalker (https://bitbucket.org/ZhenWahTan/chromawalker), built on the standard SciPy

stack of libraries (NumPy, SciPy, Matplotlib, and Pandas), using a serial implementation on

CPU. The run time for a full genome at 50kbp resolution, on a 3.4GHz Intel Core i7 CPU with

8GB RAM, is approximately 1 week.

Supporting information

S1 Fig. Partition diagrams for all 23 chromosomes derived from 50kbp in-situ Hi-C inter-

action maps obtained by Rao et al. [23] for human B lymphocyte cells (GM12878). Three

levels of hierarchy are presented and matched to the linear map of corresponding chromo-

somes with eu-/heterochromatic bands marked according to Giemsa staining [61].

(PDF)

S2 Fig. Illustration of the “mean field” approximation used for inter-chromosomal effec-

tive interactions. Given two hub loci a and b belonging to two different chromosomes, the

effective interaction between them is estimated by summing up the fluxes between a and b
passing through all possible pairs of intermediate loci i and j that belong to these two chromo-

somes.

(PDF)

S3 Fig. Architecture of chromosome 17 at the third level of structural hierarchy combined

with epigenetic data (complementary to Fig 4). Edge widths correspond to effective interac-

tion strengths, and node sizes in each panel represent Z scores for the following factors: (A)

H3K9me3, (B) H3K27ac, (C) H3K27me3, (D) H3K4me1, (E) H3K4me3, (F) POL2, (G) POL3,

and (H) RAD21.

(PDF)

S4 Fig. Histograms of effective interactions, for intra-chromosomal (red), inter-chromo-

somal (green), and all interactions (blue). Vertical red lines show the respective cutoff values

for classifying interaction strengths into the scaffold layer, and Layers 1 through 4. Scaffold-

layer interactions are the strongest 2000 interactions, or the top 1.35% of all interactions. Layer

1 interactions comprise the top 1.35% to 1.5% of all interactions, compared with the scaffold

layer. Layer 2 interactions represent the top 1.5% to 1.7% of interactions. Layer 3 interactions
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represent the top 1.7% to 2.0% of interactions.

(PDF)

S5 Fig. Distribution of various epigenetic factors in the partitions of chromosomes in the

major cluster of the whole-genome inter-chromosomal interactions (complementary to

Fig 6). (A) H3K9ac, (B) DNase-Seq.

(PDF)

S6 Fig. High-affinity clusters in the network of the whole-genome inter-chromosomal

interactions enriched in various epigenetic factors (complementary to Fig 8). (A) POL2,

(B) POL3, (C) RAD21, and (D) CTCF.

(PDF)

S7 Fig. Mean first passage time (MFPT) matrices with the mean return times (MRTs) in

the diagonal for individual chromosomes with and without thermal annealing. (A) Chro-

mosome 1, β = 1, (B) Chromosome 1, β = 9, (C) Chromosome 17, β = 1, (D) Chromosome 17,

β = 9, (E) Chromosome 20, β = 1, (F) Chromosome 20, β = 9.

(PDF)

S8 Fig. Mean first passage time (MFPT) matrices for all 23 chromosomes under annealing

conditions (high β) characteristic for each chromosome.

(PDF)

S9 Fig. Illustration of the difference between the concepts of (A) soft partitioning and (B)

hard partitioning.

(PDF)

S10 Fig. The dependence of partitioning on the value of metastability index ρM for chro-

mosomes 1, 17, and 20. In each of the following cases, we plot the partitioning diagrams for a

chromosome at all levels that have metastability index rM below a threshold value ρc: (A)

Chromosome 1, ρc = 0.5, (B) Chromosome 17, ρc = 0.5, (C) Chromosome 20, ρc = 0.5, (D)

Chromosome 1, ρc = 0.8, (E) Chromosome 17, ρc = 0.8, (F) Chromosome 20, ρc = 0.8.

(PDF)

S11 Fig. Comparison of the raw Hi-C data matrix with the result of Gaussian Filter (GF)

preprocessing on (A-B) chromosome 1, (C-D) chromosome 17, and (E-F) chromosome 20.

The width parameter σ = 200kbp, truncated at 4σ, was used for the Gaussian kernel. The origi-

nal resolution of Hi-C data was 50kbp resolution. The two columns represent (A, C, E) raw

matrices and (B, D, F) GF-preprocessed matrices.

(PDF)

S12 Fig. Plot of the product of epigenetic factor densities in pairs of partitions against the

effective interaction strength of the pair. Each panel shows the factor enrichment levels for

(A) euchromatin-euchromatin partition pairs, (B) heterochromatin-heterochromatin pairs,

and (C) euchromatin-heterochromatin pairs. We defined euchromatic partitions (EC) as those

with more than 80% of the partition having stain levels [61] G-negative or G-positive25, and

heterochromatic partitions (HC) as those with more than 80% of the partition having stain lev-

els G-positive50, G-positive75, or G-positive100. For each interaction pair, we computed the

product of ChIP-Seq signal values for each of the transcription factors and histone modifica-

tions studied in this work, and plotted it against the effective interaction strength as a density

plot. We show a log-log regression line for each case, stating the r-value and p-value in each

case.

(PDF)
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S13 Fig. Comparison of partitioning schemes obtained on different Hi-C datasets with

GM12878_primary. (A) GM12878_replicate, (B) IMR90, (C) HUVEC, (D) HMEC.

(PDF)

S14 Fig. Plots of metastability index ρ as a function of hub set size n, for all chromosomes.

(PDF)

S15 Fig. Partitioning plots for chromosome 17 at hub set size n = 12, for β� 4.0. In the

regime of high β, partitioning boundaries tend to be stable with respect to changes in the value

of β.

(PDF)

S16 Fig. Major clusters for the whole-genome effective interaction network for other cell

lines. (A) IMR90, (B) HUVEC.

(PDF)

S1 Table. Values of thermal annealing parameter β and hub set sizes n for three levels of

hierarchy. These were the values used for the GM12878_primary dataset by Rao et al. [23].

(DOCX)

S2 Table. Listing of the 539 partitions used for the whole-genome description. Start and

end positions of partitions are provided.

(XLSX)

S3 Table. Significant inter-chromosomal interactions between the central part and the

periphery of the major cluster of the whole-genome inter-chromosomal effective interac-

tions. The color of cells denotes the effective interaction strength: red cells are scaffold-layer

interactions, while orange cells are Layer 1 interactions.

(PDF)

S4 Table. Epigenetic factor enrichment profiles for all inter-chromosomal, high-affinity

partition pairs. Partition labels are color-coded by their positions along the chromosome:

pericentromeric partitions are red, and telomeric partitions are yellow. Each row represents a

high-affinity partition pair (C> 3), and the cells under the factor columns represent the lower

Z-score of that factor among the two partitions, using a discrete grey scale. Black cells indicate

both Z-scores are above 2.0, dark grey between 1.5 and 2, and light grey for both between 1.0

and 1.5.

(XLSX)

S5 Table. Subsets of inter-chromosomal, high-affinity partition pairs presented in S4

Table. (A) Cases where both partitions are large (>2Mb) and have strong effective interactions

at Layer 1 or above; (B) Cases where both partitions are enriched in at least one common fac-

tor, with Z-scores above 2.0. This is also the set of all inter-chromosomal partition pairs

included in high-affinity subnetworks Fig 8 and S6 Fig. Partition labels are color-coded by

their positions along the chromosome: pericentromeric partitions are red, and telomeric parti-

tions are yellow. Cells under factor columns represent Z-scores of partition pairs, using the

same discrete grey scale scheme as in S4 Table.

(PDF)

S6 Table. Summary statistics for partitioning network analysis on Hi-C data. Hi-C interac-

tion matrices were obtained by Rao et al. [23] (GEO accession GSE63525).

(DOCX)
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