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Abstract: We demonstrate flexible red light-emitting diodes based on axial GaPAs/GaP heterostruc-
tured nanowires embedded in polydimethylsiloxane membranes with transparent electrodes involv-
ing single-walled carbon nanotubes. The GaPAs/GaP axial nanowire arrays were grown by molecular
beam epitaxy, encapsulated into a polydimethylsiloxane film, and then released from the growth
substrate. The fabricated free-standing membrane of light-emitting diodes with contacts of single-
walled carbon nanotube films has the main electroluminescence line at 670 nm. Membrane-based
light-emitting diodes (LEDs) were compared with GaPAs/GaP NW array LED devices processed
directly on Si growth substrate revealing similar electroluminescence properties. Demonstrated
membrane-based red LEDs are opening an avenue for flexible full color inorganic devices.

Keywords: flexible LED; GaPAs; nanowires; single-walled carbon nanotubes; molecular beam epitaxy

1. Introduction

Nowadays, liquid crystal displays (LCDs) are still dominating in screen technologies,
since they gradually displaced bulky cathode ray tubes in the 2000s [1–3]. However, in
the last few years, organic light-emitting diode (OLED) displays have grown rapidly [4,5],
following 30 years of intensive material and device development and heavy investment
in advanced manufacturing technologies [6–12]. Despite the significant progress, OLEDs
are still inferior to inorganic materials in terms of luminance, efficiency, and long-term
stability, especially in blue and red spectral regions. Therefore, OLED technology has a
limited application area, and the most attractive usage revealing advantages of organic
materials is flexible devices for wearable flexible applications. Indeed, rigid III-V LED
and LCD technologies are difficult to adapt for deformable devices, so OLED solutions
are preferable. Possible flexible display and lighting applications are numerous and very
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diverse [13], including: medical devices for light-based treatments [14], wearable health
monitors [15], and an abundance of potential uses in the fashion industry [16], etc.

However, there are some specific application fields, where OLEDs fail to fully satisfy
the specifications [3]. For example, augmented reality (AR) devices require fast, very bright
and compact light sources. Inorganic microLEDs fulfill these requirements [17–19], and
provide an additional transparency functionality, tremendously simplifying the optical
configuration [20,21]. Another important display application preferable for inorganic
materials are wristbands, requiring flexibility, high luminance to guarantee sunlight read-
ability, and a good off-axis performance. Though III-V microLED displays are probably
the best candidate, they are still under development [20,21] because of the complexity of
a commercial device fabrication. III-V microLEDs are also the best solution for vehicle
displays, i.e., central cluster panels and head-up displays, requiring a very high reliability
and sunlight readability for the driver safety.

In spite of this high demand, III-V microLED technology still requires development to
be implemented in practical applications. Among the most important issues of flexible III-V
microLED device fabrication are the transfer to a flexible substrate of the synthesized struc-
tures and the application of flexible transparent conductive contacts. III-V technology is
mostly based on thin films, which demands complex growth and post-growth procedures to
fabricate flexible devices [20,22], while conventional transparent contacts such as ITO have
limited flexibility or low performance and stability (e.g., poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT:PSS)). Therefore, an alternative approach for III-V mi-
croLEDs was introduced: nanowire (NW) array devices [23,24]. Benefiting from the high
substrate-independency of the NW geometry, flexible [25] and stretchable [26] microLED
devices were demonstrated. While for thin film microLEDs the practical application of
large area devices is compromised by the necessity of complex post-growth structuring,
polydimethylsiloxane (PDMS)/NW membranes of several square inches area were fabri-
cated using a very inexpensive and simple processing [27]. The PDMS/NW membranes
provide good mechanical and material performance, and single-walled carbon nanotube
(SWCNT) films can serve as excellent highly stretchable transparent electrodes [28] to
these membranes. Moreover, expensive substrates used for synthesis of NW arrays can be
reused after transfer, saving valuable materials and reducing fabrication costs [29]. Thus,
III-V NW/PDMS membrane LEDs with SWCNT electrodes is a promising technology
for highly stretchable, semitransparent, light-weight LEDs of large area for future com-
ponents of miniLED displays. Taking into account the recent progress in blue and green
membrane LEDs [24,30,31], flexible LEDs in the red spectral region is the crucial point of
the technology.

Here, to the best of our knowledge for the first time we fabricate flexible red GaPAs/GaP
NW/PDMS membrane LEDs. The flexible LED was first designed on the basis of numerical
simulations and fabricated following previously reported methods [26,27] which were
adapted to the challenging geometry of self-catalyzed NWs grown on Si substrates. For
comparison, we also studied GaPAs/GaP NWs-based LEDs before array release from the
growth Si substrate.

2. Results and Discussion
2.1. Modeling of GaPAs/GaP NW LEDs

The optimal material composition and geometry parameters of the emitters and active
region were defined by the calculation of axial p-i-n GaPAs/GaP NW LED heterostructure.
We studied the device function using a drift-diffusion model taking into account the Fermi
distribution of electrons and holes, and the Shockley-Read-Hall and radiative recombina-
tion. Based on literature data for the parameters of GaP, GaAs, and their solid solutions,
we modeled GaPxAs1-x. The calculation model and the most relevant modeling results are
presented in Supporting Information Section S1 (refer Figures S1–S3, Table S1 contain used
values for effective masses). Modeling was performed for the fixed doping level of the
emitters and the active region, 1018 and 1015 cm−3, respectively.
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We used the developed numerical model for axial p-i-n GaPAs/GaP NW heterostruc-
ture to evaluate the dependency of the internal quantum efficiency (IQE) and power
efficiency (PE) of electroluminescence (EL) signal on the material composition (Figure 1a,b)
and lengths of the radiative GaPAs insertion and emitter segments (Figure 1c,d). This
evaluation allows defining the optimal NW LED design. The EL conditions are considered
as the low pumping regime, i.e., the radiative recombination occurs from the lowest energy
level, so the photon energy is almost equal to the band gap energy. Efficiency map in
Figure 1a demonstrates that the range of P content in the emitters, corresponding to high
efficiency of NW LED, is relatively broad. At the same time, the IQE shows the maximum
when the P molar composition of the emitters exceeds by at least 20–30% that of the active
region insertion. We associate this value with the minimal value required for an efficient
carrier localization in the GaPAs insertion, which prevents carriers from passing over
the active region. The insets in Figure 1a show energy band diagrams for two typical
situations in which the bandgap of the insertion is lower (respectively, higher) than that of
the emitters, explaining the conclusion from the Figure 1a that the IQE is above 90% for the
higher P content in the emitters.
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However, excessive P content contrast between the emitters and the insertion leads
to dramatic thermalization losses, i.e., the energy lost by the carriers, when they slide
to the fundamental energy level in the active region. Therefore, the maximum power
efficiency (PE) for the P content in emitters below 45% is achieved at 20% P content
contrast (i.e., for GaP<0.45As>0.55 in the emitters and GaP<0.25As>0.75 in the active region
insertion) (Figure 1b). However, in the case of high P content (x > 0.4) in the emitters, the
preferable composition of the active region lies in the range of GaP0.25As0.75–GaP0.45As0.55
due to the change of the main electronic valley. The optimal composition is defined by the
fitting Equations:

xem = 4xins − 0.58 (for the higher part)
xem = 0.8xins + 0.24 (for the lower part)

there xem and xins are the P content in the emitters and in the active region insertion,
respectively. The conclusion from the Figure 1b is that the optimal xins corresponding to
the xem = 1 (pure GaP emitters) lies in the range of (0.35–0.4), providing the LED emission
in the red spectral range. In this case, there is no optical absorption in the emitter layers.
Moreover, electron confinement prevents the injection of minor carriers to emitters, which
suppresses the undesirable nonradiative recombination in the emitters.

Considering numerical modeling, the optimal parameters of red NW LEDs lie in
the following ranges: the active region insertion length of 80–200 nm and composition
of GaP0.2<x<0.4As0.8>1−x>0.6; doping level of the emitters and the active region, 1018 and
1015 cm−3, respectively; the total emitter lengths of less than 4 µm, while the composition
can be chosen as pure GaP, which is preferable for the NW synthesis convenience.

2.2. GaPAs/GaP NW LED Array Synthesis

In accordance with the results of numerical calculations, axially heterostructured
GaPAs/GaP NWs used in this study were grown on p-type (1020 cm−3) Si (111) substrates
in a solid-source molecular beam epitaxy (MBE) Veeco GEN-III setup via the self-catalyzed
vapor–liquid–solid (VLS) growth mechanism using Ga as a catalyst. Prior to the growth, Si
substrates were treated with the modified Shiraki cleaning procedure [32], finalized with a
formation of a thin surface oxide layer in boiling ammonia-peroxide water mixture (1:1:3).
To promote formation of pinholes in the oxide layer required for vertical NW growth,
substrates were thermally annealed in the MBE chamber for 30 min at a temperature
of 780 ◦C [33].

NW growth was initiated by simultaneous opening of Ga and P2 shutters. Ga-cell
beam equivalent pressure (BEP) was kept constant at 8×10−8 Torr throughout the growth
and corresponded to a 3.17 nm/min GaP planar growth rate. The growth of n-GaP/i-
GaPAs/p-GaP axial NW heterostructures was performed via controlling the dopant fluxes
and the growth temperature: to form n- and p-doped emitters, top and bottom NW
segments were intentionally doped with Be (TBe = 780 ◦C) and Si (TSi = 1200 ◦C) using
standard effusion cells, respectively [27,34]. The NW growth was initiated with a synthesis
of p-type doped GaP segments with a height of 1.2–1.5 µm at V/III BEP ratio of 12 and the
elevated growth temperature of 640 ◦C, which prevents catalytic droplet inflation due to
high solubility of Be in Ga [35]. The estimated doping level is 1018 cm−3. In further growth
stages, the substrate temperature was reduced by 10 ◦C in order to obtain stable formation
of the GaPAs insertion and n-type GaP segment.

A thin ~100–150 nm GaP0.35As0.65 intrinsically doped segment was grown between
GaP emitters using the procedure described in [36]. This design corresponds to the high
efficiency of LED in accordance with numerical calculations. To obtain the required chemi-
cal composition of the GaP0.35As0.65 insertion, the As/P BEP ratio was set to six. During
the GaPAs insertion growth, the cumulative As and P to Ga ratio was set to 42; it should
be noted that this value also prevents catalytic droplet inflation [36]. Group V fluxes were
switched by closing/opening both molecular beam shutters and cracking source needle
valves. Our previous study on the formation of GaPAs segments in GaP NWs under
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identical growth conditions [36] shows that the GaPAs segment diameter is determined by
VLS growth front area and equal to the GaP NW underneath.

Top GaP NW segments (height ~1.5 µm) forming n-emitters were grown with a V/III
beam equivalent pressure ratio of 18. Finally, NW growth was interrupted by closing both
Ga and P2 shutters and subsequent sample cooling. An in situ analysis of the NW crystal
structure performed with reflection high energy electron diffraction (RHEED) patterns
demonstrated that the described growth conditions yielded stable formation of GaP NWs
with a zinc-blende structure as it was previously reported in [36–38].

Representative scanning electron microscopy (SEM) (Carl Zeiss SMT AG Company,
Oberkochen, Germany) images of the synthesized p-i-n GaPAs/GaP NW array samples on
Si, obtained with a Zeiss SUPRA 25 SEM setup, are shown in Figure 2. The NW array has
about 0.11 NW/µm2 density (Figure 2a), 100 nm average wire diameter and 3–4 µm height
(Figure 2b). The morphology of NW arrays was rather inhomogeneous that is typical for a
self-catalyzed growth on non-patterned substrates. It can be noted that the self-catalyzed
NW array presents irregular morphology due to the substrate silicon surface oxide layer
non-uniformity [39]. Depending on the NW nucleation condition droplet consumption can
occur for part of NWs leading to the interruption of growth and formation of bulge-shaped
NW tips.
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Photoluminescence spectra of the synthesized NW demonstrated main line position
at 650 nm (see Supporting Information Section S2 for details, Figure S4 shows photolu-
minescence data), which confirms the composition of GaP0.35As0.65 insertions. We also
observed a parasitic 3D growth resulting in a formation of 0.5–1 µm sized GaP particles on
the substrate. However, these 3D particles do not participate in the LED on Si substrate, nor
in the flexible LED operation, since the particles were buried in SU-8 and not transferred to
PDMS/NW membranes after release (see device fabrication section for the details).

2.3. Sylgard Preparation

For the polymer membrane formation, a commercial PDMS (Dow Corning Sylgard 184,
Midland, MI, USA) was mixed in a base to a curing agent ratio of 10 to 1.

2.4. Fabrication of the Reference NW LED on Si Substrate

At the first step we processed GaPAs/GaP NW array LED devices directly on Si growth
substrate (denoted further as ‘LEDs-on-Si’) in order to test their performance on the rigid
substrate and compare it with flexible PDMS/NW membranes released from the substrate.
Firstly, p-contact was made via a thin Al layer deposition on the back side of the Si substrate
and consequent rapid annealing at 300 ◦C temperature in the N2 atmosphere. The NWs
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on Si were encapsulated into epoxy-based photoresist SU-8 to provide planarization for
further transparent top indium tin oxide (ITO) contact application. This process was carried
out as follows. The SU-8 layer was spin-coated onto the sample surface to fill the volume
between NWs and cover NW tips. After the ultraviolet (UV) exposure of photoresist, the
sample was annealed at 95 ◦C on a hot plate for 5 min and then at 200 ◦C for 10 min to cure
the SU-8 layer. Release of NW tips buried in SU-8 was achieved iteratively by O2 plasma
etching and SEM control. Then, 5 mm2 of ITO contact mesas of 100 nm thickness were
deposited to the n-doped segments of NWs via magnetron sputtering through the mask
with use of BOC Edwards Auto 500 system (Edwards, Burgess Hill, UK). The workflow
schematic is presented in Figure 3.
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2.5. Fabrication of Flexible PDMS/NW LED

In order to encapsulate 4 µm long GaPAs/GaP NWs into PDMS we used the G-coating
method suitable for a thin PDMS membrane fabrication [34]. For further electrical contact-
ing, the tips of NWs were opened via O2/CF4 plasma etching, thus achieving a homoge-
neous thickness of PDMS membranes, about 3 µm thick, so the highest parts of NWs were
revealed above the membrane surface (Figure 4a). Transparent flexible contact pads to the
top n-doped segments of NWs (Figure 4a) were based on SWCNT films [40,41], the size
of square contact pads was about 1 mm2. The SWCNTs were synthesized by the aerosol
(floating catalyst) CVD method described in detail elsewhere ([42,43]) and downstream of
the reactor in the form of randomly oriented nanotube film on microporous nitrocellulose
filters. After the top contact application, the PDMS/NW membranes were mechanically
peeled from Si substrate with the help of a razor blade. The peeled membranes were flipped
for a bottom contact application, then again 1 mm2 SWCNT contact pads were applied to
the PDMS/NW membranes directly opposite to the previously applied top contact pads
(Figure 4b). As a result, the PDMS/NW membranes had several areas contacted with
SWCNT on both sides of the membrane. For electrical measurements small silver lacquer
droplets were applied to the SWCNT contact pads (Figure 4c). A photo of a representative
flexible LED is presented in Figure 4d.



Nanomaterials 2021, 11, 2549 7 of 13

Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 4. (a–c) Workflow schematic of single-walled carbon nanotubes (SWCNT) contact application for flexible LED, (d) 
photo of a representative flexible LED. The insert schematically shows the cross-section of the membrane NWs-based LED. 

Few samples possessed small (about 100 µm in diameter) tears in the PDMS mem-
brane. Although it can be expected that an LED can be electrically shunted through these 
tears, we have never observed shunts even when the SWCNT films were put directly on 
a tear, probably because the 3 µm thickness of the PDMS membrane is sufficient to avoid 
undesirable penetration of the SWCNT film through these holes. 

It is worth noting that PDMS/NW membranes were also released using removable 
cap film providing mechanical support for the membrane. In practice, thin PDMS/NW 
membranes are very fragile for a manual mechanical peeling, so the release procedure 
requires gentle operations, and microscale damages of the membranes can appear during 
the release process. A strong mechanical support of a thick cap film can significantly fa-
cilitate the release procedure. Meanwhile, the supporting cap film needs to be removable; 
indeed, for future applications of LED membranes in multi-color devices (e.g., in combi-
nation with blue or green color light-emitting membranes [24,44]), after the PDMS/NW 
membrane release, the cap film material should be removed for further processing. In our 
work, we suggested to use polyurethane (PU) as a promising candidate for cap film ma-
terial, since it can be dissolved in dimethylformamide (DMF) without critical degradation 
of PDMS membrane material, while III-V NWs and SWCNT films are chemically inert to 
DMF (see Supplementary Materials Section 3 for details, Figure S5 demonstrate PU syn-
thesis scheme). 

2.6. Electroluminescence Characterization 
The fabricated samples of LEDs-on-Si and flexible LEDs were tested in a probe sta-

tion using a Keithley 2400 sourcemeter (Keithley Instruments, Solon, OH, USA). In the 
case of LEDs-on-Si, the upper contact connection was performed with a probe directly 
positioned on the ITO contact pad, the bottom contact connection was made to the metal-
lized Si substrate with the conductive table of the probe station. The flexible LED samples 
were contacted in a similar manner: the upper contact connection was performed with a 
probe tip touching silver lacquer droplet on a SWCNT contact pad of the top side of the 
flexible LED, the bottom contact connection was to the corresponding opposite SWCNT 
contact pad (also furnished with a silver lacquer droplet) lying on a special Au/Ge metal 

Figure 4. (a–c) Workflow schematic of single-walled carbon nanotubes (SWCNT) contact application for flexible
LED, (d) photo of a representative flexible LED. The insert schematically shows the cross-section of the membrane
NWs-based LED.

Few samples possessed small (about 100 µm in diameter) tears in the PDMS membrane.
Although it can be expected that an LED can be electrically shunted through these tears,
we have never observed shunts even when the SWCNT films were put directly on a
tear, probably because the 3 µm thickness of the PDMS membrane is sufficient to avoid
undesirable penetration of the SWCNT film through these holes.

It is worth noting that PDMS/NW membranes were also released using removable
cap film providing mechanical support for the membrane. In practice, thin PDMS/NW
membranes are very fragile for a manual mechanical peeling, so the release procedure
requires gentle operations, and microscale damages of the membranes can appear during
the release process. A strong mechanical support of a thick cap film can significantly
facilitate the release procedure. Meanwhile, the supporting cap film needs to be removable;
indeed, for future applications of LED membranes in multi-color devices (e.g., in combi-
nation with blue or green color light-emitting membranes [24,44]), after the PDMS/NW
membrane release, the cap film material should be removed for further processing. In our
work, we suggested to use polyurethane (PU) as a promising candidate for cap film mate-
rial, since it can be dissolved in dimethylformamide (DMF) without critical degradation
of PDMS membrane material, while III-V NWs and SWCNT films are chemically inert
to DMF (see Supplementary Materials Section S3 for details, Figure S5 demonstrate PU
synthesis scheme).

2.6. Electroluminescence Characterization

The fabricated samples of LEDs-on-Si and flexible LEDs were tested in a probe station
using a Keithley 2400 sourcemeter (Keithley Instruments, Solon, OH, USA). In the case of
LEDs-on-Si, the upper contact connection was performed with a probe directly positioned
on the ITO contact pad, the bottom contact connection was made to the metallized Si
substrate with the conductive table of the probe station. The flexible LED samples were
contacted in a similar manner: the upper contact connection was performed with a probe
tip touching silver lacquer droplet on a SWCNT contact pad of the top side of the flexible
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LED, the bottom contact connection was to the corresponding opposite SWCNT contact pad
(also furnished with a silver lacquer droplet) lying on a special Au/Ge metal film contacted
with another probe. In this configuration of electric connection, we minimized the effect
of possible parasitic electrical barriers. It should be noted that flexible LEDs cannot be
bonded by a standard method with metallic wires, e.g., in a bonding machine or with a
deposition of metallic contact bars to a remote contact pad, since the PDMS softness and
temperature regime prohibit contact annealing for higher than 250 ◦C for PDMS and 100 ◦C
for SWCNT (these values are taken from our tests). Therefore, some flexible devices based
on PDMS/NW membranes exhibit significant parasitic electrical barriers in I-V curves and
electron beam induced current maps [45], and electrical characterization of NW/PDMS
membranes requires careful experiment preparation and result data analysis.

EL measurements were carried out at room temperature in the same probe sta-
tion setup at a constant voltage applied to LED samples. EL spectra were acquired
with a AvaSpec-ULS2048XL-EVO-RS spectrometer (Avantes, Louisville, CO, USA), and
a monochromator Horiba FHR1000 with a cooled CCD matrix Horiba Symphony for
LEDs-on-Si and flexible LEDs, respectively.

2.7. LEDs-on-Si Characterization

Figure 5a illustrates a current-voltage (I-V) curve of a representative LEDs-on-Si that
exhibits a rectifying behavior at forward bias. High opening voltage of about 5 V indicates
the presence of parasitic potential barriers. These barriers at both Si substrate/NW and
NW/ITO interfaces lead to a reversed Schottky diode characteristic [34,46], limiting the
LED performance. The calculated current density corresponding to an individual ITO
contact pad (mesa) is estimated at 250 A/cm2 (20 nA/NW) at 8 V forward bias. A typical
EL spectrum measured at 8 V is shown in Figure 5b. The main EL line lies at 650 nm, which
corresponds to the red spectral range.
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2.8. Flexible LED Characterization

Similar to LEDs-on-Si, the measured I-V curves for flexible LEDs demonstrated rectify-
ing behavior in both forward and reverse bias (Figure 6a). It can be explained by Schottky
nature of the SWCNT contact to n-GaP, which were studied and proven in [34]. The para-
sitic Schottky barrier is undesirable for a high LED performance. One possible solution
to this problem can be a pre-deposition of a thin metallic layer to the n-GaP emitters,
effectively reducing potential barrier to n-GaP material: a similar method was used for
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p-GaN shell of InGaN/GaN blue and green NW LEDs, covered with 5/5 nm Ni/Au [47,48].
After metallization, the NWs can be contacted with SWCNT or other conductive materials
without forming a Schottky barrier [24,26]. The search for a proper thin metallic layer
composition for ohmic contact to n-GaP will be the subject of our future studies.
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The knee voltages were found to be about 7 and 2.5 V for the forward and reverse
bias, respectively. It should be noted that the reversed opening voltage is lower than for the
LEDs-on-Si (about 7.5 V), which means that SWCNT/p-GaP contact has a lower parasitic
potential barrier in comparison with the p-GaP/Si substrate interface.

The fabricated flexible LEDs demonstrated EL in the red spectral range (inset in
Figure 6a). The EL spectra were measured at 8 V of forward bias (0.045 mA current),
a representative spectrum is shown in Figure 6b. The main EL line is positioned at
670 nm wavelength, corresponding to the direct bandgap transition of GaP1−xAsx with
x = 0.35 content [49]. A rather broad full width at half maximum (FWHM) can be attributed
to the inhomogeneous distribution of NW parameters, including non-uniform As content
in the GaPAs segment [36]. The inhomogeneous distribution of NW arrays can also explain
the 20 nm redshift of the flexible LED EL peak position in comparison with the LEDs-on-Si
EL (Figure 5b). Note that 3D GaP islands (see Figure 2) were fully buried into the polymer
matrix and were not contacted by the top SWCNT film contact. This prevented the direct
injection of carriers into 3D islands and, thus, they did not affect the EL signal.

The flexible LED operation current density was roughly estimated at 50 A/cm2

(4 nA/NW), i.e., 5 times lower than for the LEDs-on-Si. It should be noted that for a stable
LED operation the current density value at 5–10 A/cm2 is preferable since small diameter
GaPAs/GaP NWs embedded into a PDMS membrane can suffer overheat problems due to
the low heat capacity of small diameter NWs and bad thermal conductivity of the PDMS
matrix, and the Joule heating can destroy NWs [50]. To achieve the improved performance,
flexible LEDs based on GaPAs/GaP NW/PDMS membranes require further development
of both work current density decreasing and improved heat evacuation. Meanwhile, the
applications require a high LED power, which can be achieved at low current density by
an increase in the NW array density.

During EL measurements the NWs were degrading because of the high Joule heating
and weak heat evacuation preventing a long measurement experiment. Effective heat
management can be achieved by lowering series resistance (including parasitic Schottky
barriers), improving heat conductive properties of contacts or PDMS matrix by adding
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fillers such as diamond nanoparticles [51]. Another solution can be the application of
impulse instead of constant voltage, however, it will lead to a decrease in LED intensity,
which can be undesirable for highly bright purposes (i.e., AR). Flexible LED breakdown
caused by overheating did not allow us to study EL dependence on applied current.

3. Conclusions

In conclusion, we developed and demonstrated flexible red LEDs based on vertical
GaPAs nanowire arrays embedded in a PDMS membrane and contacted with transparent
SWCNT films. Axial geometry of GaPAs/GaP NW LEDs was studied numerically and
successfully synthesized via MBE growth. We compared experimental flexible LED EL
performance with fabricated LEDs-on-Si (based on the same vertical GaPAs nanowire array
samples and processed directly on the Si growth substrates, encapsulated into SU-8 epoxy
resin and contacted with ITO pads). Both LEDs-on-Si and flexible LEDs have dominant
EL lines at 650 and 670 nm, respectively. The measured current densities at working
condition appeared to be 5 times lower for flexible LEDs in comparison to LEDs-on-Si (50
and 250 A/cm2, respectively), while the working voltage is similar for both flexible LEDs
and LEDs-on-Si with an 8 V value.

Further development of flexible LEDs should be aimed at the decreasing of working
current density and improvement of heat evacuation leading to a low device lifetime due
to the overheat degradation. Improvement of the heat management and strategies to lower
working current densities will be the subject of further studies.

The demonstrated flexible red LEDs can be employed for the development of light-
weight transparent full color displays for future applications in wearable, biomedical, and
vehicle-integrated devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11102549/s1, Figure S1. (a) Band gap of the conductive subbands (reproduced from [1]),
calculated (b) effective electronic (blue line) and hole (green line) state density, and (c) electron affinity
for different P content x in the GaPxAs1−x compound. Figure S2. Carrier mobility in GaPxAs1−x
vs. P content x. Doping level is 1018 cm−3. Figure S3. (a) Carrier lifetime in GaPxAs1−x for SRH
recombination process; (b) and the corresponding radiative recombination rate. Figure S4. PL
spectrum taken from the p-i-n-heterostructured GaP/GaPAs NW epitaxial array. Figure S5. Scheme
of PU synthesis. Table S1. Electron and hole effective masses depending on the valley and direction.
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