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Prioritizing cancer-related 
microRNAs by integrating 
microRNA and mRNA datasets
Daeyong Jin & Hyunju Lee

MicroRNAs (miRNAs) are small non-coding RNAs regulating the expression of target genes, and they 
are involved in cancer initiation and progression. Even though many cancer-related miRNAs were 
identified, their functional impact may vary, depending on their effects on the regulation of other 
miRNAs and genes. In this study, we propose a novel method for the prioritization of candidate cancer-
related miRNAs that may affect the expression of other miRNAs and genes across the entire biological 
network. For this, we propose three important features: the average expression of a miRNA in multiple 
cancer samples, the average of the absolute correlation values between the expression of a miRNA and 
expression of all genes, and the number of predicted miRNA target genes. These three features were 
integrated using order statistics. By applying the proposed approach to four cancer types, glioblastoma, 
ovarian cancer, prostate cancer, and breast cancer, we prioritized candidate cancer-related miRNAs 
and determined their functional roles in cancer-related pathways. The proposed approach can be used 
to identify miRNAs that play crucial roles in driving cancer development, and the elucidation of novel 
potential therapeutic targets for cancer treatment.

MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of target genes by binding to their 
3′​ untranslated regions. Recent studies aimed at the identification of cancer-related miRNAs revealed that miR-
NAs significantly affect cancer development by regulating the expression of oncogenes, tumor suppressors, and 
a large number of other genes, which results in the perturbation of biological networks1,2. Many computational 
approaches have been developed for the systemic identification of cancer-related miRNAs and their target genes 
and elucidation of the functional roles of miRNAs in cancer. These approaches can be broadly summarized into 
five categories.

First, several algorithms predict miRNA target genes based on the sequence complementary between these 
genes and miRNAs in the seed regions, and the predicted gene-miRNA interactions can be accessed through 
databases such as microCosm3, Pictar4, and TargetScans5. However, these predictions, based on sequences alone, 
cannot explain miRNA mechanisms in cancer development and progression, unless various biological activities, 
including miRNA-regulated gene and protein expression changes, are not considered.

Additionally, several computational approaches for the prediction of novel miRNA-disease relationships based 
on the existing biological databases, such as those containing information about miRNA similarities, disease sim-
ilarities, and experimentally validated miRNA-disease relationships, have been proposed. Xuan et al.6 assumed 
that miRNAs related to similar diseases are functionally related. Therefore, they calculated functional similarities 
between miRNAs based on previously known miRNA-disease relationships, and for each miRNA, they obtained 
k most similar miRNAs. These similarities were used to infer new miRNAs related to a given disease. Chen et al.7 
formulated miRNA-disease relationship prediction problem as an optimization problem based on regularized 
least squares using the same assumption as Xuan et al.6, and demonstrated that the proposed approach success-
fully recovered miRNAs previously known to be related to several cancer types. In addition to this, they con-
structed miRNA-disease networks by employing Gaussian interaction profile kernel similarity8,9 and restricted 
Boltzmann machines10. Pasquier et al.11 used a vector space model to predict miRNA-disease relationships. They 
first combined miRNA-disease, miRNA-neighbor, miRNA-gene, miRNA-word, and miRNA-family relationships. 
Afterward, singular value decomposition was applied for dimension reduction, and miRNAs and disease were 
represented as vectors, and miRNAs related to diseases were prioritized based on vector similarities. Although 
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these approaches may uncover novel miRNA-disease relationships, they are highly dependent on the previously 
obtained knowledge, while predicting miRNAs with unknown relationships to any disease is difficult.

Next, several studies used miRNA expression changes to identify cancer-related miRNAs. Iorio et al.12 showed 
that the differential expression of miRNAs in ovarian cancer can distinguish cancer cells from normal cells, and 
that over- and under-expression of miRNAs are associated with pathologic properties, such as histotype and 
lymphovascular invasion. Srinivasan et al.13 identified ten signature miRNAs in glioblastoma (GBM) by analyzing 
miRNA expression data using COX regression analysis, and classifying patients into a low-risk and a high-risk 
group, based on the survival time. Zhang et al.14 identified seven differentially expressed miRNAs (DE miRNAs), 
with their expression significantly associated with the survival time in hepatocellular carcinoma. They associ-
ated these seven signature miRNAs with several clinical parameters, such as tumor stage, tumor status, and gen-
der, and found independent prognostic parameters based on univariate and multivariate analysis. DE miRNAs 
were identified, and survival analysis was performed in these studies in order to identify cancer-related miRNAs. 
However, some of these miRNAs may not be identified using this approach, due to several reasons, including the 
use of different processes for the filtering of clinical data, and different cohort sizes15. Additionally, miRNAs per-
form their functions in combination with transcription factors and other genes, and these combinatorial effects, 
and not miRNA expression alone, may be related to the survival16.

Furthermore, computational approaches incorporating negative correlations between gene and miRNA 
expression levels have accelerated the identification of cancer-related miRNAs. MiRNA-gene pairs have been 
predicted based on various models, including linear regression, lasso regression, and Bayesian model, and these 
models have been applied to several cancer datasets17. The recent availability of paired miRNA and gene expres-
sion levels in multiple cancer datasets found in The Cancer Genome Atlas (TCGA)18–21 allowed simultaneous 
analysis of miRNA and gene expression in multiple cancer types22.

Finally, module-based approaches have been recently proposed, and here modules that contain a set of genes 
and miRNAs that are highly correlated and involved in the same pathways are identified by integrating multiple 
types of genomic data, such as gene and miRNA expression levels, gene-gene interactions, and gene-miRNA 
interactions23–25. These studies have highlighted the complex interactions between genes and miRNAs that con-
tribute to the cancer development. Zhang et al.23 employed a non-negative matrix factorization framework, where 
miRNA and gene expressions were factorized into a common basis matrix, and gene-miRNA regulatory mod-
ules were constructed. They showed that genes and miRNAs in these modules significantly overlaps with previ-
ously known cancer-related genes, miRNAs, and biological pathways. Zhang et al.24 constructed a gene-miRNA 
network using negative correlations between gene and miRNA expressions and gene-miRNA interactions, and 
candidate cancer-related miRNAs were prioritized. Using our previous approach25, we constructed gene-miRNA 
modules using a biclustering algorithm and a Gaussian Bayesian network framework. However, these approaches 
only consider local gene expression changes depending on miRNA expressions, but they do not consider the 
effects on the whole biological network.

Although significant efforts have been undertaken to identify cancer-related miRNAs, only a small number 
of studies prioritizes cancer-related miRNAs based on gene and miRNA expressions. For mRNAs, several algo-
rithms have been developed in order to prioritize disease-related genes26,27, because the functional effects of genes 
may differ. Similarly, the extents of functional effects of miRNAs in cancer may vary depending on how miRNA 
expression changes are propagated through the biological network.

Here, we aimed to prioritize miRNAs that lead to significant changes in the whole biological network during 
cancer initiation and development. We propose a novel approach based on order statistics that prioritizes miR-
NAs whose expression changes significantly affect cancer development. Additionally, we explain functional roles 
of the miRNAs highly ranked in our model at the pathway level.

Methods
As shown in Fig. 1, we assumed that some genes and miRNAs, illustrated in the left part of the presented bio-
logical network, have many interactions and cause significant alterations of other genes/miRNAs, directly or 
indirectly. Therefore, they are more likely to contribute to the development of cancer than genes and miRNAs 
represented in the right part of the network, which are mainly affected by the previous category of genes and 
miRNAs, and are less likely to contribute to the cancer development. A schematic overview of our approach is 
presented in Fig. 2, while the details are described below.

Data collection.  We obtained microarray and/or RNA-Seq datasets for GBM, ovarian cancer (OVC), pros-
tate cancer (PRCA), and breast cancer (BRCA) from the TCGA data portal (http://cancergenome.nih.gov). Paired 
datasets of gene and miRNA expressions were obtained.

For microarray, gene and miRNA expression data were generated using Affymetrix HG-U133A and Agilent 
H-miRNA_8 ×​ 15 for GBM and OVC, respectively. GBM dataset contains 12,042 genes and 470 mature miRNAs, 
obtained from 482 tumor samples, and OVC dataset contains 12,042 genes and 723 mature miRNAs obtained 
from 578 tumor samples. For RNA-Seq, gene and miRNA expression datasets were generated by IlluminaHiSeq_
RNASeqV2 and IlluminaHiSeq_miRNASeq, respectively, using OVC, PRCA and BRCA samples. OVC dataset 
contains 20,806 genes from 416 tumor samples, PRCA dataset contains 20,531 genes from 494 tumor samples, 
and BRCA dataset contains 20,532 genes from 461 tumor samples. Additionally, they commonly contain 1,046 
miRNAs obtained from the paired samples with genes.

Predicted gene-miRNA interactions were collected from microCosms3, PicTar4, and TargetScans5. The 
information about miRNA-disease relationships was obtained from the Human microRNA Disease Database 
(HMDD)28. We collected OVC miRNA data using “Ovarian Neoplasm” term, GBM miRNAs using “Glioblastoma” 
or “Glioma” terms, PRCA miRNA data using “Prostatic Neoplasms” term, and BRCA miRNA data using “Breast 
Neoplasms” term.

http://cancergenome.nih.gov
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Feature selection and analysis.  We propose three miRNA features that may strongly affect the biological 
network. First, we assumed that highly expressed miRNAs show a high potential to affect the biological network. 
Therefore, the average miRNA expressions from all cancer samples are selected as the first feature (F1). Fa =​  
{a1, …​, ai, …​, aM}, where ai is the average expression of a miRNA i in the cancer samples, and M represents the 
number of miRNAs. Note that we only considered the expression levels of miRNAs in cancer cells, but not in the 
normal cells.

Additionally, we assumed that if a miRNA significantly affects some genes, the expressions of this miRNA and 
the genes may be highly correlated. A miRNA can directly regulate a set of genes, which may indirectly lead to 
the alterations in the expression of many other genes. Therefore, we considered all genes in the biological network 
and used the average of absolute Pearson correlation coefficients (PCCs) between miRNA and all gene expres-
sions as the second feature (F2). Fc =​ {c1, …, ci,…​cM}, where ci is the average of absolute PCC values between 
miRNA i and all genes in the cancer samples.

We further assumed that miRNAs that bind to many genes strongly affect the biological network. However, 
only a small fraction of miRNA target genes has been experimentally validated, and therefore, we used compu-
tationally predicted gene-miRNA interactions, based on sequence complementary. We obtained the predicted 
gene-miRNA interactions from microCosms3, PicTar4, and TargetScans5. All interaction pairs were extracted 
from these three databases and duplicated interaction pairs were removed. Furthermore, we counted the number 
of the predicted targets for each miRNA and these numbers can be considered the numbers of potential inter-
acting genes, representing our third feature (F3). Ft =​ {t1,…​, ti,…​, tM}, where ti is the number of target genes for 
miRNA i. Note that, because the number of predicted targets is determined by the sequence complementary 
information, gene-miRNA interactions for the third feature are the same, regardless of the cancer type used.

Integration of features.  We used order statistics to integrate the three features, F1, F2, and F3. In Fig. 3, a 
flowchart of feature integration process is presented. First, we computed the ranking ratios for the values of each 
feature. Fa, Fc, and Ft values were ranked in a decreasing order and their ranking ratios were stored in RD1, RD2, 
and RD3, respectively. Let RD1 =​  … … …ad ad ad ad{ , , , , , , }r

i
r

j
r
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r
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r if ti >​ tj. Furthermore, for a given miRNA i, a Q statistic is computed based on joint cumulative distri-

bution of order statistic of the three features26. The integration was approximated using a recursive solution pro-
posed by Stuart et al.29.

Figure 1.  Biological network structure. Cancer-related miRNAs (dark orange rectangles) and genes (dark 
blue circles) affect other genes and miRNAs and ultimately the entire biological network. In contrast to 
this, white rectangles and circles represent miRNAs and genes that do not affect other genes and these miRNAs 
are mostly regulated by the previous category of genes and miRNAs. Black solid lines and green dotted 
lines represent the direct or indirect changes, respectively, of one node that affects linked nodes. Although 
we presented only one indirect edge for simplicity, there are many indirect relationships in a real biological 
network. Right nodes influence on the left nodes shown in blue dotted lines, however, influences from left to 
right are more abundant globally.
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Figure 2.  Schematic overview of the proposed approach. (A) Gene and miRNA expressions in paired 
samples, gene-miRNA interactions, and miRNA-disease relationships are collected. (B) Selection and 
analysis of cancer-related miRNA features. (C) Integration of features F1, F2, and F3 selected in the step (B) 
and calculation of integrated rankings RQ using order statistic. (D) Pathway and survival analysis for the 
understanding of functional roles of miRNAs in biological pathways.

Figure 3.  Flowchart showing the feature integration process. We computed feature values for each miRNA. 
Following this, we computed ranking ratios by decreasing (RD) and increasing order (RI). Afterward, we 
computed Q statistics, Q1 and Q2, and rankings, RQ1 and RQ2. Finally, we determined the final rankings by the 
addition of these two rankings.
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that a miRNA i with a smaller value of qdi (thus, with a higher ranking) is more highly related to cancer develop-
ment, since we assumed that miRNAs with larger Fa, Fc, and Ft values are more likely to be related to cancer, 
resulting in smaller qdi values. Therefore, RQ1 is a set of miRNA rankings, indicating their relevance to cancer 
development. However, some miRNAs are highly ranked in some features but not in others. In these cases, 
miRNA rankings can be dominantly determined by a single or a small number of features because the ranking in 
RQ1 becomes higher with a lower number of high ranking features. To reduce the effects produced by these few 
features, we incorporated the following step.

We calculated another Q statistic that measures the extent to which a miRNA is not related to cancer. When 
Fa, Fc, and Ft feature values are small, it is unlikely that a miRNA is related to cancer. Hence, Fa, Fc, and Ft values 
are ranked in an ascending order and their ranking ratios are stored in RI1, RI2, and RI3, respectively. Let 
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Because Q2 measures the extent of a miRNA not being related to cancer, we sorted them in a decreasing order and 
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Final rankings were determined using a sum of these two rankings: RQ =​ RQ1 +​ RQ2. We used RQ as a new sta-
tistic to determine all miRNA rankings, penalizing miRNA rankings that did not show significant feature values 
for some of the three examined features. Several examples of integrating features are described in Supplementary 
Table 1.

Pathway analysis related to miRNA.  In order to understand the functional roles of miRNAs in biological 
pathways, we performed a pathway enrichment analysis using KEGG pathways and gene ontology (GO) biologi-
cal functions. We downloaded 186 KEGG pathways and 825 GO biological functions from Gene Set Enrichment 
Analysis (GSEA, http://www.broadinstitute.org/gsea), and extracted experimentally validated gene-miRNA inter-
action datasets from miRTarbase30. Strong evidence, such as reporter assays, western blotting, and qPCR and/
or weak evidence, such as microarrays, next generation sequencing (NGS), and pSILAC support these datasets. 
For each miRNA, we selected genes with expression levels highly correlated with the given miRNA expression 
levels (1% of genes in PCC values) or those interacting with that miRNA according to miRTarbase30. Finally, we 
performed a pathway enrichment analysis using a hypergeometric test and obtained p-values for each miRNA. 
p-values were corrected to q-values based on Benjamini & Hochberg correction31, in order to address multiple 
comparison issues. We considered pathways with q-value less than 0.05 as significant.

Survival analysis.  We performed a survival analysis to identify miRNAs that play crucial roles in cancer 
patient survival. Clinical information about GBM and OVC samples was obtained from TCGA. For each candi-
date miRNA, we divided these samples into two groups: an under-expressed group, where the expression levels of 
that miRNA belong to the bottom 10% of all values, and an over-expressed group, where the expression levels of 
the miRNA belong to the top 10% of values. We performed Kaplan-Meier survival analysis and obtained p-values.

Results
Feature selection and analysis.  For each miRNA, we computed three feature values, F1, F2, and F3. To 
show that these three features are cancer-related, we ranked all miRNAs based on the feature values. We assigned 
a value of one to miRNAs if they were found in the HMDD database and zero if not. We computed a cumulative 
ratio by computing the average number of miRNAs that had the value of one for each ranking. Afterward, we 
determined whether the higher-ranked miRNAs have higher cumulative ratios. In Fig. 4, cumulative ratios of 
cancer-related miRNAs for the five cancer datasets are presented. Images on the left in Fig. 4 show that cumulative 
ratios of all features, F1, F2, and F3, have a similar tendency of steady decrease with the ranking, suggesting that 
highly ranked miRNAs are more likely to be related to cancer regardless of cancer type (GBM, OVC, PRCA, and 
BRCA) and platforms (microarray or RNA-Seq).

Integration of features.  We integrated the three features (F1, F2, and F3) using order statistics and ranked 
miRNAs based on RQ. As shown in Fig. 4, the cumulative ratios of cancer-related miRNAs were shown to be 
the highest when these three features were integrated, compared with single-feature or two-feature analyses. 
Additionally, we applied different integration methods: an average of ranking ratios of the three features, F1, F2, 
and F3 (e.g. (RD1 +​ RD2 +​ RD3)/3), an inverse normal transformation32, and two other order statistics, RQ1 and 
RQ2. The comparison of the proposed integration method (RQ) with the other tested methods showed that our 
method had the highest performance on average when GBM, OVC (microarray), OVC (RNA-Seq), PRCA, and 
BRCA samples were used (Supplementary Table 2). These results suggest that the integration of these features 
assists the identification of cancer-related miRNAs. Supplementary Tables 3, 4, 5, 6, and 7 show miRNA rankings, 
integrated scores and cumulative ratios of cancer-related miRNAs for GBM, OVC (microarray), OVC (RNA-Seq), 
PRCA, and BRCA samples, respectively.

http://www.broadinstitute.org/gsea
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GBM-related miRNAs.  Of 470 miRNAs found in the GBM dataset, 123 miRNAs (26.3%) were shown to be 
related to GBM according to HMDD. In our analysis, 19 out of the top 20 miRNAs (95.0%) and 64 out of the top 

Figure 4.  Performances of features selected for the ranking of cancer-related miRNAs. x-axis represents 
miRNA rankings and y-axis represents a cumulative ratio of cancer-related miRNAs included in HMDD. 
(A–E) correspond to GBM, OVC (microarray), OVC (RNA-Seq), PRCA and BRCA samples, respectively. Left, 
cumulative ratios of cancer-related miRNAs are presented, which were obtained using a single feature. Right, 
cumulative ratios of cancer-related miRNAs, by integrating features, are presented. For most cancer types, 
cumulative ratios of cancer-related miRNAs increase with the rank. Additionally, the integration of more than 
one feature shows higher performance than when only one feature is used. Furthermore, integration of all 
features shows the highest performance for most cancer types.
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100 miRNAs (64.0%) were shown to be related to GBM (Fig. 4A), which demonstrates a significant overlap with 
GBM-related miRNAs (p-value =​ 4.43e–20, in the hypergeometric test).

Furthermore, we investigated whether 98 previously known GBM-related genes33,34 interact with miRNAs 
ranked high in our analysis. The target genes of the top 20 ranked miRNAs obtained from miRTarbase30 included 
3949 genes and 515 genes, found to interact with at least one of the miRNAs with some evidence and with strong 
evidence, respectively. Among these, 68 and 43 genes were common with the 98 GBM genes, with some evidence 
and strong evidence, respectively, showing statistically significant overlaps (p-values <​ 1.12e–13 in the hyperge-
ometric test). Extracted gene-miRNA interactions are listed in Supplementary Table 8.

OVC-related miRNAs–microarray dataset.  Of 723 miRNAs in OVC microarray dataset, 206 (28.6%) were found 
in HMDD. In our analysis, 16/20 miRNAs (80%) and 67/100 (67.0%) miRNAs were shown to be OVC-related 
miRNAs included in HMDD (Fig. 4B), showing a significant overlap (p-value =​ 3.41e-18 in the hypergeometric 
test).

We further investigated whether previously known 379 OVC genes33,34 interact with the highly ranked miR-
NAs. The top 20 ranked miRNAs are known to interact with 4485 genes and 559 genes with some evidence 
and strong evidence in miRTarbase30, respectively. Of these genes, 183 and 89 genes were found among 379 
OVC genes with some evidence and strong evidence, respectively, showing statistically significant overlaps 
(p-values <​ 5.37e-06 in the hypergeometric test). In Supplementary Table 9, a list of gene-miRNA interactions 
is presented.

OVC-related miRNAs–RNA-Seq dataset.  In RNA-Seq OVC dataset, among 1046 identified miRNAs, 133 (12.7%) 
are included in HMDD as OVC-related. Our analyses showed that 17/20 miRNAs (85%) and 66/100 (66.0%) are 
included in HMDD as OVC-related genes (Fig. 4C), demonstrating a significant overlap with OVC-related miR-
NAs (p-value =​ 8.88e-42 in the hypergeometric test).

PRCA and BRCA-related miRNAs.  PRCA dataset contained 1046 miRNAs, and 128 (12.2%) are indicated in 
HMDD as well. In our analysis, 16 out of 20 miRNAs (80.0%) and 63 out of 100 miRNAs (63.0%) were shown 
to be PRCA-related (Fig. 4D). In the BRCA dataset, 229 (21.9%) miRNAs, of 1046, were found in HMDD as 
well. Our analysis, integrating two features, F1 and F3, showed the best performance in the identification of 
BRCA-related miRNAs. However, the integration of all features shows good performance in general. This analysis 
identified 19 out of 20 miRNAs (95.0%) and 75 out of 100 miRNAs (75.0%) as related to BRCA (Fig. 4E).

Pathway analysis.  We investigated biological pathways affected by cancer-related miRNAs identified in our 
study. For each miRNA, we calculated PCCs between the expression level of all genes and the given miRNA, and 
selected highly correlated genes, with PCC values within top 1%. These highly correlated genes and genes that are 
reported to interact with a specific miRNA in miRTarbase30 are considered candidate genes related to the given 
miRNA.

Furthermore, we constructed reference cancer-related pathways for GBM and OVC. We performed a pathway 
enrichment test using 98 GBM genes curated from two previous reports33,34, and 379 OVC genes curated from 
Dragon Database For Exploration Of Ovarian Cancer Genes (DDOC)35 against KEGG pathways. As a result, 61 
and 73 pathways were shown to be significantly enriched (q-value <​ 0.05) and used as reference GBM and OVC, 
respectively, related pathways (Supplementary Tables 10 and 11).

Pathway enrichment analysis, using the genes related to top 20 GBM candidate miRNAs, is presented in 
Fig. 5A. A number of pathways (81) were shown to be associated with top 20 miRNAs (Supplementary Table 12). 
Among them, 47 pathways are reference cancer-related pathways. They include known GBM-related pathways, 
such as apoptosis36, cell cycle37, cytokine-cytokine receptor interaction38, ErbB signaling pathway39, JAK-STAT 
signaling pathway40, MAPK and mTOR signaling pathway41, p53 signaling pathway42, TGF-beta signaling path-
way43, VEGF signaling pathway44, and Wnt signaling pathway45. Additionally, several associations between 
miRNAs and GBM-related pathways shown in Fig. 5A were previously reported. MiR-181a, miR-21, miR-34a, 
miR-30a-5p, miR-222, and miR-17-5p were shown to be involved in the apoptosis of glioma cells46–51. MiR-21, 
miR 34a, and miR-30a-5p may be involved in ErbB signaling pathway52–54 and miR-21, miR-34a, miR-125b, 
miR-17-5p/3p, miR-106a, and miR-222 were identified in the p53 signaling pathway in GBM50,51,55–58. MiR-30a is 
involved in Wnt signaling pathway through the regulation of PRDM1 during glioma cell growth59. Kwak et al.60 
showed that miR-21 is involved in glioma invasion by controlling MAPK signaling pathway.

In OVC analysis, 84 pathways were associated with the top 20 OVC candidate miRNAs (Fig. 5B and 
Supplementary Table 13). Among them, 56 pathways represent reference cancer-related pathways for OVC, 
including previously known OVC related pathways, such as apoptosis61, ECM receptor interaction62, ErbB sig-
naling pathway63, JAK-STAT signaling pathway64, p53 signaling pathway65, and TGF-β signaling pathway66. 
Additionally, in Fig. 5B, previously known associations between miRNAs and pathways are presented. MiR-21 
and miR-17 were shown to be involved in OVC cell apoptosis67,68 in p53 signaling pathway in OVC cells69,70.

Additionally, we performed a functional enrichment test for GO biological functions using the genes related 
to top 20 GBM and OVC candidate miRNAs. Among 1123 enriched terms for GBM, 290 terms were related to 
cancer hallmark signatures such as apoptosis, immune response, chromosome abnormalities, inflammation, and 
angiogenesis71,72. Similarly, for OVC, 171 out of 791 enriched terms were related to cancer, showing that the top 
ranked miRNAs significantly affect cancer-related pathways. Enriched terms are listed in Supplementary Tables 
14 and 15.

Survival analysis.  We obtained clinical information about 480 GBM and 561 OVC (microarray) samples. 
Out of 480 GBM patients, 377 were shown to be deceased and the average survival is 493 days. Out of 561 OVC 
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patients, 290 were deceased and the average survival is 1088 days. Considering these data, GBM is more aggres-
sive than OVC. For each miRNA, we divided the samples into 10% underexpressed group and 10% overexpressed 
group and performed the survival analysis. For GBM samples, 10 out of the top 20 miRNAs (50%) and 29 out of 
the top 100 miRNAs (29%) were shown to be significantly related to the survival of patients. In Fig. 6, survival 
curves for samples containing overexpressed or underexpressed miR-17-5p, miR-106a, and miR-181d, which 
function as tumor suppressors, are shown. Overexpressed groups show longer survival time compared with that 
of the underexpressed groups. These miRNAs were previously identified as tumor suppressors, as presented in 
Table 1. For OVC, only six out of the top 100 miRNAs (6%) were shown to be related to the survival of patients. 
Although multiple studies showed that the highly ranked miRNAs identified in this study are related to OVC, for 
most of them, no significant difference in the survival time was observed. This may be a result of the higher sur-
vival ratio of patients with OVC compared with GBM patients and relatively small differences in the expression 
levels between the samples. Details of the survival analysis for the top 100 miRNA are described in Supplementary 
Tables 16 and 17 for GBM and OVC samples, respectively.

Comparison with other methods.  We compared performances of other methods with that of our method 
using GBM and OVC (microarray) datasets. We used differentially expressed miRNAs for comparison, because 

Figure 5.  GBM and OVC (microarray) pathway analysis. (A,B) Show heatmaps of pathways related to the 
top 20 miRNAs obtained by analyzing GBM and OVC samples, respectively. Red, orange, yellow, and white 
colors represent the correlation of a miRNA and the pathway (form high to low, based on p-value using a 
hypergeometric test). Cancer-related pathways are presented in blue.
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the identification of miRNAs based on differential expression between cancer samples and normal samples is the 
most commonly used approach for the selection of cancer-related miRNAs. We additionally downloaded eight 
and 10 unmatched normal GBM and OVC (microarray) samples, respectively, computed p-values using t-test, 
and ranked miRNAs based on p-values.

For comparison, we employed our previous approach25 as well, in which gene and miRNA expressions and 
gene-gene interactions are integrated using a biclustering algorithm and a Gaussian Bayesian network framework, 
followed by construction of gene-miRNA modules. The inclusion of genes and miRNAs in the same module was 
explained through the direct regulation of genes by miRNAs and/or indirect regulation by transcription factors. 
We assumed here that the miRNAs included in the modules are cancer-related. We listed all miRNAs in the mod-
ules without duplication and obtained 95 GBM-related and 108 OVC-related candidate miRNAs.

In Fig. 7, each bar represents a cumulative ratio of GBM miRNAs in HMDD (Fig. 7A) and OVC miRNAs in 
HMDD (Fig. 7B) among miRNAs identified by each method, and on the x-axis are represented the numbers of 
candidate miRNAs selected based on the rankings in each method. Across all rankings ranging from 10 to 100, 
our method outperformed the other two investigated approaches. Although our method showed a slightly higher 
performance when 95 GBM candidate miRNAs were used, in comparison with our previous approach (66.3% 
vs. 61.1%, respectively), it significantly outperformed our previous approach when using 108 OVC candidate 
miRNAs (66.3% vs 48.1%, respectively).

An approach proposed by Zhang et al.24 was also employed for comparison. Zhang et al.24 identified differen-
tially expressed genes and miRNAs, computed PCCs between them, and constructed a gene-miRNA network by 
intersecting negative PCC pairs and combination of experimentally and computationally derived gene-miRNA 
interactions. They ranked candidate cancer-related miRNAs by considering the number of genes uniquely reg-
ulated by miRNAs in the obtained network. When the method was applied to a GSE34933 dataset from NCBI 
GEO, containing the information about gene and miRNA expression for four PRCA samples and benign prostatic 
hyperplasia samples, 26, 39 and 69 PRCA candidate miRNAs were identified depending on the thresholds. In 
Fig. 7C, it is clearly demonstrated that our method outperforms the approach used by Zhang et al.24 when the 
same PRCA dataset is used.

Discussion and Conclusion
Our approach can identify cancer-related miRNAs that may affect other molecules in the biological network 
based on three distinct features. For most of the analyzed cancer types, the integration of the three features led to 
the best performance in the identification of cancer-related miRNAs. However, the identification of BRCA-related 
miRNAs was improved when only two features, F1 and F3, were integrated, because F2 showed less power. 
Although the influence of these features can be controlled by assigning different weights to each feature, this 
requires prior knowledge, and therefore, the ability of generalization decreases. Here, we demonstrated that our 
order statistics-based method outperformed the average ranking ratio approach. To further investigate the influ-
ence of different weighting of features, we determined performance of feature integration by assigning differ-
ent weights to each feature. These three features were integrated with various weights ranging from 0.1 to 1.0, 
resulting in a total of 1,000 test cases for each cancer type. We then selected the weight combinations providing 
the best performance, and the best combinations yielded performances similar to our approach for GBM, OVC 
and PRCA when selecting 100 candidate miRNAs, although our approach was outperformed in other cases. 
However, the best weight combinations were differed between different cancer types and the number of miRNAs 
selected as candidate cancer-related miRNA, confirming that it is hard to generalize optimal feature weights. 
Additionally, our order statistics approach significantly outperformed the worst weight combination, showing 
that our approach that considers ascending and descending rankings of the features can be generalized to any 
cancer type. Performances with various feature weights are described in Supplementary Table 18.

For GBM and OVC, we investigated top 20 miRNAs in detail to understand their roles in the cancer develop-
ment, because more highly ranked miRNAs are more likely to be related to cancer. Functional roles of the top 20 
candidate GBM miRNAs are described in Table 1 and Supplementary Table 19. Among them, miR-9/9* (ranked 
second and seventh), miR-181a/a* (ranked third and 10th), miR-21 (ranked fourth), miR-93 (ranked fifth), 

Figure 6.  GBM survival analysis. Green and red lines represent samples with underexpressed miRNAs 
and overexpressed miR-17-5p, miR-106a, or miR-181d, respectively. These miRNAs function as tumor 
suppressors, and the survival rates of patients with the overexpression of these miRNAs are higher than those of 
patients with the underexpression of these miRNAs.



www.nature.com/scientificreports/

1 0Scientific Reports | 6:35350 | DOI: 10.1038/srep35350

miR-34a (ranked sixth), miR-222 (ranked 13th), miR-17-5p/3p (ranked 14th and 18th), and miR-181d (ranked 16th)  
were reported as important GBM-related miRNAs. MiR-9/9* function as onco-miRNAs or tumor suppressors, 
depending on the cellular environment. Schraivogel et al.73 reported that miR-9/9* are highly abundant in GBM 
stem cells and function as oncogenes by repressing tumor suppressor CAMTA1. Wu et al.57 reported that miR-9 is 
upregulated in glioma patients with high WHO grade (III-IV) and represents a useful prognostic factor for over-
all survival. Although these studies indicated that high miR-9/9* expression promotes tumor progression, Gomez 
et al.74 showed that, in GBM driven by EGFR mutation (EGFRvIII), miR-9 suppression leads to the enhanced 
tumor growth, because this miRNA targets FOXP1 transcription factor, and its upregulation can be oncogenic. 
MiR-181a/a* act as tumor suppressors, and Shi et al.46 showed that miR-181a inhibits cell growth and invasion 
and induces apoptosis in glioma cells. MiR-21 was reported to be an important biomarker in GBM. Chan et al.75 
showed that miR-21 functions as an antiapoptotic factor by repressing apoptosis-related genes in GBM cells. 
Gabriely et al.76 showed that miR-21 promotes the activity of matrix metalloproteinases (MMPs) by targeting 
MMP inhibitors, which results in the increase of tumor invasiveness. Zhou et al.52 showed that miR-21 is involved 
in the regulation of EGFR and AKT pathways, and the suppression of cell growth in GBM. Furthermore, it was 
demonstrated77 that miR-93 targets integrin β8, affecting integrin β8-induced cell death in GBM. MiR-34a has 
been reported as an important regulator in GBM, and several studies56,78–80 reported that miR-34a functions as 
a tumor suppressor. MiR-34a targets several genes, such as c-Met, Notch-1, Notch-2, and CDK6, and regulates 
GBM-related pathways, e.g., p53 pathway. MiR-222 was shown50 to inhibit cell apoptosis and induce cell survival 
through the direct targeting of p53-upregulated modulator of apoptosis (PUMA) in GBM. MiR-222 was shown 
to be involved in tumorigenesis81 through the regulation of protein tyrosine phosphatase u (PTPu) expression in 
glioma cells. MiR-17-5p/3p were reported to regulate E2F1, PTEN, and MDM2. Srinivasan et al.13 demonstrated 
that the expression of miR-17 is associated with survival time in GBM. Additionally, decreased expression level 
of E2F1 and cyclin D1, which represent miR-17 targets, were shown to correlate with longer patient survival. 
MiR-17-5p was shown to target PTEN and miR-17-3p targets MDM2 51. MiR-17 overexpression was shown to 
increase the overall survival time. MiR-181d functions as tumor suppressor in GBM, and it may represent both a 
predictive biomarker in temozolomide therapy and a prognostic marker regulating MGMT expression in GBM82. 
Furthermore, Wang et al.83 showed that miR-181d functions as a tumor suppressor by regulating K-ras and Bcl-2.

Additionally, several studies49,58,84–87 showed that miR-22 (ranked first), miR-29a (ranked eighth), miR-30a-5p 
(ranked ninth), miR-30c (ranked 12th), miR-106a (ranked 15th), and miR-15b (ranked 17th) are primarily asso-
ciated with cell apoptosis and proliferation in GBM. MiR-125b (ranked 11th) was shown to have different func-
tions depending on the environment, and targets E2F1 and inhibits the proliferation of CD133-positive glioma 
stem cells88. However, it was shown that miR-125b function as oncogene as well, promoting proliferation and 

Rank miRNA HMDD Evidence Reference

1 miR-22 O Correlation between miRNA expression changes and alteration in mRNA levels 
of different glioma cells after PUFA or temozolomide treatment Faragó et al.84

2,7 miR-9*/9 O  CAMTA1 is a novel tumor suppressor regulated by miR-9/9* in glioblastoma 
stem cells Schraivogel et al.73

3,10 miR-181a/181a* O  Hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human 
glioma cells Shi et al.46

4 miR-21 O MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells Chan et al.75

5 miR-93 O MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting 
integrin-β8 Fang et al.77

6 miR-34a O MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Li et al.78

8 miR-29a O Over-expression of miR-29a/29b promotes apoptosis of GICs (GBM initiating 
cells) by inhibiting MCL1 protein expression Aldaz, et al.85

9 miR-30a-5p O MiR-30a-5p antisense oligonucleotide suppresses glioma cell growth by 
targeting SEPT7 Jia et al.49

11 miR-125b O MiR-125b regulates the proliferation of glioblastoma stem cells by targeting 
E2F2 Wu et al.88

12 miR-30c O Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in glioma cells Quintavalle et al.86

13 miR-222 O MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma Zhang et al.50

14,18 miR-17-5p/3p O Stress response of glioblastoma cells mediated by miR-17-5p targeting PTEN 
and the passenger strand miR-17-3p targeting MDM2. Li et al.51

15 miR-106a O MiR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 
status Yang et al.58

16 miR-181d O MiR-181d acts as a tumor suppressor in glioma by targeting K-ras and Bcl-2 Wang et al.83

17 miR-15b O MiR-15b and miR-152 reduce glioma cell invasion and angiogenesis via NRP-2 
and MMP-3 Zheng et al.87

19 let-7f X Let-7f Inhibits glioma cell proliferation, migration, and invasion by targeting 
periostin Yan et al.91

20 let-7a O Overexpressed let-7a inhibits glioma cell malignancy by directly targeting 
K-ras, independently of PTEN Wang et al.90

Table 1.  Studies on top 20 miRNAs identified in GBM samples. Columns 1 and 2 present the ranking and 
name of miRNAs, respectively. In column 3, GBM-related miRNA in HMDD are marked. Columns 4 and 5 
summarize representative evidence and studies supporting the role of miRNAs in GBM, respectively.
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inhibiting the apoptosis of GBM stem cells89. Let-7a was ranked 20th in our analysis, and Wang et al.90 showed that 
it directly targets K-ras and reduces glioma cell malignancy. Although let-7f (ranked 19th) was not described as 
GBM-related miRNA in HMDD, Yan et al.91 showed that it is involved in the inhibition of proliferation, migra-
tion, and invasion of glioma cells.

Functional roles of the top 20 OVC candidate miRNAs in microarray dataset are described in Supplementary 
Table 20. Among them, miR-21 (ranked third and 14th), miR-93 (ranked sixth), miR-20a (ranked 11th), miR-
125b (ranked 13th), miR-16 (ranked 18th), and miR-27a (ranked 19th) are well-known OVC-related miRNAs. 
MiR-21 functions as an oncogene, and it is involved in tumorigenesis and tumor progression through the reg-
ulation of PTEN expression, an OVC-related tumor suppressor70. The suppression of miR-21 induces apoptosis 
of cisplatin-resistant OVC cells and the overexpression of miR-21 leads to the lowering of patient survival rate67. 
Similarly, miR-93 plays a key role in cell survival, since its suppression induces the apoptosis of OVC cells and 
it is involved in the determination of cisplatin chemosensitivity through the regulation of PTEN expression92. 
OVC cell survival was shown to be increased following miR-93 cell transfection77. Fan et al.93 showed that the 
overexpression of miR-20a promotes proliferation and invasion through direct targeting of amyloid precursor 
protein (APP) in OVC cells. MiR-125b was reported to be a tumor suppressor, since it suppresses cell proliferation 
through the regulation of BCL3, a proto-oncogene94, while it also inhibits tumor angiogenesis by regulating HER2 
and HER3 95. Bhattacharya et al.96 showed that miR-16 regulates BMI-1 expression and that the downregulation of 
BMI-1 leads to the inhibition of proliferation and clonal growth of OVC cells. MiR-27a functions as an oncogene, 
and it controls the expression of multi-drug resistance (MDR)1/P-glycoprotein by targeting homeodomain inter-
acting protein kinase (HIPK)2 that acts as a tumor suppressor97. Multiple studies98–101 showed that let-7b (ranked 
first), miR-29a (ranked fourth), miR-30c/30e* (ranked second and 17th) and miR-30b (ranked 20th) expression 
levels significantly differ between OVC tissues and controls. Furthermore, let-7b and miR-30c/30e* expression 
changes were associated with survival time, and the copy number of the mir-30b gene was shown to be increased in 
OVC102. MiR-29b/29c (ranked fifth and 16th) are involved in the development of cisplatin resistance103. Li et al.104  
showed that miR-22 (ranked seventh) inhibits cell migration and invasion, and plays a key role in OVC metas-
tasis. MiR-17 (ranked eighth in our analysis) is involved in the regulation of OVC-related pathways, suppressing 
LKB1-p53-p21/WAF1 pathway, which results in the induction of OVC stem cell development69. Yang et al.105 
showed that miR-130a (ranked 10th) is involved in drug resistance mediated by DR1/P-glycoprotein in OVC cells.

Although miR-181a-2* (ranked ninth), miR-142-3p (ranked 12th), miR-24 (ranked 15th), and miR-29c (ranked 16th)  
are not indicated as OVC-related miRNAs in HMDD, Parikh et al.106 showed that miR-181a plays a crucial role 
in OVC progression, by promoting TGF-β-mediated epithelial-to-mesenchymal transition through the suppres-
sion of Smad7. Furthermore, the expression of miR-142-3p was shown to be highly correlated with a set of genes, 
including some cancer-related genes, and a set of methylation sites in OVC 107. MiR-24 acts as a tumor suppressor, 
inducing apoptosis in OVC cells108, while miR-29c was described previously103, together with miR-29b.

Functional roles of the top 20 OVC candidate miRNAs in RNA-Seq dataset are described in Supplementary Table 
21. RNA-Seq and microarray datasets contain the expression levels of pre-miRNAs and mature miRNAs, respec-
tively, however, eight common miRNAs in top 20 miRNAs can be observed: mir-181a-2/1 (ranked first and 13th),  
mir-22 (ranked third), mir-93 (ranked fourth), let-7b (ranked ninth), mir-125b-1 (ranked 11th), mir-30c-2 
(ranked 14th), mir-30e (ranked 18th) and mir-17 (ranked 20th).

Let-7a (ranked fifth, sixth, and eighth), mir-200c (ranked 10th), and mir-25 (ranked 17th) are known as impor-
tant OVC-related miRNAs. Let-7a-2/3/1 were reported as OVC prognosis markers. The methylation of let-7a-3 
was identified in epithelial OVCs, and it affects the expressions of insulin-like growth factor 2 (IGF2) and patient 
survival109. Low let-7a expression and high LIN28B expression were correlated with poorer prognosis110. Two 
studies111,112 showed that miR-200c acts as a regulator, reducing tumor burden and increasing the sensitivity to 
chemotherapy by regulating TUBB3 (class III β-tubulin gene). High miR-200c expression suppresses TUBB3 
expression, which ultimately prolongs survival. Zhang et al.113 showed that the overexpression of miR-25 induces 
cell proliferation by directly repressing the expressions of a pro-apoptotic protein Bim in OVC. Two studies114,115 
showed that miR-92a directly represses the expression of integrin α5, and it was shown that the increased expres-
sion of this integrin leads to the poorer survival of patients with stage III OVC. Moreover, Cai et al.116 showed 
that let-7e (ranked seventh) is involved in the development of cisplatin resistance in OVC, while miR-30a/99b 

Figure 7.  Comparison of our method with other methods. Our approach was compared with the approach 
based on DE miRNAs, Zhang et al.24, and our previous approach25. Each bar represents a cumulative ratio of 
cancer-related miRNAs in HMDD28 and miRNAs identified by each of the presented methods for each cancer 
type. The number of miRNAs identified by these methods is represented on x-axis. In (A,B), GBM and OVC 
(microarray) datasets from TCGA were used while, in (C), PRCA dataset (GSE34933)24 from NCBI GEO was 
used for comparison.
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(ranked 12th and 15th, respectively), were shown to be differentially expressed between OVC tissues and con-
trols99,100. Additionally, the functional roles of the top 20 PRCA and BRCA candidate miRNAs are described in 
Supplementary Tables 22 and 23.

We demonstrated here that our proposed approach outperforms the approaches based on the datasets show-
ing differentially expressed miRNAs in the identification of cancer-related miRNAs. Therefore, our method can 
be widely applied to other cancer datasets and may contribute to the elucidation of cancer-related miRNA mech-
anisms. Furthermore, providing the ranking information, which allows the selection of a small number of highly 
relevant miRNAs, represent an advantage of our method.
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