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SUMMARY

Today’s increased availability of large amounts of human behavioral data and ad-
vances in artificial intelligence (AI) are contributing to a growing reliance on algo-
rithms to make consequential decisions for humans, including those related to
access to credit or medical treatments, hiring, etc. Algorithmic decision-making
processes might lead to more objective decisions than those made by humans
who may be influenced by prejudice, conflicts of interest, or fatigue. However,
algorithmic decision-making has been criticized for its potential to lead to privacy
invasion, information asymmetry, opacity, and discrimination. In this paper, we
describe available technical solutions in three large areas that we consider to
be of critical importance to achieve a human-centric AI: (1) privacy and data
ownership; (2) accountability and transparency; and (3) fairness.We also highlight
the criticality and urgency to engage multi-disciplinary teams of researchers,
practitioners, policy makers, and citizens to co-develop and evaluate in the
real-world algorithmic decision-making processes designed to maximize fairness,
accountability, and transparency while respecting privacy.

INTRODUCTION

Nowadays, the large-scale availability of human behavioral data and the increased capabilities of artificial

intelligence (AI) are enabling researchers, companies, practitioners and governments to leverage machine

learning algorithms to address important problems in our societies (Gillespie, 2014;Willson, 2017). Notable

examples are the use of algorithms to estimate and monitor socioeconomic conditions (Eagle et al., 2010;

Soto et al., 2011; Blumenstock et al., 2015; Venerandi et al., 2015; Steele et al., 2017) and well-being (Hill-

ebrand et al., 2020), tomap the spread of infectious diseases (i.e. influenza, malaria, dengue, zika, andmore

recently SARS-CoV-2) (Ginsberg et al., 2009; Wesolowski et al., 2012, 2015; Zhang et al., 2017; Jia et al.,

2020; Lai et al., 2020), and to quantify the impact of natural disasters (Ofli et al., 2016; Pastor-Escuredo

et al., 2014; Wilson et al., 2016).

Moreover, machine learning algorithms are increasingly used to support humans or even autonomously

make decisions with significant impact in people’s lives. The main motivation for the use of technology

in these scenarios is to overcome the shortcomings of human decision-making. In the last decades, several

studies in psychology and behavioral economics have highlighted the significant limitations and biases

characterizing the human decision-making process (Tverksy and Kahnemann, 1974; Samuelson and Zeck-

hauser, 1988; Fiske, 1998). Compared to humans, there are advantages that can hardly be denied in the use

of machine learning algorithms: they can perform tasks in a shorter amount of time, they are able to process

significantly larger amounts of data than humans can, they do not get tired, hungry, or bored and they are

not susceptible to corruption or conflicts of interest (Danziger et al., 2011). Furthermore, the increasing ten-

dency in adopting algorithms can be seen as an answer to the request of a greater objectivity and reduced

error in decisions. Thus, it is no suprise to see a growth in the use of machine learning-based systems to

decide whether an individual is credit worthy enough to receive a loan (Kleinberg et al., 2017), to identify

the best candidates to be hired for a job (Siting et al., 2012; Raghavan et al., 2020) or to be enrolled in a

specific university (Marcinkowski et al., 2020), to predict if a convict individual is inclined to re-offend

(Berk et al., 2018), to recommend products or content (including news) to consume (Jannach and Adoma-

vicius, 2016; Noble, 2018; Oyebode and Orji, 2020), and so on.

However, researchers from different disciplinary backgrounds and activists have identified a range of so-

cial, ethical and legal issues associated with the use of machine learning in decision-making processes,
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including violations of individuals’ privacy (Crawford and Schultz, 2014; de Montjoye et al., 2013a, 2015;

Ohm, 2010), lack of transparency and accountability (Citron and Pasquale, 2014; Pasquale, 2015; Zarsky,

2016), and biases and discrimination (Barocas and Selbst, 2016; Eubanks, 2018; Noble, 2018; Benjamin,

2019). For example, Barocas and Selbst (Barocas and Selbst, 2016) have shown that the use of AI-driven de-

cision-making processes could result in disproportionate adverse outcomes for disadvantaged groups

(e.g. minorities, individuals with lower income, etc.). In 2016, the non-profit organization ProPublica

analyzed the performance of the COMPAS Recidivism Algorithm, a tool used to inform criminal sentencing

decisions by predicting recidivism (Angwin et al., 2016). The results of the conducted analysis found that

COMPAS was significantly more likely to label black defendants than white defendants as potential repeat

offenders, despite similar rates of prediction accuracy between the two groups (Angwin et al., 2016). More

recently, Obermeyer et al. (Obermeyer et al., 2019) have shown that an algorithm widely used in the health

system exhibits a racial bias. Specifically, for a given risk score this algorithm labels black patients as signif-

icantly sicker than white patients. As authors pointed out the racial bias arises because the algorithm is pre-

dicting health care costs rather than the health status of the individual.

As a consequence, national governments and international organizations (e.g. the European Commission

and the European Parliament, the Organisation for Economic Cooperation and Development, etc.), major

tech companies (e.g. Google, Amazon, Facebook, Microsoft, IBM, SAP, etc.), and professional and non-

profit organizations (e.g. Association for Computing Machinery, Institute of Electrical and Electronics

Engineers, World Economic Forum, Amnesty International, etc.) have recently responded to these

concerns by extablishing ad-hoc initiatives and committees of experts. These initiatives and committees

have produced reports and guidelines for an ethical AI. In a recent paper, Jobin et al. (Jobin et al., 2019)

have analyzed these guidelines showing that a global convergence is emerging around five ethical princi-

ples, namely transparency, justice and fairness, non-maleficence, responsibility, and privacy.

Similarly, the human-computer interaction (HCI) research community has proposed, for over two decades,

principles and guidelines for the design of an effective human interaction with AI systems (Norman, 1994;

Horvitz, 1999; Parise et al., 1999; Sheridan and Parasuraman, 2005; Lim et al., 2009). Nowadays, this debate

is becoming more and more relevant given the growing use of AI systems in decision-making processes

(Lee et al., 2015; Abdul et al., 2018; Amershi et al., 2019; Wang et al., 2019). In a recent paper, Amershi

et al. (Amershi et al., 2019) have systematically validated a large number of applicable guidelines for

designing the interaction between humans and AI systems. Examples of these guidelines (Amershi

et al., 2019) are (i) making clear what the system can do and (ii) how well, (iii) supporting an efficient correc-

tion of the system’s errors, and (iv) an efficient dismissal of undesired AI system’s services, (v) mitigating the

social biases, and (vi) matching relevant social norms, and so on. Along this line, Abdul et al. (Abdul et al.,

2018) have performed a literature analysis of HCI core papers on explainable systems as well as of related

papers from other fields in computer science and cognitive psychology. Their analysis (Abdul et al., 2018)

revealed some trends and trajectories for the HCI community in the domain of explainable systems, such as

the introduction of rule extraction methods in deep learning (Hailesilassie, 2016), the demand for a system-

atic accountability of the AI systems (Shneiderman, 2016), the exploration of interactive explanations (Patel

et al., 2011; Krause et al., 2016), and the relevance of the human side of the AI systems’ explanations (Doshi-

Velez and Kim, 2017; Lipton, 2018; Miller, 2019).

In addition, a recent scientific mass collaboration, involving 160 teams worldwide, evaluated the effective-

ness of machine learning models for predicting several life outcomes (e.g. child grade point average, child

grit, household eviction, etc.) (Salganik et al., 2020). This work used data from the Fragile Families and Child

Wellbeing Study (Reichman et al., 2001). The obtained results have shown serious limitations in predicting

life outcomes of individuals. Indeed, the best machine learning predictions were not very accurate and only

slightly better than the ones obtained by simple baseline models. Therefore, the authors recommend that

policymakers determine whether the predictive accuracy, achievable using machine learning approaches,

is adequate for the setting where the predictions will be used, and whether the machine learning models

are significantly more accurate than simple statistical analyses or decisions taken by human domain experts

(Hand, 2006; Rudin, 2019). Moreover, the perception of algorithms’ decisions, regardless of their actual

performance, may significantly influence people’s trust in and attitudes toward AI-driven decision-making

processes (Lee and Baykal, 2017; Lee, 2018). In a recent work, Lee (Lee, 2018) conducted an online exper-

iment in which study participants read the description of a human or an algorithmic managerial decision.

These decisions were based on real-world examples of tasks requiring more ‘‘human’’ skills (e.g. emotional
2 iScience 24, 102249, March 19, 2021
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capability, subjective judgment, etc.) or more ‘‘mechanical’’ skills (e.g. processing large amount of data,

etc.). The study shows that, with the ‘‘mechanical’’ tasks, human-made and algorithmic decisions were

perceived as equally trustworthy and fair, whereas, with the ‘‘human’’ tasks, the algorithmic decisions

were perceived as less trustworthy and fair than the human ones. In two qualitative laboratory studies,

Lee and Baykal (Lee and Baykal, 2017) showed that algorithmic decisions in social division tasks (e.g. allo-

cating limited resources to each individual) were perceived more unfair than decisions obtained as a result

of group discussions. In particular, the algorithmic decisions were viewed as unfair when they did not take

into account the presence of altruism and other aspects related to the group dynamics (Lee and Baykal,

2017).

In this article, we build on our previous work (Lepri et al., 2017, 2018) to first provide a brief compendium of

risks (i.e. privacy violations, lack of transparency and accountability, and discrimination and biases) that

might arise when consequential decisions impacting people’s lives are based on the outcomes of machine

learning models. Next, we describe available technical solutions in three large areas that we consider to be

of critical importance to achieve a human-centric AI: (1) privacy and data ownership; (2) transparency and

accountability; and (3) fairness in AI-driven decision-making processes. We also highlight the criticality and

urgency to engage multi-disciplinary teams of researchers, practitioners, policy makers and citizens to co-

develop, deploy and evaluate in the real-world algorithmic decision-making processes designed to maxi-

mize fairness, transparency, and accountability while respecting privacy, thus pushing toward an ethical

and human use of AI. Detailed reviews and perspectives on these topics can also be found in several recent

publications (Pasquale, 2015; Mittelstadt et al., 2016; Veale and Binns, 2017; Barocas et al., 2018; Cath et al.,

2018; Guidotti et al., 2018; Lipton, 2018; Jobin et al., 2019; Brundage et al., 2020; Kearns and Roth, 2020).

Our ultimate goal is to document and highlight recent research efforts to reverse the risks of AI when used

for decision-making and to offer an optimistic view on how our societies could leverage machine learning

decision-making processes to build a Human-centric AI, namely a social and technological framework that

enhances the abilities of individuals and serves the objectives of human development (Letouzé and Pent-

land, 2018). Note that the proposed Human-centric AI framework has not the pragmatic and utilitarian

objective of improving trustworthiness and of avoiding improper usage of AI-driven decision-making

systems in order to increase their adoption. Instead, our envisioned approach has the ambitious goal of

building AI systems that preserve human autonomy, complement the intelligence of individuals, behave

transparently and help us to increase the fairness and justice in our societies.

The risks of AI-driven decision-making

The potential positive impact of AI – namely, machine learning-based approaches – to decision-making is

huge. However, several risks and limitations of these systems have been highlighted in recent years (Craw-

ford and Schultz, 2014; Pasquale, 2015; Tufekci, 2015; Barocas and Selbst, 2016; O’Neil, 2016; Lepri et al.,

2017; Barocas et al., 2018; Brundage et al., 2020), including violations of people’s privacy, lack of transpar-

ency and accountability of the algorithms used, and discrimination effects and biases harming the more

fragile and disadvantaged individuals in our societies. In this section, we turn our attention to these

elements before describing existing efforts to overcome and/or minimize these risks and to maximize

the positive impact of AI-driven decision-making.

Computational violations of privacy

The use of AI in decision-making processes often requires the training of machine learning algorithms on

data sets that may include sensitive information about people’s characteristics and behaviors. Moreover, a

frequently overlooked element is that current machine learning approaches, coupled with the availability of

novel sources of behavioral data (e.g. social media data, mobile phone data, credit card transactions, etc.),

allow the learning algorithm to make inferences about private information that may never have been

disclosed.

A well-known study by Kosinski et al. (Kosinski et al., 2013) used survey information as ground-truth and

data on Facebook ‘‘Likes’’ to accurately predict sexual orientation, ethnic origin, religious and political

preferences, personality traits, as well as alcohol, drugs, and cigarettes use of over 58,000 volunteers.

For example, the simple logistic/linear regression model is able to correctly discriminate between African

Americans and Caucasian Americans in 95% of cases, between an homosexual and an heterosexual men in

88% of cases, and between Democrats and Republicans in 85% of cases.
iScience 24, 102249, March 19, 2021 3
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More recently, Wang and Kosinski (Wang and Kosinski, 2018) used deep neural networks to extract visual

features from more than 35,000 facial images. Then, these features were used with a logistic regression

algorithm to classify the sexual orientation of the study participants. The authors show that this simple clas-

sifier, using a single facial image, could correctly discriminate between gay and heterosexual men in 81% of

cases and between gay and heterosexual women in 71% of cases. Human judges, instead, achieved a much

lower classification accuracy, namely 61% for men and 54% for women. As pointed out by the authors

(Wang and Kosinski, 2018), these findings highlight the threats to the privacy and safety of homosexuals

given that companies (e.g. recruitment and advertising companies, banks, insurances, etc.) and

governments are increasingly using computer vision algorithms to detect people’s traits and attitudes.

Along a similar line, Matz et al. introduced a psychological targeting approach (Matz et al., 2017) that con-

sists in predicting people’s psychological profiles (e.g. Big Five personality traits) from their digital foot-

prints, such as Twitter and Facebook profiles (Quercia et al., 2011; Kosinski et al., 2013; Schwartz et al.,

2013; Segalin et al., 2017), mobile phone data (Staiano et al., 2012; de Montjoye et al., 2013b; Chittaranjan

et al., 2013; Stachl et al., 2020), credit card transactions (Gladstone et al., 2019), and even 3G/4G/Wifi usage

patterns (Park et al., 2018), in order to influence people’s behaviors by means of psychologically driven in-

terventions. This technological approach attracted significant attention in the context of the Facebook-

Cambridge Analytica scandal, where millions of Facebook users’ personal data and psychological profiles

were extracted and used without consent by Cambridge Analytica, a British consulting political firm, mainly

acting in the domain of political advertising.

Despite the algorithmic advancements in anonymizing data, several works have shown that is feasible to

infer identities from pseudo-anonymized human behavioral traces. For example, de Montjoye et al. (de

Montjoye et al., 2013a, 2015) have demonstrated how unique mobility and shopping behaviors are for

each individual. Specifically, the authors have shown that four spatiotemporal points are enough to

uniquely identify 95% of people in a pseudo-anonymized mobile phone data set of 1.5 million people

(de Montjoye et al., 2013a) and to identify 90% of people in a pseudo-anonymized credit card transactions

dataset of 1 million people (de Montjoye et al., 2015).

Furthermore, since machine learning algorithms were often designed without considering potential adver-

sarial attacks, several recent studies are highlighting their privacy vulnerabilities (Papernot et al., 2016;

Song et al., 2019). More precisely, adversarial attacks aim at obtaining private sensitive information about

the learning model or the model’s training data. For example, the attacks targeting the learning model’s

privacy include (i) the inference of model’s hyperparameters using stealing attacks (Wang and Zhenqiang

Gong, 2018; Song et al., 2019) and (ii) the inference of model’s details using model extraction attacks

(Tramér et al., 2016; Song et al., 2019). Regarding data privacy, adversarial attacks may also infer, using

membership inference attacks (Shokri et al., 2017; Nasr et al., 2019; Song et al., 2019), whether input exam-

ples are used to train the target learning model. Additional adversarial attacks targeting data privacy

include covert channel model training attacks (Song et al., 2017, 2019), as well as the adoption of property

inference attacks to learn global properties of training data (Ganju et al., 2018; Song et al., 2019). As a

consequence, the privacy research community has designed and developed defenses to prevent privacy

leakage of the target learning model (Kesarwani et al., 2018; Song et al., 2019) and of the model’s training

data (Shokri and Shmatikov, 2015; Abadi et al., 2016; Hayes and Ohrimenko, 2018; Song et al., 2019). How-

ever, adversarial attacks raise broader risks for the robustness and the trustworthiness of the machine-

learning based systems. A notable example is the attack consisting in pasting stickers on traffic signs to

fool the computer vision-based signage recognition module in the autonomous vehicles (Eykholt et al.,

2018).
Lack of transparency and accountability

Transparency in corporate and government use of AI-driven decision-making tools is of fundamental

importance to identify, measure, and redress harms (e.g. privacy harms) and discriminatory effects gener-

ated by these algorithms, as well as to validate their value for public interest. Moreover, transparency is

generally thought as a mechanism that facilitates accountability, namely the clarity regarding who holds

the responsibility of the decisions made by AI algorithms or with algorithmic support. For this reason,

the General Data Protection Regulation (GDPR) framework, launched in 2018 in the European Union

(EU), highlighted a ‘‘right to an explanation’’. See http://eur-lex.europa.eu/eli/reg/2016/679/oj for more

details on the ‘‘Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016
4 iScience 24, 102249, March 19, 2021
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on the protection of natural persons with regard to the processing of the free movement of personal data,

and Directive 95/46/EC (GDPR)’’.

In ‘‘The Mythos of Model Interpretability’’ (Lipton, 2018), the computer scientist Lipton has identified three

different notions of transparency: (i) at the level of the whole learning model (i.e. the entire model can be

explained and understood), (ii) at the level of individual components (i.e. each component of themodel can

be explained and understood), and (iii) at the level of the training algorithm (i.e. only the specific algorithm

can be explained and understood without any explanation and understanding of the entire model or of its

components).

However, different types of opacity or lack of transparency might emerge in AI-driven decision-making

tools (Burrell, 2016). For example, Datta et al. (Datta et al., 2015) have investigated the transparency pro-

vided by Google’s Ad Settings using their AdFisher tool and they have found examples of opacity as

they encountered cases where there were significant differences in the ads shown to different user profiles

while the AdFisher tool failed to identify any type of algorithmic profiling.

Moreover, the inventor and owner of an AI system could intentionally design an opaque system in order to

protect the intellectual property or to avoid the gaming of the system (Burrell, 2016). Regarding the latter

case, network security applications of machine learning remain opaque in order to be effective in dealing

with frauds, spams, and scams (Burrell, 2016). This intentional opacity (Burrell, 2016) could be mitigated

with legislation interventions in favor of the use of open source AI systems (Diakopoulos, 2015; Pasquale,

2015). However, these interventions often may collide with the interests of corporations that develop and

use these systems. For example, when the algorithmic decision being regulated is a commercial one, a

legitimate business interest in protecting the algorithm or the proprietary information may conflict with

a request of full transparency.

The second type of opacity is illiterate opacity (Burrell, 2016), given that a large fraction of the population

currently lacks the technical skills to understand how the machine learning algorithms work and how they

build models from input data. This kind of opacity might be attenuated by establishing educational pro-

grams for e.g. policy makers, journalists, activists in computational thinking and AI, as well as helping

the people affected by machine learning decisions to resort to the advice of independent technical

experts.

Finally, certain machine learning algorithms (e.g. deep learning models) are by nature difficult to interpret.

This intrinsic opacity (Burrell, 2016) is well-known in the academic machine learning community and it is usu-

ally referred to as the interpretability problem (Lipton, 2018). The main approach to deal with this type of

opacity is to use alternativemachine learningmodels that are easier to interpret by humans in order to char-

acterize the decisions made by the black-box algorithm. However, this approach typically does not provide

a perfect model of the black-box algorithm’s performance.
Biases and discriminatory effects

In legal terms, discrimination occurs when two different rules are applied to similar situations, or the same

rule is applied to different situations (Tobler, 2008). Turning our attention to the use of machine learning in

decision-making processes, discriminatory effects and biases could be the result of the way input data are

collected and/or of the learning process itself (Barocas and Selbst, 2016; Barocas et al., 2018).

First of all, specific features and attributes may be poorly weighted, thus leading to disparate impact (Baro-

cas and Selbst, 2016; Barocas et al., 2018). For example, predictive policing algorithms may overemphasize

the predictive role of the ‘‘zip code’’ attribute, thus leading to the association of low-income African-Amer-

ican and Latino neighborhoods with areas with high criminality. This example highlights an area of ethical

ambiguity in current law, known as indirect discrimination (Christin et al., 2015), in which social conditions

(such as the neighborhood) plays a role in individual decision making, but the algorithm (or law) imputes

these social constraints to choices made by the individual.

As before, biased training data can be used both for training models and for evaluating their predictive

performance (Calders and Zliobaite, 2013), and machine learning algorithms can lead to discriminatory ef-

fects as a result of their misuse in specific contexts (Calders and Zliobaite, 2013). Indeed, discriminationmay
iScience 24, 102249, March 19, 2021 5
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occur from the simple decision of when to use an algorithm, a choice that inevitably excludes consideration

of some contextual variables (Diakopoulos, 2015).

Moreover, the use of AI-driven decision-making processes may also result in the denial of opportunities

and resources to individuals not because of their own actions but due to the actions of other individuals

with whom they share some characteristics (e.g. income levels, gender, ethnic origin, neighborhoods, per-

sonality traits, etc.) (Lepri et al., 2018).

However, as recently argued by Kleinberg et al. (Kleinberg et al., 2020), the prevention of discriminatory

effects requires the identification of means to detect these effects, and this can be very difficult when hu-

man beings are making the decisions. Interestingly, machine learning algorithms require greater levels of

detail and specificity than the ones needed in the human decision-making processes. Thus, regulatory and

legal changes may potentially force machine learning algorithms to be transparent and to become effec-

tive tools for detecting and preventing discrimination (Kleinberg et al., 2020).

Note that these limitations of AI systems are not disconnected from each other. Recent work has explored

the relationship between algorithmic fairness and explainability. For example, Dodge et al. (Dodge et al.,

2019) studied how unbiased, user-friendly explanations might help humans assess the fairness of a specific

machine learning-based decision-making system. The authors find that the type of explanation impacts the

users’ perception of algorithmic fairness; different types of fairness might require different styles of expla-

nation; and there are individual differences that determine people’s reactions to different kinds of

explanations. Others have developed visualizations of different definitions of fairness in ranking decisions

to support human decision-making (Ahn and Lin, 2020). Thus, there is a fertile ground for novel research at

the intersection of algorithmic fairness, explainability, and accountability.

Requirements for a human-centric AI

In this section, we provide an overview of current research efforts toward the development of a Human-

centric AI. These efforts include a fundamental renegotiation of user-centric data ownership and manage-

ment, as well as the development of secure and privacy-preserving machine learning (PPML) algorithms;

the deployment of transparent and accountable algorithms; and the introduction of machine learning fair-

ness principles and methodologies to overcome biases and discriminatory effects. In our view, humans

should be placed at the center of the discussion as humans are ultimately both the actors and the subjects

of the decisions made via algorithmic means. If we are able to ensure that these requirements are met, we

should be able to realize the positive potential of AI-driven decision-making while minimizing the risks and

possible negative unintended consequences on individuals and on the society as a whole.

Privacy-preserving AI algorithms and data cooperatives

A big question for policy-makers and researchers is the following: how do we unlock the value of human

behavioral data while preserving the fundamental right to privacy? To address this issue, the computer sci-

ence and AI communities have over the years developed several approaches ranging from data obfusca-

tion (i.e. the process of hiding personally identifiable information and other sensitive data using modified

content) (Bakken et al., 2004), data anonymization (i.e. the process of removing personally identifiable in-

formation and other sensitive data from data sets) (Cormode and Srivastava, 2009), adversarial training (i.e.

a technique adopted in computer vision and machine learning communities to obfuscate features so that

an attacker cannot reconstruct the original image or to infer sensitive information from those features) (Feu-

try et al., 2018; Kim et al., 2019; Li et al., 2020), and the generation of synthetic datasets (Machanavajjhala

et al., 2008) to methods for quantifying privacy guarantees, such as differential privacy (Dwork, 2008; Dwork

and Roth, 2014; Kearns and Roth, 2020), or PPML approaches (Chaudhuri and Monteleoni, 2008). PPML is

inspired by research efforts in cryptography and it has the goal of protecting the privacy of the input data

and/or of the models used in the learning task. Examples of PPML approaches are (i) federated learning

(Kairouz et al., 2019; Yang et al., 2019) and (ii) encrypted computation (Dowlin et al., 2016).

More in detail, differential privacy (Dwork, 2008; Dwork and Roth, 2014; Kearns and Roth, 2020) is a meth-

odology that provides a formal quantification of privacy guarantees with respect to an aggregate metric on

a dataset due to a privacy protection mechanism. Examples of privacy protection mechanisms that differ-

ential privacy can be applied to include adding noise, providing a coarser histogram, or learning with ad-

versarial examples. The value of differential privacy is that given a particular dataset and privacymechanism
6 iScience 24, 102249, March 19, 2021
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it can quantify the probability of a privacy leak with guarantees. Furthermore, differential privacy guaran-

tees that the distribution of aggregate metric values (e.g. database values, model predictions), such as

mean, variance, prediction probability distribution, etc., are indistinguishable (to within some bound) be-

tween the original dataset and a dataset where any training datapoint is omitted (Dwork, 2008; Dwork and

Roth, 2014; Kearns and Roth, 2020).

Federated learning is a machine learning approach where different entities or organizations collaboratively

train a model, while at the same time they keep the training data decentralized in local nodes (Kairouz et al.,

2019; Yang et al., 2019). Hence, the raw data samples of each entity are stored locally and never exchanged,

and only parameters of the learning algorithm are exchanged in order to generate a global model (Kairouz

et al., 2019; Yang et al., 2019). It is worth noting that federated learning (Kairouz et al., 2019; Yang et al.,

2019) does not provide a full guarantee of the privacy of sensitive data (e.g. personal data) as some char-

acteristics of the raw data could be memorized during the training of the algorithm and thus extracted. For

this reason, differential privacy can complement federated learning by providing guarantees of keeping

private the contribution of single organizations/nodes in the federated setting (Brundage et al., 2020; Du-

bey and Pentland, 2020).

Finally, encrypted computation (Dowlin et al., 2016) aims at protecting the learningmodel itself by allowing

to train and evaluate on encrypted data. Thus, the entity/organization training the model is not be able to

see and/or leak the data in its non-encrypted form. Examples of methods for encrypted computation are (i)

homomorphic encryption (Dowlin et al., 2016), (ii) functional encryption (Dowlin et al., 2016), (iii) secure

multi-party computation (Dowlin et al., 2016), and (iv) influence matching (Pan et al., 2012).

This is an active and growing area with several open-source frameworks available to perform PPML, such as

PySyft (https://github.com/OpenMined/PySyft), Tensor Flow Federated (https://www.tensorflow.org/

federated), FATE (https://fate.fedai.org/overview/), PaddleFL (https://paddlefl.readthedocs.io/en/latest),

Sherpa.AI (https://developers.sherpa.ai/privacy-technology/), and Tensor Flow Privacy (https://github.

com/tensorflow/privacy).

Additionally, new user-centric models and technologies for personal data management have been pro-

posed, in order to empower individuals with more control of their own data’s life cycle (Pentland, 2012;

de Montjoye et al., 2014; Staiano et al., 2014). Along this line, Hardjono and Pentland (Hardjono and Pent-

land, 2019) have recently introduced the notion of a data cooperative that refers to the voluntary collabo-

rative sharing by individuals of their personal data for the benefit of their community. The authors underline

several key aspects of a data cooperative. First of all, a data cooperative member has legal ownership of

her/his data: this data can be collected into her/his Personal Data Store (PDS) (de Montjoye et al., 2014),

and she/he can add and remove data from the PDS, as well as suspend access to the data repository. Mem-

bers have the option to maintain their single or multiple PDSs at the cooperative or in private data servers.

However, if the data store are hosted at the cooperative, then data protection (e.g. data encryption) and

curation are performed by the cooperative itself for the benefit of its members. Moreover, the data coop-

erative has a legal fiduciary obligation to its members (Balkin, 2016; Hardjono and Pentland, 2019): this

means that the cooperative organization is owned and controlled by the members. Finally, the ultimate

goal of the data cooperative is to benefit and empower its members (Hardjono and Pentland, 2019). As

highlighted by Hardjono and Pentland (Hardjono and Pentland, 2019), credit and labor unions can provide

an inspiration for data cooperatives as collective institutions able to represent the data rights of individuals.

Interestingly, Loi et al. (Loi et al., 2020) have recently proposed personal data platform cooperatives as

means for avoiding asymmetries and inequalities in the data economy and realizing the concept of prop-

erty-owning democracy, introduced by the political and moral philosopher Rawls (Rawls, 1971, 2001). In

particular, Loi et al. (Loi et al., 2020) argue that a society characterized by multiple personal data platform

cooperatives is more likely to realize the Rawls’ principle of fair Equality of Opportunity (EoP) (Rawls, 1971,

2001), where individuals have equal access to the resources – data in this case – needed to develop their

talents.
Algorithmic transparency and accountability

The traditional strategy for ensuring soundness of a decision-making process is auditing, and this approach

may easily be applied to machine learning decisions. This strategy deals with the decision process as a
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black-box, where only inputs and outputs are visible (Sandvig et al., 2014; Guidotti et al., 2018). However,

while this approach can demonstrate the fairness or accuracy of the decisions, it has limitations for under-

standing the reasons for particular decisions (Datta et al., 2015; Guidotti et al., 2018).

As a consequence, explanations are increasingly advocated in the research community (Doshi-Velez and

Kim, 2017; Adadi and Berrada, 2018; Guidotti et al., 2018; Lipton, 2018; Wang et al., 2019; Miller, 2019;

Barocas et al., 2020) as a way to help people understand AI-driven decision-making processes (Lipton,

2018; Selbst and Barocas, 2018; Wachter et al., 2018) and identify when they should object to the decisions

made by the algorithms (Wachter et al., 2018; Lipton, 2018; Selbst and Barocas, 2018). As argued by Adadi

et al. (Adadi and Berrada, 2018), the variety of explainability methods, proposed over years, can be classi-

fied according to three criteria: (i) the complexity of providing an explanation (i.e. more complex is a

machine learning model more difficult it is to explain), (ii) the type of explanation (i.e. global vs local

explanations), and (iii) the dependency from the adopted machine learning model (i.e. model-specific vs

model-agnostic explanations).

Regarding the complexity-related methods, the most simple and straightforward approach is the design

and implementation of machine learning algorithms that are intrinsically easy to interpret and explain.

Several works have proposed this explainability strategy (Caruana et al., 2017; Letham et al., 2015; Ustun

and Rudin, 2015). However, a problem with the adoption of this strategy is the tradeoff between explain-

ability and accuracy. Indeed, more simple and interpretable models tend to be also less accurate (Sarkar

et al., 2016). To avoid this potential tradeoff, several works have proposed to build complex and highly ac-

curate black-box models and then use a different set of techniques to provide the required explanations

without knowing the inner functioning of the original machine learning model. In this way, this approach

offers a post hoc explanation, e.g. using examples, visualizations or natural language descriptions (Mikolov

et al., 2013; Mahendran and Vedaldi, 2015; Krening et al., 2016; Lipton, 2018). As an alternative, some works

have proposed intrinsic methods that modify the structure of a complex black-box model (e.g. a deep neu-

ral network) to improve its interpretability (Dong et al., 2017; Louizos et al., 2017).

As previously said, some research efforts have attempted to provide an explanation of the global behavior

of a machine learning model (i.e. global explanations) (Lakkaraju et al., 2016; Adadi and Berrada, 2018; Lip-

ton, 2018; Brundage et al., 2020), while others have focused on a specific prediction of the model given an

input (i.e. local explanations) (Baehrens et al., 2010; Zeiler and Fergus, 2014; Zhou et al., 2016; Fong and

Vedaldi, 2017; Wei Koh and Liang, 2017; Adadi and Berrada, 2018; Yeh et al., 2018; Fong et al., 2019; Brund-

age et al., 2020; Guidotti, 2021). Notable examples of building explanations about the global behavior of a

machine learning model are (i) the characterization of the role played by the internal components of the

model (e.g. visualization of the features) (Bau et al., 2017; Ulyanov et al., 2018; Brundage et al., 2020),

and (ii) the approximation of a complex model by means of a simpler one (e.g. a decision tree) (Zhang

et al., 2019; Brundage et al., 2020). However, it is worth noticing that global explanations are hard to obtain,

in particular for machine learning models characterized by a large number of parameters (Adadi and Ber-

rada, 2018). Instead, notable examples of building explanations for a specific decision or a single prediction

include (i) identifying which training examples (Lakkaraju et al., 2016; Wei Koh and Liang, 2017; Yeh et al.,

2018) or (ii) which parts of the training data (Dabkowski and Gal, 2017; Fong and Vedaldi, 2017; Fong et al.,

2019) are responsible for the model’s prediction. A recent promising line of work is trying to combine the

benefits of global and local explanations (Linsley et al., 2018; Molnar, 2019; Pedreschi et al., 2019).

Furthermore, a third way to characterize techniques for explainingmachine learningmodels is whether they

aremodel-agnostic explanations, thus applicable to any type of machine learningmodel, ormodel-specific

explanations, thus applicable only to a single class of machine learning algorithms (Adadi and Berrada,

2018). As highlighted by Adadi et al. (Adadi and Berrada, 2018), intrinsic methods provide by definition

model-specific explanations. However, this approach limits the choice of models, often at the expenses

of more predictive and accurate ones (Adadi and Berrada, 2018). For this reason, there has been a recent

growth ofmodel-agnostic approaches, which separate prediction and explanation. Thesemodel-agnostic

methods fall into four techniques: (i) visualizations, (ii) influence methods, (iii) example-based explanations,

and (iv) knowledge extraction (Adadi and Berrada, 2018).

The idea behind visualization techniques is to visualize, especially in deep neural networks, the represen-

tations of the learning model. Popular examples of visualization techniques are (i) surrogate models
8 iScience 24, 102249, March 19, 2021



ll
OPEN ACCESS

iScience
Review
(i.e. interpretablemodels like a decision tree which are trained on the predictions of the black-boxmodel to

make easier its interpretation) (Ribeiro et al., 2016; Bastani et al., 2017), (ii) partial dependance plots (i.e.

graphical representations visualizing the partial average relationships between input variables and predic-

tions) (Chipman et al., 2010), and (iii) individual conditional expectations (i.e. plots revealing the individual

relationships between input variables and predictions by disaggregating the output of the partial depen-

dance plots) (Casalicchio et al., 2018).

Influence methods, instead, estimate the relevance of an input variable (i.e. feature) by modifying the input

data or the internal components of the model, and then recording how the change affects the performance

of the machine learning model (Adadi and Berrada, 2018). Looking at the state-of-the-art literature, wemay

find three different approaches to estimate the importance of an input variable (i) sensitivity analysis (i.e.

this method evaluates whether the performance of the model remains stable when input data are per-

turbed) (Cortez and Embrechts, 2013), (ii) feature importance (i.e. this approach quantifies the contribution

of a given input variable to the model’s predictions by computing the increase of the prediction after

permuting the input variable) (Casalicchio et al., 2018),: and (iii) layer-wise relevance propagation algorithm

(i.e. this method decomposes the output of a deep neural network into the relevance scores of the input

and at the same time keeps the total amount of relevance constant across the layers) (Bach et al., 2015).

Example-based explanations select specific instances of the data set under investigation to explain the

behavior of a machine learning model. Two promising approaches are (i) counterfactual explanations

(i.e. these explanations are generated by analyzing how minimal changes in the features would impact

and modify the output of the learning model) (Wachter et al., 2018; Dhurandhar et al., 2018; Karimi

et al., 2020), and (ii) prototypes and criticisms (i.e. prototypes are representative instances from the data

set, while criticisms are instances not well represented by those prototypes) (Kim et al., 2014, 2016).

Finally, some techniques aim at extracting, in an understandable form, knowledge from amachine learning

model (in particular, from deep neural networks). Examples of these techniques are (i) rule extraction (i.e.

this approach provides a symbolic description of the knowledge learned by an highly complex model) (Hai-

lesilassie, 2016), and (ii)model distillation (i.e. distillation consists in a model compression to transfer infor-

mation from an highly complex model, called ‘‘teacher’’, to a simpler one, called ‘‘student’’) (Hinton et al.,

2015; Furlanello et al., 2018; Xu et al., 2018).

Obviously, a relevant challenge about transparency and accountability is the difficulty in producing expla-

nations that are human-understandable (Guidotti et al., 2018). This implies the communication of complex

computational processes to humans, and thus it requires a multidisciplinary research effort mixing meth-

odologies and technologies from HCI and machine learning communities with models on human explana-

tion processes developed in cognitive and social sciences. For example, the AI scholar Tim Miller (Miller,

2019) has extensively analyzed the research conducted on human explanation processes in cognitive sci-

ence (Lombrozo, 2006), cognitive and social psychology (Hilton, 1990) and philosophy (Lewis, 1974), and

has highlighted four major findings to take into account in order to build explainable AI methods that

can be understandable and useful for humans. First of all, explanations are contrastive (Lipton, 1990; Miller,

2019); this means that people do not ask why a given event happened, but rather why this event happened

instead of an alternative one. Then, explanations are selective and thus they focus only on one or few

possible causes and not on all the possible ones (Hilton et al., 2010; Miller, 2019). Explanations constitute

a social conversation for transfering knowledge (Hilton, 1990; Walton, 2004), and thus the AI-driven

explainer should be able to leverage themental model of the human explainee during the explanation pro-

cess (Miller, 2019). Finally, the reference to statistical associations in human explanations is less effective

than referring to causes.

Adopting a similar multidisciplinary approach and drawing insights from philosophy, cognitive psychology,

and decision science (Lipton, 1990; Hoffman and Klein, 2017; Miller, 2019), Wang et al. (Wang et al., 2019)

have recently proposed a conceptual framework that connects explainable AI techniques with core con-

cepts of the human decision-making processes. First of all, the authors have identified why individuals

look for explanations (i.e. to focus on a small set of causes, to generalize observations in a model able

to predict future events, etc.) and how they should reason. Then, Wang et al. (Wang et al., 2019) analyzed

several explainable AI techniques and how they have been developed to support specific reasoning

methods. For example, visualization techniques, such as saliency heatmaps (Ribeiro et al., 2016; Kim
iScience 24, 102249, March 19, 2021 9
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et al., 2018), support contrastive and counterfactual explanations (Miller, 2019). As a third part of their con-

ceptual framework, the authors have highlighted and discussed how fast reasoning and cognitive biases

may negatively impact human decision-making processes, thus inducing errors (Croskerry, 2009; Kahne-

man and Egan, 2011). Finally, Wang et al. (Wang et al., 2019) described how explainable AI methods can

be adopted as strategies to mitigate some decision biases such as the anchoring bias (i.e. it occurs

when the decision-maker is not open to explore alternative hypotheses), the confirmation bias (i.e. the ten-

dency of the decision-maker to interpret information in a way that confirms her/his previous beliefs), the

availability bias (it occurs when the decision-maker is unfamiliar with the frequency of a specific outcome),

etc.

Another relevant aspect for algorithmic accountability and transparency is how and from where input data

are collected. As recently discussed by Hohman et al. (Hohman et al., 2020), machine learning applications

require an iterative process to create successful models (Amershi et al., 2014). In particular, Hohman et al.

(Hohman et al., 2020) have shown that data iteration (e.g. collecting novel training data to improve model’s

performance) is equally important as model iteration (e.g. searching for hyperparameters and

architectures).

Finally, transparency is generally thought as a key enabler of accountability. However, transparency is not

always needed for accountability. For instance, Kroll et al. (Kroll et al., 2017) introduced computational

methods that are able to provide accountability even when some fairness-sensitive information is kept hid-

den, and our earlier discussion about privacy-preserving learning, federated learning, and learning on en-

crypted data suggests additional paths to accountability without disclosing sensitive data or algorithms.
Algorithmic fairness

A simple way to try to avoid discrimination and to maximize fairness is the blindness approach, namely pre-

cluding the use of sensitive attributes (e.g. gender, race, age, income level) in the learning task (Calders and

Verwer, 2010; Kamiran et al., 2010; Schermer, 2011; Barocas and Selbst, 2016; Kearns and Roth, 2020). For

example, in order to build a race-blind AI-driven decision-making process we could avoid to use the ‘‘race’’

attribute. However, this approach has several technical limitations: first of all, the excluded attribute might

be implicit in the non-excluded ones (Romei and Ruggieri, 2014; Zarsky, 2016; Kearns and Roth, 2020). For

example, the ‘‘race’’ attribute might not be taken directly into account as a criterion for granting or not a

loan. However, it might implicitly be present via e.g. the applicant’s zip code, given that zip code may be a

good proxy for race in a segregated urban environment (Schermer, 2011; Macnish, 2012).

As a consequence, several researchers have proposed alternative approaches of machine learning fairness

that formalize the notion of group fairness (Calders and Verwer, 2010; Kamishima et al., 2011; Zemel et al.,

2012; Feldman et al., 2015; Kearns and Roth, 2020). One of the most used methods is statistical parity, which

requires that an equal fraction of each group according to a protected attribute (i.e. black vs white appli-

cants) receives each possible outcome (i.e. loan vs no loan) (Calders and Verwer, 2010; Kamishima et al.,

2011; Zemel et al., 2012; Feldman et al., 2015; Kearns and Roth, 2020). However, the group fairness approach

often fails at obtaining a good accuracy, as illustrated by the following example in a lending scenario: if two

groups (group A and group B) have different proportions of individuals who are able to pay back their loans

(e.g. group A has a larger proportion than group B), then the algorithm’s accuracy will be compromised if we

constrained the algorithm to predict an equal proportion of payback for the two groups. Another issue

related to group fairness is that a creditworthy individual from group A has no guarantee to have an equal

probability of receiving a loan as a similarly creditworthy individual from group B.

A different framework, called individual fairness, was introduced by Dwork et al. (Dwork et al., 2012). This

fairness framework is based on a similarity metric between individuals: any two individuals who are similar

should be classified in a similar way (Dwork et al., 2012). This definition resembles partly the interpretation

of EoP proposed by the political scientist Roemer (Roemer, 1996, 1998). For Roemer, EoP is achieved when

people, irrespective of circumstances beyond their control (e.g. birth circumstances, such as gender, race,

familiar socioeconomic status, and so forth), have the same ability to achieve desired outcomes through

their choices, actions, and efforts (Roemer, 1996, 1998). In particular, Roemer claims that if inequalities

are caused by birth circumstances, then these are unacceptable and must be compensated by society

(Roemer, 1996, 1998).
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Following Dwork et al.’s work (Dwork et al., 2012), Joseph et al. (Joseph et al., 2016) proposed an

approach to individual fairness that can be considered as a mathematical formalization of the Rawlsian

principle of ‘‘fair EoP’’ (Rawls, 1971). This principle affirms that those individuals, ‘‘who are at the same

level of talent and have the same willingness of using it, should have the same perspectives of success

regardless their initial place in the social system’’ (Rawls, 1971). Hence, the formalization of machine

learning fairness, proposed by Joseph et al. (Joseph et al., 2016), requires that the learning algorithm

never favors applicants whose attributes (e.g. income level) are lower than the ones of another appli-

cant. Along this line, Hardt et al. (Hardt et al., 2016) have proposed a fairness measure based again

on EoP that tries to overcome the main conceptual shortcomings of statistical parity as a fairness notion

and to build classifiers with high accuracy. To this end, they have shown how to optimally adjust any

supervised learned predictor to remove discrimination against a specific sensitive attribute (e.g. race,

gender, etc.).

Another interesting set of results are the ones obtained by Friedler et al. (Friedler et al., 2016), Corbett-Da-

vies et al. (Corbett-Davies et al., 2017), and Kleinberg et al. (Kleinberg et al., 2017), which highlight that it is

not enough to simply achieve algorithmic fairness. For example, Friedler et al. (Friedler et al., 2016) have

proven the impossibility of simultaneously satisfying the mathematical constraints of multiple formaliza-

tions of fairness, and thus the impossibility of a single universally accepted definition and metric of algo-

rithmic fairness. Indeed, each metric embodies a different criterion of equity. A similar result was discussed

by Kleinberg et al. (Kleinberg et al., 2017). In their paper, they formalized three fairness conditions, namely

calibration within groups, balance for the positive class, and balance for the negative class. Interestingly,

they proved that, except in highly constrained special cases, there is no method that is able to satisfy these

three conditions at the same time (Kleinberg et al., 2017).

Thus, choosing a particular fairness metric involves implicitly committing to a moral and political philoso-

phy (Heidari et al., 2019; Gummadi and Heidari, 2019), the role of social context in the selection process of

the fairness metric (Grgic-Hlaca et al., 2018; Madras et al., 2018), and issues of human perception of those

metrics (Srivastava et al., 2019). This shifts the question of fairness from a purely technical task to a multi-

disciplinary problem. In particular, the problems of defining what equity means as well as what is fair in a

given context (Barry, 1991) become of paramount relevance. Indeed, what constitutes fairness changes ac-

cording to different worldviews: for example, the moral and political philosopher Nozick in his book

‘‘Anarchy, State, and Utopia’’ (Nozick, 1974) proposed a libertarian alternative view to the Rawlsian notion

of EoP. In his view, the elimination of the discriminatory biases, present in society, may create new harms to

new groups of people. For this reason, it is urgent to bring together, in joint publications, conferences, pro-

jects and institutions, researchers from different fields – including law, moral and political philosophy, and

machine learning – to devise, evaluate, and validate in the real-world alternative fairness metrics for

different tasks.

Finally, as previously noted, recent work has also explored the relationship between fairness and explain-

ability of decision-making algorithms, showing that the type of explanation influences the human’s percep-

tion of how fair an algorithm is (Dodge et al., 2019).
CONCLUSION

Our society is experiencing an unprecedented historic moment where the availability of vast amounts of

human behavioral data, combined with advances in AI (and particularly machine learning), is enabling us

to tackle complex problems through the use of algorithmic decision-making processes. The opportunity

to significantly improve the processes leading to decisions that affect millions of lives is huge. As re-

searchers and citizens we believe that we should not miss this opportunity. However, we should focus

our attention on existing risks related to the use of algorithmic decision-making processes, including

computational violations of privacy, power and information asymmetry, lack of transparency and account-

ability, and discrimination and bias. It is important to note that tackling these limitations would entail multi-

disciplinary teams working together with expertise in areas, such as machine learning, HCI, cognitive sci-

ences, social and cognitive psychology, decision theory, ethics and philosophy, and the law. It will only be

via multi-disciplinary approaches, as shown for building human-understandable AI systems and for con-

necting algorithmic fairness approaches with different moral and political worldviews, that we will be

able to effectively address the limitations of today’s algorithmic decision-making systems.
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We have also underlined three extensive requirements that we consider to be of paramount importance in

order to enable an ethical and human-centric use of AI: (i) PPML and user-centric data ownership and man-

agement; (ii) algorithmic transparency and accountability; and (iii) algorithmic fairness. If we will honor

these requirements, then we would be able to move from the feared tyranny of AI and of algorithmic

mass surveillance (Zuboff, 2019) to a Human-centric AI model of democratic governance for the people.
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