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Abstract: Vaccination is one of the most successful immunology applications that has considerably
improved human health. The DNA vaccine is a new vaccine being developed since the early 1990s.
Although the DNA vaccine is promising, no human DNA vaccine has been approved to date.
The main problem facing DNA vaccine efficacy is the lack of a DNA vaccine delivery system. Several
studies explored this limitation. One of the best DNA vaccine delivery systems uses a live bacterial
vector as the carrier. The live bacterial vector induces a robust immune response due to its natural
characteristics that are recognized by the immune system. Moreover, the route of administration
used by the live bacterial vector is through the mucosal route that beneficially induces both mucosal
and systemic immune responses. The mucosal route is not invasive, making the vaccine easy to
administer, increasing the patient’s acceptance. Lactic acid bacterium is one of the most promising
bacteria used as a live bacterial vector. However, some other attenuated pathogenic bacteria, such as
Salmonella spp. and Shigella spp., have been used as DNA vaccine carriers. Numerous studies showed
that live bacterial vectors are a promising candidate to deliver DNA vaccines.
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1. Introduction

The DNA vaccine is a new vaccine with a bacterial plasmid as the antigen gene vector. Typically,
the gene is expressed under host cell promoter regulation, and the expressed antigen is targeted to
induce the host immune response [1]. DNA vaccine development is based on its advantages compared
with conventional vaccines, such as the ability to induce a cellular immune response instead of only a
humoral immune response [2]. The expressed antigen could be designed as an extracellular protein,
which is detected by Major Histocompability Complex (MHC) class II or an intracellular protein that is
recognized by MHC class I. DNA plasmid is also stable at room temperature, facilitating its production
and distribution. DNA vaccine production does not directly use the pathogen organism, which is safer
for the production system [1,2].

Some concerns about the DNA vaccine include potential genomic integration and auto-immune
response [3]. However, extensive research found that the risk of integration is limited and significantly
lower than the natural mutation rate [3–5]. Clinical trials also showed mild side effects after DNA
vaccination [6–8].

Although promising, the DNA vaccine needs a superior delivering system to activate the potent
immune system [9]. The DNA vaccine requires a large dose to effectively induce the immune system
response [10]. At least 1–100 µg of DNA vaccine is needed to induce immune response [11]. Although
some naked DNAs demonstrated efficacy [12–14], several delivery strategies have been studied to
increase DNA vaccine efficiency. Chemical delivery systems, such as using micro particles [11,15] and
nanoparticles [16,17], have successfully increased DNA vaccine delivery. Another potential delivery
system to improve DNA vaccine delivery is the use of a live bacterial vector as the carrier.

Med. Sci. 2018, 6, 27; doi:10.3390/medsci6020027 www.mdpi.com/journal/medsci

http://www.mdpi.com/journal/medsci
http://www.mdpi.com
http://www.mdpi.com/journal/medsci
http://www.mdpi.com/2076-3271/6/2/27?type=check_update&version=1
http://dx.doi.org/10.3390/medsci6020027


Med. Sci. 2018, 6, 27 2 of 12

Since being developed in the late 1970s, the idea of using live bacteria as the DNA carrier has been
growing rapidly. The technique is also known as bactofection, in which the live bacteria are directly
used to transfer the DNA to the target cells, tissues, or organs [18]. Bactofection has been widely
used in the field of drug development research [19], such as cancer treatment [20], infections [21],
inflammation diseases and other metabolic diseases [22,23]. As a DNA vaccine carrier, both native [24]
or recombinant bacteria can be used. The live bacterial vector does not only deliver DNA inside the
host cell but also induces a potent immune response due to its immunogenic features [25,26]. In this
review, an overview of live bacterial vectors as DNA vaccine carriers and future prospects in this field
is provided.

2. DNA Vaccine Components

The DNA vaccine essentially includes two main parts: a mammalian expression cassette and
bacterial backbone [27]. The mammalian expression cassette consists of a eukaryotic promoter for gene
expression, 5′ untranslated region (5′UTR) including an intron and polyadenilation sequence (polyA)
(Figure 1). The bacterial backbone consists of bacterial origin of replication (Ori) and an antibiotic
resistance gene or other selection markers (Figure 1). Ideally, the multiple cloning sites (MCS) used
to insert the target gene are located between the mammalian expression cassette and the bacterial
backbone [27–29]. The mammalian expression cassette should be optimized so that the antigen gene is
highly expressed to effectively generate the immune response [29]. The bacterial backbone should also
be optimized so that a high yield of DNA plasmid can be produced with the fermentation production
process [27,30]. The newest DNA vaccine version combines a component in the eukaryotic expression
cassette while minimizing the bacterial backbone components, since it reduces antigen expression
level [27,31].
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Figure 1. DNA vaccine components. The essential components in the DNA vaccines consist of a
eukaryotic promoter, a multiple cloning site (MCS), a polyadenylation site (polyA), a selection marker
and a bacterial origin of replication (ori). 5’UTR: 5′ untranslated region.

The Escherichia coli Ori ColE1 found, for instance, as OriV of the pUC vector, is still a prominent
choice of bacterial origin of replication because of its high copy number of up to 500–700 copies per
bacterial cell [32]. This OriV was used in the early generation DNA vaccines, such as in pVAK1 to
the latest generation of DNA vaccines, such as NTC8385 [33]. This suggests that this OriV is still
considered as an ideal ori for DNA vaccines [29,30].

Selectable markers are required for the maintenance of the plasmid inside the cells. Only the
cells that contain plasmids with the appropriate selectable marker can survive under the selective
conditions. Most DNA plasmids are based on antibiotic resistance genes as the selectable markers.
However, use of antibiotic resistance genes has resulted in health concerns being expressed, such as
the spreading of the resistance genes and the effect on the microbiota in the host system [34]. Thus,
the European Medicines Agency (MEA, London, UK) recommends non-antibiotic resistance genes
as the selection marker. The antibiotic resistance gene is replaced with other marker selections based
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on an auxotrophic strain, toxin-antitoxin systems, operator-repressor titration, RNA markers, or the
minicircles [31,35–37].

The promoter recognized by the mammalian expression system plays significant roles in antigen
gene expression. Cytomegalovirus (CMV), Simian virus 40 (SV40), and murine leukemia virus
promoters are among the most prominent promoters used in DNA vaccines [38,39]. Although CMV
promoter activity decreases under some conditions, such as when used in conjunction with cytokine
treatment [29], the combination of CMV promoter with Intron A showed that the CMV promoter
effectively activates gene expression. Some studies also combined a CMV promoter with other
components, such as a modified chicken β-actin [39] or woodchuck hepatitis post-transcriptional
regulatory element (WPRE), to create a hybrid promoter [40]. Other non-viral promoters have
been demonstrated to have comparable efficacy to the CMV promoter, such as collagen [41] and
keratinocytes [42] promoters. Another study indicated that the MHC class II promoter potently
generated a transgene product that can be used in the DNA vaccine [43].

The polyadenylation sequence has a significant effect on transgene expression. The common
polyadenylation sequences used in DNA vaccine construction are SV40, rabbit β-globin, and bovine
growth hormone polyadenylation sequence [29,44]. 5′UTR is located upstream transgene and regulates
transgene translation. Optimization of the regulatory element by inserting a sequence from the
R region of the long terminal repeat from human T-cell leukemia virus type 1 (HTLV-1) to CMV
enhancer/promoter markedly increased DNA vaccine immunogenicity in both mice and non-human
primates [45].

3. Live Bacterial Vector as the DNA Vaccine Carrier

As a DNA vaccine delivery system, the live bacterial vector has several benefits. The bacteria
typically used for a delivery system are recombinant bacteria that have been genetically modified
so most of their pathogenicity components have been deleted to attenuate the bacteria and create
a non-virulent organism, ensuring the safety of the host [26]. By using bacteria as the carrier, the
vaccination can be delivered through mucosal routes, including intranasal, oral, or intravaginal routes.
The mucosal route is favorable because it is non-invasive and more acceptable. Administration through
oral routes also does not require special skills and is easier to manage. Vaccination through mucosal
routes induces both mucosal and systemic immune system responses [46,47]. Bacteria protect the DNA
vaccine from harsh environments and enzymatic reactions in the gut [48]. The intranasal route has
also been thoroughly developed since it can hinder enzymatic reactions and withstand the high acidity
conditions in the gut. Other studies showed that vaccines administered through the intranasal route
induce the same or better immune response compared with oral route vaccinations [47,49].

The mucosal surface is the first location where the host and its environment contact; therefore,
it has a prominent defense mechanism against pathogens. Mucosal route vaccine delivery systems
are based on mucosa-associated lymphoid tissue (MALT), which is found on various mucosal surface
areas. MALT is a lymphoid tissue in the nasopharynx, pharynx, salivary gland, and upper respiratory
tract, which are known as nasal-associated lymphoid tissues (NALT). MALT is also found in the
broncho epithelium and lower respiratory tract (BALT), gastrointestinal tract (GALT) and genital tract.
MALT is composed of epithelial cells identified as follicle-associated epithelium or microfold cells
(M cells) that act as the first mucosal barrier system and initiate the immune response [50].

After being delivered through the oral route, bacteria with the DNA vaccine enter the digestion
system. On the intestinal surface, the bacteria are recognized by M cells in Peyer’s patches and spread
to the lamina propia [48]. The bacteria have specific characteristics in the form of microbe-associated
molecular patterns (MAMPs), recognized by particular receptors, such as Toll-like receptors and
Nod-like receptors. This introduction induces the native immune response and increases the adaptive
immune response. Phagocytized bacteria shape phagolysosomes and trigger cell lysis, which further
releases plasmids inside the bacteria. Cell components, including plasmids, are released and engulfed
by dendritic cells (DCs) [51]. Inside DCs, plasmids enter the nucleus through special compartments,
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and the antigen gene is expressed by the host expression system. The expressed antigen is presented
by class I MHC and activates the CD8+ T cells. The antigen can also be expressed as extracellular
protein, presented by class II MHC, and activates antibody production and the T helper CD4+ cell
response [25,52] (Figure 2). However, the precise mechanism of DNA transfer by live bacterial vectors is
not yet fully understood for many species. The suggested mechanism is based on the bacterial invasion
properties [53]. Thus, some invasive bacteria, such as Salmonella typhimurium and Listeria monocytogenes
are preferable carriers for DNA vaccines.
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Figure 2. Proposed DNA vaccine delivery system using a live bacterial vector. (1) Bacteria are
recognized by immune cells and phagocytized; (2) Inside the cells, bacteria fuse with the lysosome
and form phagolysosomes; (3) Bacteria lyse and the DNA plasmids are released from cells; (4) DNA
plasmids are engulfed by the dendritic cells (DCs), and inside the DCs, the antigen gene is expressed as
protein, which will later be presented by class I or II MHC and delivered to CD4+ or CD8+ T cells.

Briefly, as a DNA vaccine carrier, bacteria are divided into two major groups: non-pathogenic
bacteria and attenuated pathogen bacteria. The attenuated bacteria that have been studied as the
DNA vaccine carrier include Salmonella spp. [4,23,47], Yersinia enterocolitica [54], Shigella spp. [55,56],
and Listeria monocytogenes [57]. Pathogen bacteria target the mucous membranes as their infection route
and as a result, they are suitable for mucosal administration. However, the main disadvantage includes
the likelihood of causing infection, particularly in infants and immunocompromised patients [58].
Therefore, non-pathogen bacteria such as lactic acid bacteria (LAB) [59,60] may be preferable for
development as DNA vaccine carriers. A comparison of the properties of several strains that are
commonly used as DNA vaccine carriers is presented in Table 1.
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Table 1. Characteristics of live bacteria used as DNA vaccine carriers.

Bacteria Advantages Limitations Strategies Ref.

Lactococcus lactis

• Non-pathogenic
bacteria

• Non-colonizing
bacteria

• Easy to manipulate

• Since it is not a
pathogenic bacterium,
the ability to deliver
the DNA is limited

• Unable to induce the
cellular
immune response

• Manipulate the bacteria
to express invasin
protein (InlA, FnBPA)

• Combination of invasin
expressed strain and
immunostimulatory
plasmid

[50,60–63]

Salmonella spp.

• Able to induce both
cellular and humoral
immune responses

• Genetic manipulation
is established

• Possibility of reversion
to pathogenic wild type

• Development of several
types of
attenuated strains

[64–67]

Listeria monocytogenes

• Able to invade
several different cell
types; therefore, can
effectively
deliver DNA

• Induces both cellular
and humoral
immune responses

• Highly pathogenic,
especially to
immunocompromised
patients

• Development of several
types of
attenuated strains

[25,68]

Shigella spp.
• Effectively introduces

DNA to nucleus

• Restricted host
specificity inhibits the
in vivo efficacy assay

[55,56]

4. Lactic Acid Bacteria as the DNA Vaccine Carrier

LAB is an excellent candidate to be manipulated as a DNA vaccine carrier. LAB has
been used in food fermentation for centuries and is a Generally Recognized as Safe (GRAS)
organism [58,60]. LAB is also resistant to acidic conditions in the gastrointestinal (GI) system and is able
to deliver the vaccine to the intestinal area [69,70]. Several LAB strains are famous as probiotic bacteria,
such as Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus acidophilus, Lactobacillus plantarum,
Lactobacillus fermentum and Lactobacillus reuteri. Probiotic bacteria reduce lactose intolerance symptoms,
such as diarrhea and flatulence, which appear in lactose intolerant patients who consume milk.
Probiotic bacteria also increase the immune response toward pathogens by inhibiting pathogen
colonization in the GI tract [59] and promote the mucosal immune system by activating plasma cells,
inducing secretion of immunoglobulin A (IgA) and migration of T cells [71].

Lactococcus lactis is the most-studied LAB since its genome is easily manipulated, and many genetic
tools have been engineered for L. lactis [54,64]. Notably, one of the main advantages of using L. lactis as
a DNA vaccine carrier is its ability to pass through the intestinal tract without colonization [60].

Some studies confirmed that L. lactis is able to transfer DNA plasmid to the host cells [24,72–74].
A study conducted using native L. lactis showed its ability to deliver DNA plasmid into mammalian
cells. The coincubation led to the expression and secretion of transgene products [24]. Yagnik et al.
showed that L. lactis is capable of transferring DNA plasmid to Caco-2 cells in the absence of chemical
treatment or other invasive proteins [72]. Another study demonstrated that glycine treatment escalates
DNA transfer from L. lactis to Caco-2 cells [74]. The ability of L. lactis to transfer plasmid to mammalian
cells in vivo was confirmed by the delivery of plasmid by L. lactis to murine epithelial membrane cells,
and the protein was effectively expressed by the mammalian cell expression system [73,75].

Several attempts have been made to increase the efficacy of L. lactis delivery to the inside of DNA
host cells. pValac, a new plasmid, was successfully constructed and demonstrated its ability to be
delivered to the interior of porcine kidney cell lines [76]. The major advantage of the pValac vector
is its small size (3.7 kb) compared with the previously used plasmid pLIG (10 kB) [24,75]. A smaller
plasmid allows the cloning of larger DNA fragments with an easier transformation process.

To improve internalization capacity, L. lactis that expressed Listeria monocytogenes invasin internalin
A (InlA) or Streptococcus pyogenes Fibronection-binding protein A (FnBPA) was developed. Internalin
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A mediates internalization through a binding interaction with the E-cadherin expressed on human
epithelial and endothelial cells. Analysis showed that both strains effectively delivered the DNA
plasmid to Caco-2 cells and the target protein was expressed inside the Caco-2 cells [62]. Another
study demonstrated that the L. lactis expressing internalin A was able to deliver DNA to dendritic cells,
either directly or by passing through the epithelial mono layer [52]. Moreover, the combination of an
invasive L. lactis strain expressed In1A and pPERDBY, a reporter plasmid with immunostimulatory
properties, successfully increased the expression level of the target gene in Caco-2 cells. This study
demonstrated that the new combination increased the target gene expression three-fold compared
with the expression in the non-invasive L. lactis strain [63].

5. Salmonella spp. as the DNA Vaccine Carrier

Salmonella spp. is a Gram-negative bacterium that causes salmonellosis through orofecal routes.
As a DNA vaccine carrier, S. enterica serovars Typhimurium (S. typhimurium) is the most widely used
Salmonella spp. [4,64,65]. This bacterium is suitable for oral administration as its natural infection route.
However, it can induce both mucosal and systemic immune responses, activating the humoral and
cellular immune systems [66]. As pathogenic bacteria, Salmonella spp. induce the immune response
through their lipopolysaccharides (LPS) and flagellin content on their surface that is recognized as
pathogen-associated molecular patterns (PAMPs). Flagellin induces the immune response by binding
with Toll-like receptor 5 (TLR5), whereas LPS binds to TLR4. The binding activates nuclear factor-kappa
B (NF-kB) and the mitogen-activated protein kinase (MAPK) pathway, which is followed by the release
of cytokines [64,65]. S. enterica virulence genes are encoded in Salmonella pathogenicity islands (SPI).
The two main SPIs are SPI1 and SP2, which participate in host cell invasion and intracellular host
cell survival, respectively [64]. Due to their remarkable pathogenicity, mutant Salmonella have been
developed as DNA vaccine carriers.

Mutant S. typhi and S. typhimurium that were developed as vaccine carriers have an aroA, aroC,
or aroD mutation. Through these mutations, Salmonella is not able to produce aromatic substances;
therefore, it cannot replicate inside the host. However, the bacteria still invade the host intestines
and survive long enough to induce an immune system response. Other mutant types have also been
established, such as mutants that cannot produce guanine and adenine bases, causing distress in
cell wall production [77], the DNA repair system, or virulence gene regulation [26,51]. Kong et al.
successfully constructed a recombinant attenuated Salmonella mutant strain that has a hyper invasive
phenotype that can invade the host cell, escape the endosomes, and reduce the bacteria apoptosis. As a
consequence, the DNA is allowed to efficiently enter the nucleus [77]. Several other manipulations have
been studied to improve the ability of Salmonella spp. as a vaccine carrier, including the manipulation
of lipid A, outer membrane vesicles and engineering the dual-plasmid system, as described briefly by
Wang et al. [67].

The S. typhimurium mutant was demonstrated to be a remarkable candidate as an
anti-atherosclerosis DNA vaccine carrier. S. typhimurium (aroA-, dam-) oral administration that
contained a plasmid with the Flk-1 gene inhibited atherosclerosis and decreased aortic lesion size in
atherosclerosis model mice. Flk-1 is a vascular epithelial growth factor receptor 2 (VEGRF2)-encoding
gene in mice. The vaccination activated T cells and inhibited neoangiogenesis, which is involved
in atherosclerosis. The cellular immune response was detected through decreasing the expression
of VEGFR2 in endothelial cells [23,78]. This approach was also used in another study conducted
by Hauer et al. by manipulating S. typimurium with a plasmid encoding for TIE2, which is an
angiopoietin receptor in the endothelial surface that contributes to the development of atherosclerosis.
Oral vaccination in atherosclerosis model mice induced a cellular immune response, decreased
atherosclerosis lesion, and stabilized plaque. The cellular immune response was measured by the
decrease in the number of endothelial cells that expressed TIE2 in vaccinated mice [79].

A similar study, using a DNA vaccine encoding for CD99, was also successfully conducted.
CD99 is a protein expressed in leukocytes and endothelial cells involved in leukocyte recruitment in
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atherosclerosis lesion areas. The CD99 vaccine was consumed orally with S. typhimurium aroA- as the
carrier. The vaccine generated CD8+ T cells that lysed CD99 expressing cells, so fewer leukocytes
were detected in the lesion area. The vaccination also decreased lesion formation by 69% in carotid
arterial [80].

Liang et al. confirmed ∆asd/∆crp mutant S. enterica successfully delivered the somatostatin
gene in a mice model. The mutant lacks the antibiotic resistance gene and is based on the
aspartate-semialdehyde dehydrogenase gene as the selection marker. Administered bacteria that
contained a DNA vaccine effectively induced mucosal and systemic immune responses. The safety of
the vaccine was shown by negligible integration of the plasmid gene into the host cellular genome [4].

6. Other Bacterial Live Vectors as DNA Vaccine Carriers

Other bacteria that were developed as DNA vaccine carriers include Listeria monocytogenes [65,81],
Shigella spp. [51,82], and Yersinia enterolica [54].

L. monocytogenes is a Gram-positive bacterium that invades several cell types, such as mucosal
epithelial cells, hepatocytes, macrophages, DCs and epithelial cells in the blood-brain barrier [25].
The bacteria invade and divide inside mammalian cells and consequently induce a high immune
response. L. monocytogenes spread to other cells making it an effective DNA vaccine carrier against
cancer. Given its ability to infect intestinal epithelium, L. monocytogenes has become an attractive
candidate for oral vaccine delivery [57]. The disadvantage of this organism is the pathogenicity that
leads to cholecystitis in human. Mice infected with L. monocytogenes showed bacterial colonization in
the gall bladder. The mutant variant that was developed has mutations in the gene encoding for biotin
metabolism (lmo0598) and ligase lipoate putative protein (lmo2566). The mutant variant was confirmed
to induce an immune response, but did not replicate in the gall bladder [83]. Another study using
mutant rs∆2 L. monocytogenes showed that the bacterium, ingested orally, delivered a DNA vaccine
containing the ovalbumin encoding gene. Increasing the antibody titer in a vaccinated mice serum
demonstrated that the expressed antigen induced an immune response [57]. A different study indicated
that attenuated recombinant L. monocytogenes, with a plasmid encoding for Mycobacterium tuberculosis
antigen, was capable of inducing a robust cellular immune response in mice [84]. Conversely, a study
conducted by Loeffler et al. revealed that L. monocytogenes induced a better immune response, when
delivering recombinant antigen protein, than plasmid DNA. Antigens expressed by L. monocytogenes
significantly increased the CD8+ T cell response, whereas the DNA vaccine carried by L. monocytogenes
failed to induce a specific T cell response [85].

Shigella spp. are used as DNA vaccine carriers due to their ability to be retained in cytoplasm and
evade endosomes, thus effectively delivering the DNA to the nucleus. Shigella also has a natural ability
to target lymphoid tissues, triggering optimal mucosal and systemic immune systems. A study showed
the efficacy of a DNA vaccine carried by mutant S. flexenery to attenuate human immunodeficiency
virus (HIV) infection in a murine model. A single dose of the S. flexenery vaccine given intranasally
induced a robust CD8+ T cell response [55]. A similar in vivo study demonstrated that a S. flexenery
mutant successfully delivered the DNA vaccine encoding for the HIV gag gene. The DNA vaccine was
intranasally delivered by recombinant bacteria inducing a cellular immune response comparable to a
naked DNA vaccine given intramuscularly [56].

Y. enterocolitica is chosen as a DNA vaccine carrier because it can survive in host tissues for several
days. During this period, the DNA vaccine is replicated in accordance with Y. enterocolitica proliferation,
increasing the amount of DNA vaccine [54]. In a previous study, Y. enterocolitica was proven to deliver
a DNA vaccine encoding for Brucella antigens bacterioferritin (BFR) and P39. The DNA vaccine
induced antigen-specific antibodies and a Th1 response. The vaccinated mice showed resistance
against Brucella infection [54].
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7. Conclusions

DNA vaccines are facing challenges in terms of an effective delivery system that effectively targets
the immune system. As live vectors, bacteria are new promising agents for vaccine delivery. Bacteria
have unique natural characteristics that promote immune responses. However, the main concern about
bacteria as vaccine carrier is patient safety. Although some attenuated recombinant strains have been
developed, non-pathogenic bacteria such as LAB are considered more suitable DNA vaccine carriers.
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