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Abstract: Recently, oxytocin (OXT) has been investigated for its potential therapeutic role in addiction.
OXT has been found to diminish various drug-seeking and drug-induced behaviors. Although its
behavioral effects are well-established, there is not much consensus on how this neuropeptide
exerts its effects. Previous research has given thought to how dopamine (DA) may be involved in
oxytocinergic mechanisms, but there has not been as strong of a focus on the role that glutamate
(Glu) has. The glutamatergic system is critical for the processing of rewards and the disruption of
glutamatergic projections produces the behaviors seen in drug addicts. We introduce the idea that
OXT has direct effects on Glu transmission within the reward processing pathway. Thus, OXT may
reduce addictive behaviors by restoring abnormal drug-induced changes in the glutamatergic system
and in its interactions with other neurotransmitters. This review offers insight into the mechanisms
through which a potentially viable therapeutic target, OXT, could be used to reduce addiction-related
behaviors.
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1. Introduction

The neuropeptide oxytocin (OXT) has been found to have effects on addictive behavior,
in addition to having prosocial and anxiolytic effects [1–3]. The most notable impact that
OXT has on addiction is reducing drug-seeking behavior, as measured by experimental
paradigms, such as self-administration and conditioned place preference [4]. The reward
circuit seems to be an integral part of the mechanisms by which OXT attenuates drug-
seeking behavior, although the specific mechanisms are still being investigated [5–7]. It is
likely that OXT alters reward processing to take away the desire or motivation for a reward,
or to disassociate the rewarding properties of the reward itself. Within the reward circuit,
glutamate (Glu) and dopamine (DA) projections are primarily responsible for reward
processing [2,7–9]. Understanding how OXT affects glutamatergic and dopaminergic
pathways is crucial in order to advocate for the development of this compound into a
treatment for addiction. This review focuses on the molecular mechanisms through which
OXT influences Glu transmission, as the role of Glu in addiction is one that has not received
much attention, despite its significance.

1.1. The Endogenous Oxytocin System

OXT is a neurohormone consisting of nine peptides and is synthesized in the paraven-
tricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus. The PVN and
SON have magnocellular and parvocellular neurons, which release OXT. Parvocellular
neurons in the PVN and SON are responsible for the central diffusion of OXT that helps to
regulate behavioral responses and reward processing [10,11]. However, most of the OXT
releasing neurons in the PVN and SON are magnocellular, which project to the posterior
pituitary gland, allowing OXT to be released peripherally [11,12]. Peripherally acting OXT
contributes to bodily functions mainly for the reproductive system, stress response, and
pair bonding [10]. In the reproductive system, OXT is involved in processes such as giving
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birth or producing milk during lactation while, for social or emotional stress, it relieves
anxiety by facilitating social interactions [13]. The release of OXT into the peripheral system
can be triggered by events such as labor, nipple stimulation, and psychosocial stress [1].
Changes in endogenous OXT levels are also observed following the consumption of certain
drugs of abuse. For instance, methamphetamine administration increases plasma OXT
levels in juvenile rats [14].

The oxytocin receptor (OXTR) is a G-protein coupled receptor (GPCR) that is found
throughout the body and the brain. The OXTR can couple to the Gq/11 or Gi protein
to initiate the phospholipase C signaling pathway that enhances neuronal firing [12].
This receptor is also able to bind to vasopressin, another neuropeptide, with similar
affinity [11]. Peripherally, OXTRs are found in tissues of the kidneys, pancreas, heart,
uterus, and mammary glands [1,11]. Centrally, OXTRs are found in brain regions that
regulate reward processing, mood, and social behavior. The localization of OXTRs is
similar across rat and human brains, but there are slight notable differences between these
species. Both rats and humans have OXTRs in the central amygdala (CeA), substantia nigra
(SN), paraventricular thalamic nucleus, olfactory nucleus, lateral mammillary nucleus,
and ventral pallidum [12,15]. However, only humans seem to have OXTRs in the globus
pallidus, basal nucleus of Meynert, medial preoptic area, and dorsal raphe nucleus. Rats
have OXTRs in the ventral tegmental area (VTA), nucleus accumbens (NAc), prefrontal
cortex (PFC), bed nucleus of the stria terminalis, PVN, SON, ventromedial hypothalamus,
and hippocampus [12,16,17]. It should also be noted that there are sex-based differences in
the expression of OXT and OXTRs, with female rats exhibiting higher OXT concentrations
and male rats showing higher OXTR expression [18].

1.2. The Reward Circuit

The reward circuit, or the mesocorticolimbic system, is responsible for regulating
the association between substances and reward. Rewarding substances can be drugs of
abuse (cocaine, methamphetamine, opiates, etc.) or natural rewards, such as food, sex, and
social interactions [19]. Glu, DA, and γ-aminobutyric acid (GABA) transmission between
the structures that comprise the reward circuit is how the brain recognizes rewards and
stimulates motivation to obtain them [20].

The VTA is one of the key structures in the reward circuit. It consists mostly of DA
neurons and receives glutamatergic inputs from the medial prefrontal cortex (mPFC),
lateral habenula (LHb), lateral hypothalamus (LH), and laterodorsal tegmentum [21]. VTA
cells also receive GABAergic signals from the NAc and ventral pallidum. Within the
VTA, there are GABAergic interneurons which project to VTA DA neurons to regulate
DA release [21]. A population of Glu neurons also resides in the VTA, as discovered by
expression of the vesicular glutamate transporter 2 (VGLUT2) [22].

The VTA is pivotal because it is the start of the two major pathways of the reward
circuit: the mesolimbic and mesocortical pathways. In the mesolimbic pathway, VTA DA
neurons project primarily to the NAc, and they also reach the amygdala and hippocampus.
The NAc is another key structure that is known for having a large role in reward processing
because of its localized DA buildup. The NAc mostly contains medium spiny neurons
and is abundant with D1- and D2-like DA receptors [20]. Aside from receiving DA signals
from the VTA, the NAc receives glutamatergic inputs from the amygdala, PFC, ventral
hippocampus, and mediodorsal thalamus [21]. In the mesocortical pathway, the VTA
sends dopaminergic outputs to cortical brain regions, such as the mPFC, basal ganglia, and
anterior cingulate cortex (ACC). Although the mesolimbic system is often considered as the
main reward pathway, the mesocortical pathway involves structures with important roles
in reward processing. Together, these pathways constitute the reward circuit, integrating
aspects of reward processing like motivation, movement, memory, and cognition [23].

In addition to the mesocorticolimbic system, the fronto-striatal neural circuit is as-
sociated with reward processing. In this circuit, the ventral striatum sends GABAergic
projections to the basal ganglia, which then projects to cortical regions (most importantly,
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the orbitofrontal cortex and mPFC) via the thalamus. The ventral striatum also receives
dopaminergic and glutamatergic inputs from the basal ganglia and cortical regions, re-
spectively [24]. This network specifically plays a role in reward responsivity, goal-directed
behavior, and incentive-based learning [25]. Many factors can modulate the fronto-striatal
circuit’s activity to reward or reward-predictive cues, such as the effort required to obtain a
reward, the magnitude of the reward, and delay in time until the reward is gained [26].

The endogenous OXT system interacts with the reward circuit in several locations
(Figure 1). Oxytocinergic projections from parvocellular neurons of the PVN travel to
midbrain DA neurons, specifically in the VTA, NAc, and SN [27,28]. All of these structures
contain a high density of OXTRs to which the neuropeptide binds. Peris et al. (2017) found
that approximately 50% of the VTA neurons that express OXTRs are glutamatergic [29].
Another report determined that around 46% of OXTR-expressing neurons in the PFC are
glutamatergic [30]. Endogenous OXT projections to the reward circuit are thought to
mediate the rewarding effects of social bonding and affiliative behavior [12]. The presence
of OXTRs in central components of the mesocorticolimbic system is important for another
function of OXT, one that is the focus of this review: its ability to reduce addictive behaviors.
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Figure 1. Diagram of the key components and pathways of the classic reward circuit, its commonly associated structures,
and its interactions with the endogenous oxytocin system. Rodent oxytocin receptors are found throughout this circuit
and influence glutamatergic and dopaminergic systems. VTA = ventral tegmental area; NAc = nucleus accumbens;
Amy = amygdala; PFC = prefrontal cortex; PVN = paraventricular nuclei; SON = supraoptic nuclei; HP = hypothalamus;
LHb = lateral habenula; HC = hippocampus; GABA = γ-aminobutyric acid; DA = dopamine.

1.3. Reward Processing and Addiction

The reward circuit is heavily implicated in the development and maintenance of an
addiction. Addiction is caused by a substance or behavior that provides pleasure and/or
reduces pain, even though it may result in harmful physical and mental consequences, and
is unable to be controlled [31]. Typical addictive substances are drugs of abuse (cocaine,
alcohol, methamphetamine, etc.) and, to a lesser extent, natural rewards such as food;
behavioral addictions include sexual behavior and gambling [32]. For the purposes of this
review, substance addiction will be the center of interest.
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Addictive substances are highly rewarding, so they act as incentives, such that when
they are no longer present in the brain, reward-seeking behavior is stimulated to acquire
the pleasure and fulfillment provided by these substances again [33]. Feeding an addiction
thus leads to a dangerous cycle of consuming substances that are rewarding but harmful,
and then having cravings which incite reward-seeking behavior. The reward processing
system is activated to perceive the rewarding properties of a substance and provoke reward-
seeking behavior [21]. Another function of reward processing is pairing a reward with
a stimulus through associative learning. This association causes a stimulus to act as a
reward-predictive cue, which provokes motivation and cravings by having incentivizing
properties [34,35]. Reward-predictive cues in animal-based experiments are typically an
object or context, such as a lever or chamber which has been paired with the reward
through conditioning. Aversive stimuli, such as physical or emotional stress, can also be
used to promote reward-seeking behavior [36]. In humans, reward-associated stimuli,
whether positive or aversive, are more subjective and personal, such as a memory, smell,
location, or stress-inducing event [37]. These stimuli serve as triggers for people with drug
addiction and can be the cause for relapse after a long period of abstinence.

Mesocorticolimbic system structures have specific roles in reward processing, and
therefore, addiction. Since the VTA is the origin of the reward circuit pathways, it has
implications in many aspects of addiction. Activation of the VTA can be traced to specific
events, such as the intake of an unexpected reward, seeing a reward-predictive cue, and
exposure to natural rewards [38,39]. Once the VTA is stimulated, it sends signals to encode
the properties of rewards and their associated stimuli [40]. Behavioral responses to a
reward are also a result of the activated VTA, projecting to other structures in the reward
circuit. Exogenously delivered opioids, for example, bind to opioid receptors on the VTA,
which promotes a large release of DA to the NAc, resulting in a rewarding feeling and
behaviors such as locomotor hyperactivity and drug-seeking [41,42].

The NAc is another structure that is heavily involved in addiction, which is expected
due to its major role in the reward circuit. The NAc is composed of two components:
the core and the shell. These subregions differ in their functions, effects on behavior,
and cellular morphology. Functions of the NAc core include evaluating a substance as
rewarding or aversive and motivating drug-seeking behaviors, such as initiating movement
towards a reward. The shell, on the other hand, is associated with reward prediction and
incentive learning [43–46]. The NAc shell is also associated with the habituation of the DA
response to natural rewards [47]. However, lesions of DA terminals in the mPFC abolish
this habituation of natural rewards in the shell, suggesting that this process requires intact
DA transmission from the mPFC [48]. Interestingly, drugs of abuse do not produce adaptive
responses of DA release to the NAc shell, similar to habituation or inhibition by predictive
stimuli [49]. The NAc core and shell also differs in the projections that they receive, such as
glutamatergic projections from the mPFC, which are associated with mediating the seeking
and planning of action to obtain rewards and vary between these regions. Infralimbic
mPFC, cells project to the NAc shell, while the prelimbic mPFC sends projections to the
core [21]. Lesions to the NAc shell attenuate the psychostimulant effects of cocaine, but
do not disrupt cocaine-seeking behavior, validating that each subregion has different roles
when processing drugs of abuse [50].

Drugs of abuse interact with the reward circuit in various ways, causing severe mal-
adaptations to its reward processing function. This dysfunction induces abnormally strong
cravings and drug-seeking behaviors, thus initiating the cycle of addiction. Most drugs
cause maladaptations to the mesolimbic system by substantially increasing extracellular
DA, which encodes the substance with a highly rewarding value, and/or they influence
changes in Glu and GABA transmission to prompt drug-seeking. For example, cocaine
generates its stimulating effects by inhibiting the reuptake of DA by dopamine transporters,
leading to abnormally high synaptic DA levels and a greater stimulation of DA receptors
in the NAc [51,52]. This encourages persistent drug-seeking behaviors in animals, such
as lever presses for cocaine. Methamphetamine impairs the reward circuit by inhibiting
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monoamine metabolism inside the cell and triggering the release of additional DA from
presynaptic neurons [53,54]. Ethanol may have indirect effects on DA signaling and reward
processing by blocking Glu transmission in the hippocampus, CeA, and frontal cortex,
while promoting GABA firing in the basolateral amygdala [55], while also indirectly inter-
acting with DA signaling from VTA neurons by influencing opioid and GABA signaling in
upstream projections [56,57]. Recent evidence has suggested that natural rewards, such
as food, sexual behavior, and social interactions, can also affect the reward circuit to elicit
cravings, the impairment of control, and substance-seeking [32]. Natural rewards are be-
lieved to affect reward processing in a similar way to drugs of abuse, seeing as they activate
the same reward circuit structures implicated in drug addiction [23]. In addition to Glu,
DA, and GABA, other neurotransmitters that have an important role in drug dependence
are serotonin (5-HT) and endocannabinoids. The 5-HT projections and its interactions
with DA are especially important in cocaine addiction [58]. Microdialysis studies of endo-
cannabinoids have demonstrated that they are released via dopaminergic signaling and
are involved in regulating synaptic plasticity related to addiction development [58]. It is
essential to recognize the roles that these neurotransmitters and their interdependence
have in addiction, even though the focus of this review will be on Glu, Da, and GABA.

1.4. Drugs of Abuse and Oxytocin

OXT counteracts the effects of rewarding substances, as seen by its ability to reduce
drug-induced behaviors, drug-seeking behaviors, and cravings for addictive substances.
OXT attenuates behaviors induced by cocaine, such as locomotor hyperactivity, repetitive
behaviors (e.g., sniffing), and behavioral sensitization to cocaine in rodents [59]. OXT (0.1,
0.3, 1, 3 mg/kg; i.p.) also dose-dependently reduced lever presses for cocaine in male rats
in a self-administration paradigm [60]. Reinstatement behavior, similar to drug relapse,
is influenced by OXT administration as well. The administration of OXT into the NAc
decreased the cued reinstatement of cocaine self-administration [30].

Similar effects of OXT are found for other drugs of abuse. Methamphetamine seeking,
as measured by active lever presses, was decreased dose-dependently by systemic OXT
treatment [61]. Peripheral (0.6 mg), intracerebroventricular (0.1, 0.5, and 2.5 µg), and
NAc core and subthalamic nucleus (0.6 mg) injections of OXT all reduced the acquisition
of methamphetamine-conditioned place preference (CPP) [8,62]. Additionally, OXT at-
tenuated both drug-primed reinstatement [61,63] and the cue-induced reinstatement of
methamphetamine [64]. When directly injected into the NAc core, OXT (1.5 and 4.5 pmol)
dose-dependently reduced meth-primed reinstatement [65]. Regarding opioids, both pe-
ripheral and central treatments of OXT have successfully attenuated opioid tolerance in
rodents, specifically to analgesic morphine and heroin [66]. In heroin-tolerant rats, a single
dose of OXT (0.05, 0.5, and 5 µg; s.c.) was all that was required to reduce heroin self-
administration and block the expression of heroin tolerance. However, this effect was not
found in heroin-naive rats [67,68]. The acute intracerebroventricular administration of OXT
(1 µg/5 µL) reduced alcohol self-administration and prevented the ethanol-induced release
of DA in the NAc in rats both chronically exposed and naive to ethanol [69].

Looking at the effects of OXT on behaviors induced by natural rewards, peripheral
(up to 6 mg/kg; i.p.) and intracerebroventricular (1–10 µg) OXT administration dose-
dependently reduces food intake in food deprived rats [70]. Another study by Mullis and
colleagues (2013) found that OXT directly injected into the VTA decreased the consumption
of a sucrose solution. They also discovered that OXTR antagonists inhibited this effect and
returned sucrose intake to normal levels, establishing that OXT attenuates sucrose intake
via OXTRs in the VTA [71]. Additionally, the systemic administration of OXT was found to
attenuate the expression, but not the acquisition, of sucrose CPP [72]. These findings, which
demonstrate that OXT can decrease the seeking and intake of natural rewards, suggest that
the neuropeptide could be used to reduce the overconsumption of food and sugar caused
by maladaptive processes in reward processing. Thus, OXT may have a role in combating
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diseases associated with the overconsumption of food and sugar, such as diabetes and
cardiovascular disease.

Several clinical trials have been initiated to test whether OXT curbs drug-seeking in
humans. Pedersen and colleagues (2013) had alcohol-dependent subjects undergo alcohol
detoxification with the treatment of lorazepam, as needed, and were to either receive
intranasal OXT (24 IU; twice daily for three days) or a placebo. The subjects who received
OXT demonstrated fewer withdrawal symptoms and used less lorazepam than the control
group [73]. Another clinical trial found that a single intranasal OXT administration (40 IU)
reduced drug cravings, stress, and anxiety in cannabis-dependent individuals [74].

Clearly, OXT has a profound effect on addictive behaviors and is a promising candidate
to be a therapeutic for addiction. However, the mechanisms by which OXT reduces drug-
induced behaviors are not well-established. This review aims to examine how OXT impacts
maladaptive changes in the reward circuit, specifically focusing on its interactions with
Glu and glutamatergic pathways to attenuate reward-seeking behaviors.

2. Glutamate and Addiction

Although DA is a prominent focus in studies of addiction, research into Glu’s role
in addiction is growing. It appears that DA has a primary role in the beginning of the
addictive cycle, while Glu is a greater factor in the later parts of the cycle (reinstatement
and relapse). Glu may also be involved in mediating the effects of natural rewards [75].
This section will discuss the endogenous glutamatergic system, the role of Glu in addiction,
interactions between DA and Glu in the reward circuit, and how drugs of abuse impact
Glu transmission. Examining the functions that Glu has in reward processing is crucial to
understanding the mechanisms involving the glutamatergic system through which OXT
attenuates drug-seeking behaviors.

2.1. Overview of the Glutamatergic System

Glu is the primary excitatory neurotransmitter in mammalian brains and is involved
in a variety of processes, including learning, memory, and reward processing. Drugs of
abuse alter Glu transmission and activity by influencing the amount of Glu transmission
and can do so by interacting with the various Glu receptors. There are two main categories
of Glu receptors: ionotropic and metabotropic. Ionotropic receptors (α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid [AMPA], N-methyl-D-aspartate [NMDA], and kainate)
are ligand-gated ion channels that alter cation (Ca2+, Na+) flow into and out of the cell;
metabotropic receptors are GPCRs that activate or inhibit second messenger signaling
cascades [76].

There are eight different subtypes and three different groups of metabotropic Glu
receptors (mGluRs) that are separated by their signal transduction pathways and homology
sequence. Typically, group 1 receptors (mGluR1 and mGluR5) are stimulatory, whereas
Group 2 (mGluR2 and mGluR3) and Group 3 (mGluR4, mGluR6, mGluR7, and mGluR8)
are inhibitory [77,78]. Group 1 receptors are predominantly postsynaptic receptors, Group
2 are both pre- and postsynaptic, and Group 3 are presynaptic autoreceptors [79–81]. These
different groups of receptors are implicated in different parts of the addictive cycle. Group
1 receptors are important in drug reinforcement and Group 2 receptors are involved in
neuroplasticity induced by chronic drug use or aversion during withdrawal; it is unclear
how Group 3 receptors are involved in similar behaviors [80]. For the purposes of this
paper, we will discuss OXT’s effect on Group 1 and Group 2 receptors.

2.2. Glutamate’s Role in Addiction

Glu transmission in the reward circuit, specifically in the NAc, has a role in the
decision-making process of obtaining rewards by invoking motivational and emotional
responses associated with the stimuli, determining the attention level allotted to stimuli,
inhibiting impulsive behavior, and providing contextual information [75,82]. The NAc
receives glutamatergic projections mainly from the PFC and amygdala, but also from the
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hippocampus and thalamic nuclei [75,83]. The glutamatergic projections from the PFC to
the NAc are highly implicated in drug-seeking behaviors, especially relapse and reinstate-
ment [84]. In fact, it is these projections that initiate cocaine-induced reinstatement [85].
Specifically, the activation of projections from the prelimbic PFC to NAc is essential for
reinstatement behavior following cocaine extinction, while the inactivation of infralimbic
PFC to NAc projections has the same effect [21].

Context-specific aspects of reward seeking appear to be more dependent on gluta-
matergic transmission [86]. Studies indicate that ionotropic Glu receptors are especially
involved in drug-seeking behaviors mediated by drug-seeking cues. For instance, the
microinfusion of an AMPA/kainate receptor antagonist into the NAc core, but not the
shell, dose-dependently reduced lever presses for cocaine [87]. It is noteworthy that an
NMDA receptor antagonist decreased cocaine-seeking behavior when infused into the NAc
shell [87]. There is strong evidence that that Glu transmission in the NAc is a primary de-
terminant of relapse [88]. However, the NAc core and shell subregions have different roles
in the mediation of relapse. The shell seems to be responsible for context-induced relapse,
whereas the core is essential for cue-induced and drug-primed reinstatement [85,89,90].
Additionally, the infusion of an AMPA antagonist, and not an NMDA antagonist, into the
medial NAc blocks reinstatement for cocaine [91].

The Glu homeostasis theory offers another idea as to how Glu is implicated in addic-
tive behaviors. This theory states that an imbalance between synaptic and extracellular Glu
alters neuroplasticity in the corticostriatal pathway, thus impairing the ability to control
drug seeking [92]. Excitatory amino acid transporters (EAATs), VGLUTs, and cystine-
glutamate exchangers are components that are critical for maintaining homeostasis. EAATs
and VGLUTs clear Glu from the synapse, while the cystine-glutamate exchangers transport
it back into the extrasynaptic space [75]. Repeated exposure to drugs of abuse causes
changes in the function of these components, therefore, disrupting the balance of synaptic
Glu and promoting addictive behaviors [93]. The Glu homeostasis hypothesis is supported
by a study from Baker et al. (2003), which displayed that restoration of extracellular Glu
and stimulation of cystine and Glu exchange prevented cocaine-primed reinstatement [94].

2.3. Glutamate and Dopamine Interactions

The dopaminergic projections in the brain, especially in the reward circuit, are rec-
ognized as having a significant role in reward processing and addiction. DA released in
the mesocorticolimbic system is utilized to encode the value of a reward, create incentive
salience, facilitate reward-stimulus pairings, and anticipate a reward [95]. The release and
utilization of DA are regulated by D1-like or D2-like GPCRs to appropriately process re-
wards. The D1-like receptors bind to stimulatory G-proteins and activate adenylyl cyclase,
while D2-like receptors act oppositely by binding to inhibitory G-proteins [96]. D2-like
receptors are commonly found as inhibitory autoreceptors that regulate dopaminergic
activity [97].

DA transmission can be regulated by glutamatergic afferents and, conversely, DA can
influence Glu transmission via inputs to glutamatergic neurons. This interdependence of
Glu and DA transmission is critical for regulating various aspects of reward processing
and addictive behaviors. Many glutamatergic projections originating in limbic, cortical,
and subcortical structures innervate DA neurons in the VTA and the NAc. Glutamatergic
projections to the VTA come primarily from the PFC, but some stem from the amygdala,
hippocampus, LHb, LH, or ventral pallidum [98–100]. These glutamatergic inputs to the
VTA help to modulate the phasic firing of the dopaminergic neurons directly or indi-
rectly [101]. For instance, glutamatergic projections from the LHb to GABAergic neurons
in the VTA inhibit the firing of VTA DA neurons [102]. Additionally, one study found
that excitation of glutamatergic afferents from the hippocampus to NAc subsequently
resulted in increased firing of VTA DA neurons [103]. Both metabotropic and ionotropic
receptors have a large role in regulating DA levels. Administration of mGluR2 and mGluR3
agonists reduced extracellular DA dose-dependently, while an antagonist of mGluR2/3
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increased DA [104]. Meanwhile, agonists of excitatory metabotropic receptors enhanced
DA release in the NAc [105]. Ionotropic receptor antagonists decreased extracellular striatal
DA in vivo, and agonists promoted DA release in vitro [106,107]. These studies suggest
that Glu receptors are involved in regulating tonic concentrations of DA.

The modulation of Glu transmission by dopaminergic projections is often exhibited
by the effects of psychostimulants. Cocaine and methamphetamine block the reuptake of
DA by binding to the DA transporter. This increases synaptic DA levels, which activates
D1 receptors and enhances Glu transmission [108]. In addition, D1 receptor stimulation
increases the surface expression of the GluR1 (or GluA1) subunit of the AMPA receptor on
NAc neurons; this subunit is essential for LTP [109]. Another study found that D1 receptors
and NMDA receptors interact with each other to retain a sufficient concentration of D1
receptors in the Glu synapses of the hippocampus [110].

2.4. Drugs of Abuse and Glutamate

Drugs of abuse greatly increase Glu and DA levels in the synapse and alter the
transmission of these neurotransmitters using various mechanisms. As described previ-
ously, psychostimulants increase Glu transmission indirectly through interactions with
DA [75]. Some studies show that alcohol can inhibit presynaptic Glu release and post-
synaptic NMDA-mediated Glu transmission. However, other studies found Glu levels
to increase after alcohol administration, possibly due to the activation of D1 receptors or
inhibition of GABAergic interneurons that project to presynaptic Glu neurons [75]. Mean-
while, heroin activates mu-opioid receptors to enhance postsynaptic NMDA-mediated Glu
transmission [111]. Heroin can also increase Glu signaling via dopaminergic interactions
and the inhibition of GABA neurons, similarly to alcohol [75]. Methamphetamine self-
administration impacted Glu transmission by decreasing the AMPA/NMDA ratio in the
mPFC, which was driven by an increase in NMDA receptor currents and in the surface
expression of the GluN2B subunit [112].

After withdrawal from alcohol, cocaine, nicotine, and heroin, NAc core astrocytes
exhibit a decrease in glutamate transporter 1 (GLT-1) levels [113]. Additionally, there is an
increase in postsynaptic AMPA receptor function, a downregulation of inhibitory Group
2 mGluRs, and/or upregulation of the activator of G-protein signaling 3 (AGS3) after
withdrawal from alcohol, cocaine, heroin, or methamphetamine [113,114]. Cocaine alters
AMPA receptor function in the NAc by upregulating its surface and synaptic receptor
levels; it also decreases the surface expression of mGluR2 [113]. However, it should
be noted that the effects that drugs have on corticostriatal Glu neuroplasticity can be
dependent on various facets of the experimental paradigms used, such as contingency and
duration [114,115].

Drug-induced alterations in Glu transmission play an important role in the behavioral
aspects of addiction. Stimulant drugs have been shown to induce behavioral sensitiza-
tion via glutamatergic activity, especially by acting on ionotropic (mostly NMDA) and
metabotropic receptors in the VTA and NAc [116–118]. Compulsive drug-seeking behavior
and the maladaptive formation of drug-associated memories results from NMDA receptor
plasticity in the NAc and excessive Glu transmission from the PFC to the NAc [119,120].
Therefore, Glu is crucial in the neurophysiological and behavioral consequences of drugs
of abuse.

3. Oxytocin and Glutamate

Administration of OXT can influence Glu levels in the reward circuit, suggesting that
the neuropeptide may attenuate addictive behaviors by acting on the glutamatergic system.
This is supported by findings which show that Glu and GABA cells are predominantly
located in the medial fascicular and rostrolinear nuclei of the VTA, whereas DA cells are
found in the lateral regions of the VTA, and OXT administration results in increased VTA
firing rates with around 76% of the medial neurons responsive to OXT, compared to 28% in
lateral areas [121,122]. Thus, the medial projections from the VTA to NAc, which are likely
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to be glutamatergic are also likely to be involved in oxytocinergic mechanisms. Seeing as
OXTRs are found on dopaminergic, glutamatergic, and GABAergic cells in the VTA [29],
and these receptors have been localized in regions implicated in drug-induced maladaptive
Glu transmission, similar to the NAc (core and shell) and PFC [12,17], there is further
support that OXT’s mechanisms involves a glutamatergic pathway.

A few studies have shown further evidence of Glu transmission being influenced by
OXT treatment (Table 1). For instance, Qi et al. (2012) demonstrated that OXT counteracted
methamphetamine-induced increase in Glu in the mPFC and decrease in Glu in the dorsal
hippocampus [123]. In addition, OXT decreased extracellular Glu levels in the mPFC
caused by stress-induced reinstatement of methamphetamine CPP [8]. Notably, both of
these effects were reversed in the presence of an OXTR inhibitor. Here, we propose several
mechanisms explaining how OXT affects glutamate transmission to attenuate drug seeking,
all of which involve restoring drug-induced maladaptations to the reward circuit.

Table 1. Oxytocin’s effects on drug-induced molecular changes based on structure. VTA = ventral
tegmental area; NAc = nucleus accumbens; mPFC = medial prefrontal cortex; PFC = prefrontal cortex;
CeA = central amygdala; SON = supraoptic nuclei; GABA = γ-aminobutyric acid; GFAP = glial
fibrillary acidic protein.

Neuroanatomical Structure Oxytocin’s Effect

mPFC Decrease extracellular glutamate levels [8]
VTA Decrease glutamate release [9]
NAc Decrease dopamine levels [69]
Hippocampus Increase glutamate levels [123]
Hippocampus, mPFC Increase extracellular GABA levels [123]
PFC Decrease NR1 subunit expression [123]
PFC, dorsal hippocampus, amygdala, bed
nucleus of stria terminalis

Increase phosphorylation of GluR1 subunit
[124]

CeA Decrease GABA transmission [124]
SON Decrease GFAP expression [125,126]

3.1. Ionotropic and Metabotropic Glutamate Receptors

It is possible that OXT attenuates abnormal Glu transmission by modifying the activity
of Glu receptors. In examining its interactions with ionotropic receptors, OXTRs were found
to reduce methamphetamine-induced increases in the NMDA NR1 subunit in the PFC [123].
OXT administration also opposed cocaine-induced decreases in the phosphorylation of the
GluR1 AMPA subunit in the PFC, amygdala, dorsal hippocampus, and bed nucleus of the
stria terminalis [127]. Interestingly, GluR1 phosphorylation increases the trafficking of the
subunit to the cell surface, suggesting that cocaine may selectively decrease the excitatory
current induced by AMPA in some regions, and OXT is able to correct this abnormality.
Thus, while OXT seems to have differential effects on NMDA and AMPA surface expression
in certain brain regions, the neuropeptide ultimately opposes drug-induced alterations of
ionotropic receptors.

Changes in Glu transmission following OXT administration may also occur because of
OXTRs interacting with metabotropic Glu receptors. Specifically, Group 2 mGluRs seem to
be highly involved in OXT’s effects. Group 2 inhibitory receptors are involved in regulating
the release of Glu and DA in structures involved in reward processing; agonists of these
receptors can inhibit reinstatement of drug-seeking behavior [128]. Blocking presynaptic
Group 2 receptors in the NAc prevented OXT from reducing cued methamphetamine
seeking [129]. Furthermore, an mGluR2/3 antagonist inhibited the effects of intra-accumbal
OXT on cued reinstatement of cocaine seeking [30]. Thus, it is possible that OXT stimulates
Group 2 mGluRs to reduce the excitatory effects of Glu in the NAc, subsequently reducing
activation in other regions like the mPFC and hippocampus and preventing the initiation
of drug-seeking behaviors.
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As previously discussed, OXTRs are found on glutamatergic neurons within the VTA,
suggesting that OXT directly modulates Glu release in VTA neurons [26]. The precise
role of these glutamatergic neurons in reward and addiction are not fully known, though
studies have found that VTA glutamatergic neurons may modulate DA transmission to the
NAc [130] and influence reward-processes via projections to a number of areas including
the NAc, PFC, and amygdala [131]. Furthermore, OXTR-expressing projections have
shown that they target the LHb [29], a region that receives Glu input from the VTA and is
primarily involved in aversive conditioning [132], which may provide another mechanism
through which OXT provides a neuromodulatory role in reward processing. Finally, VTA
glutamatergic neurons have been shown to promote aversion behavior via projections
to GABAergic interneurons within the NAc that subsequently inhibited NAc medium
spiny neurons [133]. While it is not yet known which specific VTA subpopulations of
glutamatergic neurons express OXTRs, there are a number of possible mechanisms through
which OXT could provide a neuromodulatory effect on reward-processes via its effect on
Glu transmission within the VTA.

3.2. Glutamate-Dopamine Interactions

It is possible that OXT’s impact on addictive behaviors occurs due to interference with
the DA and Glu interactions that occur in the reward circuit during the addiction cycle.
This is supported by the fact that OXTRs are on both dopaminergic and glutamatergic
neurons in the VTA [29,134]. At specific glutamatergic inputs to VTA dopamine neurons,
OXT acts as a filter by selectively inhibiting excitatory synaptic transmission to the VTA
through OXTRs alongside endocannabinoid signaling [9]. OXT has a greater gating effect
on Glu neurons that fire only occasionally compared to those that fire repeatedly. These
mechanisms lead to a decrease in Glu release in VTA DA neurons in the presence of OXT [9].
Glu-mediated DA release is also relevant to processes such as tonic-phasic DA activity;
OXT suppression of Glu would allow for less modulation of tonic and phasic firing of DA
neurons, which is a key component of reward processing. Similarly, glutamatergic synaptic
transmission in the NAc was dampened in the presence of OXT through a presynaptic
mechanism involving serotonergic inputs [9]. This modulatory interaction of OXT on Glu
transmission in the VTA allows for regulation of both Glu and DA levels through their
interactions [135].

3.3. Glutamate-GABA Interactions

Although there has been no research that looks directly at the interactions between
OXT, GABA, and DA levels, it is possible that OXT interacts with GABA neurons that
project onto glutamatergic and dopaminergic neurons in the VTA. There are OXTRs found
on GABAergic neurons in the VTA [29] and PFC [136]. Additionally, OXT has been
shown to decrease alcohol-induced GABAergic signaling in the CeA, and to reduce GABA
receptor function in both alcohol-dependent and alcohol-naïve rats [124]. GABAergic
neurons innervating the VTA inhibit glutamatergic and dopaminergic neurons and their
respective neurotransmitter release [137]. Therefore, a plausible mechanism is that OXT
enhances GABA’s inhibitory effects on glutamatergic and dopaminergic VTA neurons,
which can then dampen the signaling of these cells and decrease mesocorticolimbic Glu
and DA levels. In fact, Qi et al. (2012) demonstrated that OXT increased extracellular
GABA levels in the mPFC following methamphetamine administration [123]. Thus, OXT
may be acting as an activating neuromodulator in regions where drugs cause an inability
to control behavior and impulses.

3.4. Changes in Astrocyte Function

Astrocytes are the most abundant type of glial cell in the brain and have been shown
to play an important role in the regulation of Glu and GABA neurotransmission [138]. The
activity and physiology of astrocytes can be affected by various drugs of abuse. Cocaine and
amphetamines (methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA))
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greatly stimulate the activation of astrocytes, which proposes the basis for the neurotoxicity
associated with drugs of abuse [139,140]. Drugs such as methamphetamine and morphine
cause an increase in the expression of glial fibrillary acidic protein (GFAP), which is a
cytoskeleton component in astrocytes that is associated with neurotoxicity and helps to
localize astrocytic functional proteins [125,138]. Since astrocytes are essential for the normal
functioning of glutamatergic neurons because of their role in Glu reuptake, synthesis, and
transmission regulation [141], alterations of astrocytic physiology and function can prove
detrimental to glutamatergic signaling in the reward pathway. This dysfunction has
implications in addiction specifically in regard to the Glu homeostasis hypothesis and NAc
function, because synaptic plasticity in the NAc is regulated through astrocytic-control of
extrasynaptic Glu release and reuptake [92].

OXT can impact various components of astrocyte physiology. For instance, OXT
reduces the drug-induced increase in GFAP expression and alters the neural plasticity
associated with the protein [125,126]. A decrease in GFAP also causes a decrease in
Glu transport by preventing GLT-1 trafficking to the cell surface [142]. Therefore, these
findings suggest an additional explanation for OXT’s mechanism on attenuating drug-
associated behaviors: OXT reduces the neurotoxic effects of drugs via a reduction in GFAP
levels. Through restoring GFAP expression, and consequently astrocyte function, OXT
may indirectly affect glutamatergic transmission in a way that opposes addictive behaviors.
By reducing GFAP levels, OXT reduces the trafficking of GLT-1 and consequently lowers
the activity of Glu and its excitatory effects. These effects are tied to astrocytes because
GLT-1 is exclusively expressed in neural astrocytes [143,144]. An interesting caveat is that
upregulation of GLT-1 expression is being researched as a potential therapeutic treatment
for addiction due to its ability to facilitate Glu reuptake [145,146].

4. Discussion

The exogenous administration of OXT impacts Glu and DA transmission in addiction-
associated neural pathways. Due to the significant role of Glu in the addiction cycle,
it is likely that the interference with its transmission is how OXT exerts its effects. We
suggest that OXT impacts the glutamatergic system by restoring the normal activity of
ionotropic and metabotropic Glu receptors, opposing drug-induced changes to Glu/DA
and Glu/GABAA interactions, and decreasing GFAP and GLT-1 expression to mend
astrocyte function. The evidence provided in this review offers support for these proposed
mechanisms, although there does not appear to be just one way that OXT carries out its
functions.

With cases of substance-abuse disorders growing each year, there is a dire need for
effective pharmacotherapeutics for addiction. However, some have questioned whether
the systemic administration of OXT actually allows for the compound to reach the brain
in sufficient amounts, due to the challenge posed by the blood–brain barrier (BBB). We
maintain that OXT is still highly effective when given peripherally, as demonstrated by
numerous studies which have used peripheral injections on rodents to produce an OXT-
based effect [10,61]. Further, central administration of an OXT or OXTR antagonist inhibits
the effects of peripherally injected OXT [64,147]. Peripherally circulating OXT could be
crossing the BBB through carrier-mediated transport or transcellular passage across the
endothelial cells that compose the BBB [148]. Another possibility is that the drug reaches the
brain through leakages into the cerebral spinal fluid, which occurs when the permeability of
the BBB is compromised by addiction, hypertension, stress, or disease [10,148]. Intranasal
administration of OXT also seems to effectively deliver the drug to the brain, as this
method allows for bypassing the BBB [149]. Being able to avoid the limitations set by the
BBB through intranasal administration opens up new opportunities for pharmaceutical
treatments of disease.

Another matter to consider for exploring OXT as a therapeutic for addiction is that
studies have not yet shown the localization of OXTRs in the human VTA. There is, however,
strong evidence that OXT enhances the activation of the VTA in humans in response to
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rewarding social stimuli [150,151]. Knowing how central the role of the VTA is in reward
processing and addictive behaviors, all of the findings that demonstrate that OXT reduces
drug-seeking in humans implies that there must be OXT binding sites on the VTA. It
may just be that very few studies have even attempted to localize OXTRs in the human
brain [15,152] that this discovery has not been made. Additionally, it is well-established
that OXTRs are found in the VTA of rodents [12,16], and given the high similarity between
the rodent and human brain, it is not unreasonable to assume that OXTRs exist in the
human VTA. The human brain has displayed dense OXTR binding sites in other regions,
such as the substantia nigra pars compacta, so this may be a potential target for OXT as
well [12].

This review described potential mechanisms through which OXT attenuates reward-
seeking behaviors and the reinstatement for drugs of abuse and natural rewards. The
insights provided in this review add to the growing literature of OXT as a possible thera-
peutic treatment to reduce addictive behaviors. However, there is still a need for further
examination of more specific aspects of OXT’s mechanisms. For instance, it is unknown
how significant of a role other compounds such as GABA and endocannabinoids may have
in OXT’s mechanisms. Additionally, more studies must be conducted to demonstrate that
the mechanistic processes of OXT observed in rodents occur the same way in humans.
With a better understanding of how OXT works, its potential uses and long-term effects
become clearer.

It is important to consider the future implications of using OXT to treat addiction. A
key factor is the addictive nature of OXT itself, especially to its prosocial and anxiolytic
effects. Although studies indicate that it does not induce addictive behaviors unless at
exceedingly high levels, if OXT is developed into a drug therapy, there is still the possibility
of people consuming the compound at amounts far greater than the appropriate dose.
Another factor to consider is the ramifications of OXT administration on the peripheral
system, specifically on the reproductive system, where it has a substantial role. Thus,
there is still a need to examine certain aspects of OXT being a treatment for addiction.
Nonetheless, this is an exciting and novel direction towards pharmacologically disrupting
the addiction cycle and the behaviors it induces.
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