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Abstract

Background: An exponential growth of high-throughput biological information and data has occurred in the past
decade, supported by technologies, such as microarrays and RNA-Seq. Most data generated using such methods are
used to encode large amounts of rich information, and determine diagnostic and prognostic biomarkers. Although
data storage costs have reduced, process of capturing data using aforementioned technologies is still expensive.
Moreover, the time required for the assay, from sample preparation to raw value measurement is excessive (in the
order of days). There is an opportunity to reduce both the cost and time for generating such expression datasets.

Results: We propose a framework in which complete gene expression values can be reliably predicted in-silico from
partial measurements. This is achieved by modelling expression data as a low-rank matrix and then applying recently
discovered techniques of matrix completion by using nonlinear convex optimisation. We evaluated prediction of
gene expression data based on 133 studies, sourced from a combined total of 10,921 samples. It is shown that such
datasets can be constructed with a low relative error even at high missing value rates (>50 %), and that such predicted
datasets can be reliably used as surrogates for further analysis.

Conclusion: This method has potentially far-reaching applications including how bio-medical data is sourced and
generated, and transcriptomic prediction by optimisation. We show that gene expression data can be computationally
constructed, thereby potentially reducing the costs of gene expression profiling. In conclusion, this method shows
great promise of opening new avenues in research on low-rank matrix completion in biological sciences.
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Background

A tremendous growth in biomedical information and
datasets has been observed in the last two decades [1].
This growth is supported by the development of new tech-
nologies that profile gene expressions in an automated
manner. Such technologies have significantly evolved in
the past 20 years, from initially monitoring less than 50
features per slide [2] to whole genome expression analy-
sis with new generation microarrays having more than 10°
features, such as GeneChip oligonucleotide probe based
arrays and high density bead arrays [3]. This evolution
has persisted in the form of next-generation sequencing
(NGS) methods being used to quantify RNA in a sample
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[4] and have proven to be advantageous in terms of per-
forming discovery-based experiments and having a larger
dynamic range.

However, there are fundamental impediments of cur-
rent profiling technology and gene expression analysis
methods. We list a few:

e The cost of commercial RNA-seq and microarray
services remain prohibitive and limits their wider
adoption in research and clinical applications alike.

e There is a challenge in data storage requirements and
high analysis complexity that is associated with
datasets sourced from next-generation sequencing
(NGS) methods.

e Despite microarray experiments being more
economical in terms of cost and data volume, missing
data is an inevitable phenomenon in such
experiments, and adversely affects downstream
analysis. The prevailing missing value imputation
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algorithms successfully recover expression levels
albeit at low missing value rates (only up to 15 % of
the expression values).

As of 2015, commercial microarray services cost
approximately $450 per sample, and prices vary for dif-
ferent platforms [5-7]. Profiling is generally performed
using multiple tests to increase the statistical power of
the measurement [8], thus increasing the combined cost
of the experiment. The MammaPrint test, a microarray
based gene expression test used to predict the risk of
recurrence in patients with breast cancer, costs approx-
imately $4,200. Similarly, the Oncotype DX costs more
than $3,000 [9]. RNA-Seq is even more expensive than
conventional DNA microarray based tests used for gene
expression measurements. The cost of RNA sequencing
services directly increases with number of reads per sam-
ple [10]. There is an upward trend to increase the capacity
of such platforms, with manufacturers pushing for higher
number of reads and probes per sample, inadvertently
increasing the cost per sample. We explore if there is
merit to this surge in number of reads and probes to cre-
ate high dimensional gene expression datasets. For gene
expression profiling experiments, it is often the case that
a new experiment is designed and performed to capture
any novel aspect of interest. We explore a potential pos-
sibility of modelling already sourced datasets, and extrap-
olating these in-silico to discover expression levels of
interest.

In this paper, we propose a computational framework to
estimate gene expression data using only a selected frac-
tion of gene expression measurements. We demonstrate
that the expression levels of certain genes selected from
the collection of genes of interest can be used to accurately
estimate the remaining expression levels. We show that
conclusions regarding expression levels can be derived
from partial measurements. We also show that further
analysis can be performed using such predicted data,
thus enabling the conduction of whole genome expres-
sion analysis, using such data. This framework allows for
customisation because selected genes can be isolated for
analysis. We believe that this method has applications in
how biomedical data is sourced and in turn is relevant in
the areas of differential gene analysis (class comparison),
class prediction, cancer investigation, and non-invasive
diagnosis.

Benefits and contributions
In summary, our key contributions are:

e We demonstrate that gene expression data can be
modelled as an approximate low-rank data matrix, in
order to computationally predict expression values.

® We show that sparse gene expression measurements
(“known” expression levels) could be used to

Page 2 0f 13

artificially construct the gene expression dataset
using non-linear convex optimisation, and report
prediction results on diverse expression datasets
sourced from multiple experiments. This is in
contrast with current biochemical methods which
directly measure all expression values.

e We conduct differential gene analysis and Bayesian
network analysis on predicted datasets, and compare
our results with those obtained using original
datasets, to show that the prediction capabilities of
the reconstructed and the original datasets are not
significantly different.

These technical contributions lead to application areas:

e This can be used to computationally predict
behaviour of genes subject to a condition, given a set
of measurements. This also has potential applications
in consolidating multiple datasets with common
phenotypes to infer new transcriptomic behaviour,
using low-rank prediction.

e This framework allows for construction of expression
datasets using a fraction of known values thereby
reducing the number of measurements (in terms of
number of probes and reads) required to capture
such data.

e e believe that these techniques can potentially
reduce the cost of experiments, thus saving millions
of dollars, and open a new avenue for research on
data completion in other domains, where the
observable data is scarce.

e This has applications in high dimensional expression
data compression and reconstruction, and can be
used to impute missing gene expression data even at
high missing value rates.

Related work

Biological data and machine learning

Plenty of biological data has generated a need for com-
putational methods to extract useful knowledge from
such heterogeneous information. This has led to advance-
ments in machine learning techniques in making predic-
tions particularly applied to data involving proteomics,
genomics, and microarrays [11]. Computational mod-
els have been successfully used in gene finding [12-14]
and prediction of proteins with a secondary structure
[15, 16]. More recently, Alipanahi et al. used advance-
ments in deep learning to predict DNA and RNA
binding proteins [17]. In the case of expression data,
Bayesian networks are effective in modelling relation-
ships between expression profiles for prognosis prediction
[18] and inference [19]. Machine learning techniques have
been extensively used in expression pattern identifica-
tion [20, 21] classification [22, 23], and network analysis
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of expression data [24]. However, the process of mea-
suring expression levels and generating profiles is pri-
marily devoid of any considerable learning or the use of
optimisation.

Low-rank matrix recovery

The objective of recovering a low-rank matrix from a few
data samples can be described as an optimisation prob-
lem. This is used in various practical scenarios and is a
motivation for this study. The Netflix problem is a popular
example of how such techniques are applied to recom-
mendation systems [25]. The user-movie data matrix in
this case consists of movie ratings (integral values of
1-5) provided by different users for various movies.
Because users tend to rate very few movies, the entries
in the matrix are sparsely filled. Predicting movie ratings
based on such data is used to recommend other movies to
the user by posing it as a collaborative filtering problem
[26]. The user—movie matrix is assumed to be a low-rank
matrix because each movie has a few linearly independent
parameters on which the users generally rate the movie.
Therefore, only a few samples can be used to predict all
the values in the rating matrix.

Low-rank modelling has been applied to computer
vision [27] to improve face recognition methods and has
been used in novel camera architecture to create high-
resolution light fields from a single coded image [28]. In
2003, Basri and Jocobs assumed their high-dimensional
image data of convex Lambertian surfaces under differ-
ent lighting illuminations to exist in a low-dimensional
subspace [29]. The concept of low dimensionality has
been used to improve background subtraction [30] and
motion segmentation [31]. In addition, low-rank matrix
recovery is applied for estimating the distance matrix
in a triangulation problem when the data available is
partial [32, 33].

Gene expression prediction

In 2004, Nir Friedman proposed a model for predict-
ing gene expression levels by using probabilistic graphical
models [34]. Although the method is robust, the perfor-
mance of accurate prediction is moderate. Approaches
involving the information theory [35] have been proposed
to identify transcriptional interactions between genes in
microarray data, which are computationally inexpensive.
However, these approaches do not accurately estimate
the expression levels. Methods for estimating missing val-
ues in large dimensional expression data are available.
For example, the least square imputation method, LL
Simpute, involves the combination of similar genes and
selects a gene of interest by using k-nearest neighbours
[36]. Oba et al. used Bayesian principal component anal-
ysis, BPCA, to estimate the missing values in expression
profiles [37]. The prevailing methods estimate the gene
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expression values at very high observabilities of data, that
is, unknown values predicted using these methods are
extremely few (only up to 10 % of the values). To the best
of our knowledge, missing rates of 5 %—10 % are consid-
ered moderate and those more than 15 % affect prediction
and interpretation [38, 39]. In this study, we attempt to
predict high-dimensional expression matrices with only
sparse data, with as high as 90 % of the data unknown.

Methods

In this section, we introduce the principals involved in
modeling low-rank matrix completion and artificial con-
struction of the gene expression dataset from known
sparse expression levels. We further analyse parameters to
improve the prediction performance.

Model

A gene expression study yields measurements of mRNA
levels that represent gene expression values under con-
trasting experimental conditions, and experiments on
multiple samples are consolidated to form a gene expres-
sion data matrix. We propose approaching the problem of
prediction as recovery from known values as distributed
entries in this data matrix. The yet unknown values con-
stitute the complete matrix. The expression data to be
predicted can be represented as My, x,, where m and n
describe the genes and sample instances respectively. The
locations of the known values in the data matrix, also
referred to as checkpoint expression values hereafter, are
encoded in @, where (i,j) € Q if expression value is
hitherto known.

The proposed framework is an underdetermined sys-
tem, since the number of measurements is considerably
lesser than the number of unknowns. A matrix can be
recovered directly by minimising the rank of the data
matrix subjected to a certain constraint with the assump-
tion that the data matrix is a low-rank matrix. Ideally,
solving the following convex optimisation problem would
provide a low-rank matrix that would fit the observed
(i,j) € Q entries and recover M:

min(rank (X))

1)
when X(,‘,}') = M(l',]‘)

Unfortunately, the rank minimisation problem is of NP
hard complexity and exact solutions of the problem take
doubly exponential computation time, thus rendering the
approach impractical for use [40]. It can be shown that
the rank minimisation can be remodelled as minimising
the sum of the singular values of the data matrix X. This
is because a matrix with a rank r has r nonzero singu-

lar values, and minimising the rank would essentially be
equivalent to minimising the number of nonzero singular
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values of X [32]. This sum is defined as the nuclear norm
(Schatten 1-norm or trace norm) of the data matrix:

X[l =" o; 2)
i=1

where r is the rank of X, and o; is the i/ nonzero singular
value of X. The nuclear norm is essentially the /; norm of
the vector of singular values because these values are pos-
itive. The decision variable X is then heuristically solved
as follows:

min([| X %) 3)
when X(i,]') = M(i,j)

where (i,j) € € the nuclear norm is the tightest con-
vex relaxation of the rank function, and therefore its ideal
replacement. The advantage of the nuclear norm is that it
is convex, and its global optimum can be efficiently com-
puted. Candes and Recht showed that solution obtained
using convex heuristic is the same as that obtained using
rank minimisation heuristic, and the replacement holds
good under certain conditions [32]. If the predicted gene
expression matrix is assumed to be of rank r, a lower
bound is set on the number of measurements as || >
Cm®/>rlog m for a positive constant C and where m is the
number of distinct genes in the dataset.

Why low rank?

It is universally known that in any biological process,
genes do not act in a solitary manner and rather act in
concert [41, 42]. Groups of genes interact in any bio-
logical setting, and consequently, the expression levels
of genes are interdependent. The association between
gene expressions has been studied and analysed in many
forms, such as association network structures [24, 43] and
pairwise correlations [44]. We believe interdependent fac-
tors contribute to the behaviours of transcription factors,
thereby influencing the expression of genes and result-
ing in a highly correlated data matrix. We assume that
the gene expression values lie on a low-dimensional linear
subspace and the data matrix thus formed may be a low-
rank matrix. We later show that this assumption can be
considered true to approximately predict these values.

Expression prediction

The approximate solution to the recovery of the original
matrix can be achieved through minimising the nuclear
norm. This has gained considerable attention, and var-
ious numerical methods are available to solve (3) and
obtain the matrix. Biological data is generally charac-
terised by many variables, and high dimensionality of such
datasets poses a problem for various numerical meth-
ods of recovery. A numerical method used to solve the
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nuclear norm minimisation problem is to apply a soft-
thresholding operation iteratively, which possesses the
favourable property of scaling well on large datasets [45].
The following optimisation problem is solved:

1
minimise T || X|| * +=||X
1X1] 2|| e @)
such that Pq(X) = Po (M)

where |Allr = />0, Z;’zl |a;j|? is the Frobenius norm

of the matrix, and Pg is the orthogonal projection matrix
such that:

X, G)e
0, @(,)¢Q

Choosing a sufficiently high value of t reduces the influ-
ence of the Frobenius norm term in (4), and the optimisa-
tion problem described in (4) reduces to the nuclear norm
minimisation problem (3), thereby essentially solving for a
low-rank matrix. After choosing an appropriate t > 0, the
expression matrix X can be iteratively reconstructed such
that the k" iteration is:

XK = shrink (Yk_l, r)

Po(X)ij = { (5)

(6)
Y% = Y& 1 4 5,Pq (M —Xk)

Y at k = 0 is initialised as zero. The shrink is named
as the soft thresholding operator [45]. The parameter ©
determines the amount by which the singular values of
the gene data matrix is decreased, thereby determining
the rank. The parameter §; is the positive step size
in the iteration that has been maintained independent of
k. Therefore, the accuracy of the prediction of expression
levels is clearly a strong function of both t and §. The
shrink operator can be defined as follows:

r
shrink (X, 1) := Z max(c — T,0)u;v;*
i=1

r
X = E OiUujvi*
i=1

where u; and v; are the left singular vectors and right sin-
gular vectors of X, respectively. The sequence of iterations
converges to the desired expression matrix that would
minimise (4).

(7)

Parameters

Notably, the performance of an algorithm depends on
the threshold parameter t. High values of t are recom-
mended. However, the question is how high should the
parameter be. Selecting an exceedingly high 7 value may
shrink Y* more than it should, resulting in a low perfor-
mance. Furthermore, the choice of step size §; determines
the accuracy of prediction. Incremental changes in the
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aforementioned parameters can lead to offsets in the per-
formance measures when applied to high-dimensional
biomedical datasets. We analysed the variation in the
error of prediction on synthetic low-rank matrices of rank
10 (Fig. 1), which were constructed using normally dis-
tributed random numbers. In the datasets, 50 % of the
values were predicted through low-rank recovery. The
values of the parameters responsible for optimal perfor-
mance depended on the type of data, rank, and size of the
datasets. Although optimal parameters can be determined
empirically, the following relation could be used [45]:

T =5 mn (8)

where dimensions of the final predicted expression matrix
are m and n. The choice of step size for each iteration is
a function of known values before prediction [45] and is
set as:

8k = 1.2mn/|9| 9)

The parameters can be further optimised to enhance the
prediction performance. To reduce the computation time
and the time required for implementations on modest
desktop computers, iterations with different values can be
performed within a defined range on similar test datasets,
pivoted on values determined using (8) and (9). Never-
theless, we demonstrate that the aforementioned relations
can be used as is for high accuracy gene expression
prediction.

The known checkpoint levels in the gene expression
dataset to be predicted are log-transformed before being
input for prediction. The expression matrix is then recon-
structed iteratively until the error in the convergence of
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the known expression levels is lower than a threshold
tolerance:

[1Pg (X* — M) llF _
1P (M)l¢

The convergence criterion was empirically set. In our
implementation, the tolerance in the error of expres-
sion levels was maintained at 1078, An upper limit of
the number of iterations was contingent on the available
computational power, which was set to 750 iterations.

(10)

Robustness to noise

Gene expression datasets are known to have technical
noise in expression level measurements owing to factors
such as process errors, lane-to-lane variability in RNA-seq
[46, 47] and small sizes of spots, inconsistency in hybridis-
ation, and varying degrees of uniformity of printing pins in
microarrays [48-50]. Although, there has been consider-
able progress in de-noising methods leading to improved
expression estimation, and studies show that magnitude of
technical noise might be considerably lower than critical
levels [51, 52], we evaluated the robustness of the method
to noisy datasets. The known checkpoint expression levels
can be represented as:

%y = xy+ £, (1)) € Q (11)

where x;; is the actual value, and ¢;; is the white Gaussian
noise term sampled from a distribution with zero mean
and standard deviation o,. We performed low-rank pre-
diction on synthetic data, which simulated expression
data, and varied the standard deviation of the distribution
of the additive noise data:

noise deviation ratio = o, /0y (12)
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Fig. 1 Variation of performance with t and §. This example shows a variation in the relative error in predicting two synthetic datasets of dimensions
150 x 150 and 20000 x 150. The datasets were predicted, and 50 % values were known prior to the prediction at a run of 100 iterations




Kapur et al. BMC Bioinformatics (2016) 17:243

where o is the standard deviation of the actual set of val-
ues. The analysis (Table 1) demonstrated the ability of the
method to recover low-rank synthetic noisy data with a
low error. We present low-rank prediction results on real
gene expression data in the results section.

Data pre-processing

Data pre-processing can often lead to significant improve-
ment in model performance, and is therefore an
imperative step, with normalisation and transformation
characteristic to gene expression analysis. The input gene
expression data was log-transformed prior to predic-
tion. The distribution of gene expression measurements
is heavily skewed, and the values are better correlated
after log-transformation, increasing accuracy of low-rank
recovery. A variety of normalisation techniques exist for
gene expression data analysis, with no clear consensus
on a singular strategy. The performance of prediction is
enhanced after normalisation; for example, the predic-
tion accuracy with Robust Multi-array Average (RMA) on
microarray expression datasets and transforming RNA-
seq raw reads into Reads Per Kilobase of transcript per
Million mapped reads (RPKM) has a higher prediction
accuracy, as compared to prediction performed using raw
values. Although, the range of normalisation approaches
would be qualified in the case of very low observability
of the expression data, data pre-processing with normal-
isation and transformation is highly recommended for
superior results.

Results and discussion

We present the results of the method in two major
parts. First, we evaluated the prediction accuracy on real
expression data by using low-rank recovery. Second, we
verified whether this predicted dataset can be used as
a surrogate of the original dataset for further analysis.
We answered this by comparing the results of differen-
tial expression analysis obtained using predicted datasets
with those obtained using original datasets. Finally, we
used Bayesian network modelling for both groups of

Table 1 Prediction results with additive noise

Ratio Observability (%) Relative error
0.003 50 422 x107*
0.03 50 421 %1073
03 50 1.78 x1072
0.003 10 121 %1072
0.03 10 157 x1072
03 10 191 x107!

Analysis of the addition of noise to synthetic 2000 x 2000 data matrix of rank 10 in
low-rank prediction after 100 iterations
Abbreviations: Ratio noise deviation ratio
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datasets and compared their results to further address the
question.

Gene expression prediction
The method was evaluated using microarray and RNA-
seq based gene expression datasets obtained from the
NCBI Gene Expression Omnibus [53] and ArrayExpress
[54]. To make the evaluation extensive, we sampled
diverse datasets from the repositories. The datasets were
diverse in terms of varying number of genes, number
of samples, and platforms (see Additional file 1). These
datasets were sourced from studies that differed with
respect to design of the experiment and measurement
approach; examples include disease state using expres-
sion arrays, knockdown and knockout experiments using
expression arrays, co-expression experiment using RNA-
seq of coding RNA, cell type comparison using RNA-seq
from single cell amongst others. The observability of an
expression dataset quantifies the number of expression
values in the data matrix known to the algorithm before
prediction as a fraction of the total number of expression
values, and thus it can be defined as:
O = |Q|/mn (13)
For each gene expression dataset, we removed a certain
fraction of the total expression values. We created nine
incomplete data matrices per dataset with the removal
of varied portions of data (10 —90 %) and estimated the
expression values at different observabilities. The check-
point expression levels were selected randomly on the
basis of assumptions that the locations were distributed.
The error in prediction was averaged over 10 runs of
the method for each data matrix, with the locations of
checkpoint values in each run being different. We report
prediction results on 10,921 samples based on 133 studies
(Fig. 2, Additional file 1). The error was assessed by com-
paring the predicted expression values with the original
values by using:

Relative Error (Frobenius) = |M — X||g/|M|lg  (14)

Relative Error (Spectral) = |M — X||/||M]| (15)
where M and X are the original and recovered expression
matrices, respectively.

According to the results of the prediction, the expres-
sion datasets can be assessed even using reduced
measurements (Fig. 2) of the original dataset otherwise
generated using high-density commercial array platforms
and deep sequencing platforms. Gene expression datasets
were predicted using a desktop computer at a standard
processing power. The datasets that were predicted can be
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low Frobenius error (top right) and high Frobenius error (bottom right). Datasets with a high relative error in prediction (bottom right) have a
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roughly organised into three major groups, convergence
with low error, convergence with high error, and datasets
that diverged. The question is how does one separate arti-
ficially constructed datasets that converged with a signif-
icant low error during the experiment, from the datasets
that had a significant error in prediction. The error in
convergence of known checkpoint expression values indi-
cated a relative error in predicting the complete dataset
(omega error), and this facilitated the determination of the
convergence of low-rank completion:

16
1P (M)]|F (16

Omega Error =

where Pq is the orthogonal projection matrix.

For the same number of iterations in the prediction
algorithm, the predicted datasets that converged with a
low relative error had a corresponding low omega error,
and vice versa for outlier datasets with a high relative
error (Fig. 2). Therefore, the error in the convergence of
checkpoint expression levels can be used as an indicator



Table 2 Differential analysis on predicted expression datasets. Top unique differentially expressed genes upregulated in lesional skin compared with those in non-lesional skin when
ranked according to log2-fold-change in (a) original dataset, (b) predicted dataset with 60 % observability and (c) sparse known-value (checkpoint) dataset without prediction at
60 % observability

Original dataset

Recovered dataset (60 %)

Checkpoint dataset (60 %)

Gene  ProbelD Symbol FC log Adj. Probe ID Symbol log FC Adj. Probe ID Symbol log FC Adj.
ranking P-Value x 10710 P-Value x 10710 P-Value

1 205863_at  ST100A12 9.79929 <1 205863_at  ST100A12 8.99648 <1 211906_s_at SERPINB4 621118 33x 10710
2 211906_s_at SERPINB4 9.60376 <1 211906_s_at SERPINB4 867119 <1 205863_at  ST100A12 548282 33 x107°
3 205513_at  TCN1 8.65788 <1 205513_at  TCN1 8.12271 <1 205513_at  TCN1 507988 4.8 x 1077
4 232220_at  ST00A7A 821988 <1 232220_at  ST00A7A 7.92112 <1 204385_at KYNU 506729 33 x 10710
5 205660_at  OASL 7.94647 <1 205660_at  OASL 7.4045 <1 1569555_at  GDA 475835 48 x 1077
6 220664_at  SPRR2C 7.87929 <1 220664_at  SPRR2C 7.3366 <1 205844_at  VNNI1 470129 33 x 10710
7 207602_at  TMPRSS11D 7.64471 <1 1569555_at  GDA 7.11896 <1 209719_at  SERPINB3 467529 16x 1074
8 1569555_at  GDA 7.39506 <1 207602_at  TMPRSS11D 7.10503 <1 234699_at RNASE7 457012 29 x 107/

Significance is demonstrated by adjusted P-values for fold change in every gene by using eBayes with Benjamini-Hochberg correction
Abbreviations: logFC log2-fold-change, Ave Expr average log2-expression of the probe over all arrays, Adj. P-Value P-value adjusted from the raw P-value
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of the extent to which predicted expression levels coin-
cide with real values (measured using high-density arrays
and RNA-seq). Cross-validation using hold-out rows and
columns on a single dataset, and sophisticated methods
using weighted Non-negative Matrix Factorisations would
give further insight into prediction accuracy [55]. The
datasets that did not converge and therefore were not
constructed were detected using the omega error.

Differential expression analysis
We attempt to replicate gene expression profiling experi-
ments using partial measurements, and predicted expres-
sion levels basis on these measurements. We identified
differentially expressed unique genes by using datasets
predicted through low-rank completion and compared
the results with those obtained using the original dataset.
We also append differential analysis results solely on
observed measurements without any prediction or learn-
ing to highlight the advantage of such prediction methods.
For instance, we considered a dataset comprising 85
pairs of lesional and non-lesional skin samples with
matched biopsies from a patient cohort with moderate
to severe psoriasis vulgaris [56] and determined differen-
tially expressed genes (Table 2). On repeating the analysis
of artificially constructed datasets by using low-rank com-
pletion, the results revealed that the genes differentially
expressed in these datasets strikingly overlapped with
those identified in the corresponding original datasets.
This appears to be true even at low observabilities (see
Additional file 1: Tables S1 and S2). The analysis con-
ducted using a predicted psoriasis dataset at 60 % observ-
ability (omega relative error = 0.0014, Frobenius relative
error = 0.0354, and Spectral relative error = 0.0076) iden-
tified S100A12, SERPINB4, SPRR2C, S100A74, KYNU,
and TMPRSS11D as the top genes with increased
expression in lesional skin compared with correspond-
ing non-lesional samples (P-values ranging from 10~°% to
107%), and this result is consistent with those reported
previously [56].
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Similarly, in another expression profiling experiment,
the oral mucosa of smokers was compared with that of
nonsmokers [57], and the top genes were identified using
the predicted dataset at 50 % observability (omega rel-
ative error = 0.0412, Frobenius relative error = 0.0404,
and spectral relative error = 0.0073). The genes ranked
according to the fold change were CYP1B1, S100A7,
KRT76, RPTN, and PNLIPRP3 (false discovery rate,
FDR = 0.05; P-value = 107> to 1072). The results were
consistent with those reported previously [57]. The entire
list and comparison is described in Additional file 1: Table
S2. We obtained similar results for the differential analysis
conducted in other studies (Additional file 1). The results
indicated that differentially expressed genes with sparse
gene expression measurements and incomplete expres-
sion data can be identified. The degree to which the
predicted datasets emulate the behaviour of the original
dataset increases with an increase in the observability at
the time of prediction (Fig. 3).

Probabilistic modelling and classification

The problem of the classification of samples into biologi-
cal classes of tissues and diseases has been a crucial topic
of research. We explored the possibility of using data that
is artificially constructed to train the classifier instead of
the original gene expression data. We used Bayesian net-
works for modelling the expression levels of genes and
class prediction. Bayesian networks provide a means to
model the stochastic nature of biological data and capture
causal relationships between expression levels of genes for
inference on new unseen data and for classifying owing to
high prediction accuracies [58, 59].

The analysis comprised many steps. We first pre-
processed both groups of datasets by discretising the
gene expression levels into three states, underexpressed,
baseline, and overexpressed [58]. We trained Bayesian
network classifiers on reduced datasets of 100 gene
variables from the predicted datasets and the corre-
sponding original datasets to shrink the search space of

+0g°0pvalue
-0g°0palue

1092 fold change. 1092 fold change.

values unknown (rightmost)

-0g°0pvalue

Fig. 3 Comparison of differential analysis on original and predicted datasets. Volcano plots represent differentially expressed genes at logFC > 2 and
FDR P < 0.05 in original psoriasis vulgaris dataset (leftmost), predicted dataset with 10 % values unknown, with 40 % values unknown and with 70 %
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Table 3 Top unique differentially expressed genes upregulated in lesional skin compared with those in non-lesional skin when ranked according to log2-fold-change in (a) original
dataset, (b) predicted dataset with 30 % observability, and (c) sparse known-value (checkpoint) dataset without prediction at 30 % observability

Original dataset

Recovered dataset (30 %)

Checkpoint dataset (30 %)

Gene Probe ID Symbol log FC Adj. Probe ID Symbol log FC Adj. Probe ID Symbol log FC Adj.
ranking P-Value x 10710 P-Value x10~1° P-Value
1 205863_at ST00A12 9.79929 <1 205863_at ST00A12 848947 <1 207367_at ATP12A 3.17871 0.02
2 211906_s_at SERPINB4 9.60376 <1 211906_s_at SERPINB4 7.98211 <1 201086_x_at SON 3.12259 0.7
3 205513_at TCN1 8.65788 <1 220664 _at SPRR2C 7.17109 <1 213356_x_at NA 3.06212  0.29
4 232220_at STO00A7A 821988 <1 232220_at STO00A7A 6.77508 <1 209719_x_at SERPINB3 298365  0.15
5 205660_at  OASL 7.94647 <1 204385_at  KYNU 6.4279 <1 33322_i_at  SFN 289353 036
6 220664_at  SPRR2C 7.87929 <1 207602_at  TMPRSS11D 641765 <1 213523_at  KIAAO0368 288306 029
7 207602_at TMPRSS11D 7.64471 <1 207367_at ATP12A 6.40415 <1 210413_x_at CCNE1 2.83059  0.06
8 1569555_at  GDA 7.39506 <1 210413_x_at NA 6.39934 <1 217388_s_at NA 282118  0.19

It is to be noted that the analysis performed solely on known expression values (c) gives incorrect conclusions. However, the results of analysis after low-rank prediction matched with those obtained using original dataset
Abbreviations: logFC log2-fold-change, Ave Expr average log2-expression of the probe over all arrays, Adj. P-Value P-value adjusted from the raw P-value
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Table 4 Comparison of the results of classification obtained using Bayesian networks learnt on low observability predicted datasets

with those in which networks were learnt on original datasets

Study Dataset True positive rate  False positive rate Precision  Recall ~ F-measure ~ AUROC

Lung adenocarcinoma Original 0.944 0.057 0.944 0944 0944 0.988
Low-rank prediction 0.944 0.057 0.944 0.944 0.944 0.996
(O =60 %)
Sampled Uniform distribution ~ 0.757 0.256 0.758 0.757  0.755 0.777
(O =160%)

Myelodysplastic syndrome  Original 0.865 0.866 0.844 0.865 0.854 0.673
Low-rank prediction 0.865 0.92 0.833 0.865 0.849 0.675
(O =140%)
Sampled Uniform distribution ~ 0.85 0.868 0.842 0.85 0.846 0425
(O =40%)

Pulmonary hypertension Original 0.638 0.121 0.633 0638 0635 0.854
Low-rank prediction 0.681 0.118 0.645 0.681 0.659 0.897
(O=160%)
Sampled Uniform distribution  0.267 0372 0213 0.267 0218 0424
(O =60 %)

Pancreatic ductal Original 0.782 0218 0.784 0782 0782 0.886

adenocarcinoma Low-rank prediction 0.821 0.179 0.821 0.821 0.82 0.905
(O=50%)
Sampled Uniform distribution ~ 0.397 0.603 0.389 0397 0385 0417
(O =50%)

Psoriasis Original 0912 0.088 0913 0912 0912 0.96
Low-rank prediction 0912 0.088 0912 0912 0912 0.956
(O=40%)
Sampled Uniform distribution ~ 0.641 0.359 0.641 0.641 0.641 0.648

(O=40%)

Datasets were condensed and constituted of randomly selected 100 gene attributes. Bayesian networks were learned using a bottom-up search method known as K2
algorithm and evaluated in a 10-fold cross validation analysis. The predicted datasets were evaluated by comparing the classification results with those obtained using
datasets constructed employing values sampled from a set uniform distribution instead of low-rank recovery, and the fraction of known values were the same in both cases.
Notably, the performance of low-rank recovered datasets closely matched with that of the original datasets

Abbreviations: O observability, AUROC Area Under the Receiver Operating Characteristic curve deviation ratio

dependent networks. Classification accuracy was deter-
mined in a multiple run 10 fold cross validation analysis.
We include comparison of Bayesian network classification
trained on microarray datasets of lung adenocarcinoma
[60], myelodysplastic syndrome [61], pancreatic ductal
adenocarcinoma [62], psoriasis [56], pulmonary fibrosis
[63] with corresponding low-rank predicted datasets and
datasets sampled from a uniform distribution. The perfor-
mances of the classifiers obtained using low-rank recov-
ered datasets matched with those of classifiers obtained
using corresponding original datasets (Table 4). Further-
more, we compared the class predictions and probability
distributions of individual test instances (see Additional
file 1: Table S4). In this section, we presented the results at
low observabilities to demonstrate lower bound cases.
We also verify whether data predicted using low-rank
matrix completion performed superior to data built using
sampled values from a known distribution, and whether
high performance of low-rank predicted datasets is just

due to the known checkpoint expression levels. In this
third group of datasets, the expression levels were pop-
ulated by sampling values from a uniform distribution
between the maximum and minimum expression levels
of the data known before prediction instead of low-rank
recovery. The analysis was repeated for these datasets,
and the classifier prediction results were compared with
the classifier learned on original datasets (Table 3 and see
Additional file 1: Tables S4). The classifiers trained using
these datasets had a distinctly lower performance than
classifiers trained using low-rank predicted and original
datasets.

The results indicated that Bayesian networks con-
structed using low-rank recovered datasets closely
resemble those constructed using original datasets, irre-
spective of classifier accuracy. For instance, the area under
the receiver operating characteristic curve (AUROC) of
the network constructed using the original and pre-
dicted Myelodysplastic syndrome datasets were 0.673 and
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0.675 (Table 3, P-value < 0.01), respectively, whereas the
AUROC of the original and predicted pulmonary hyper-
tension dataset were 0.854 and 0.897 (Table 3, P-value
< 0.001), respectively.

Conclusions

In this article, we described the modelling of biological
datasets as low-rank matrices subject to their inherent
dependencies. These datasets can be recovered using the
mathematics of low-rank matrix completion. We used
random samples as checkpoints. However, quantitatively
derived checkpoints can function more satisfactorily than
random samples. This provides a foundation for future
work in which prediction accuracy, particularly at low
observabilities, could be further improved.

Moreover, we see a clear scenario in which such tech-
niques can be applied to other datasets in biomedicine.
This framework allows for prediction of biomedical quan-
tities, in likeness to recommender systems, given a set of
observable values. Such a framework also has applications
in fields in which data collection is precious and pre-
diction could be made using partial measurements. The
method can be further developed to manage data volumes
sourced from high-throughput sequencing methods. The
method can be used as an imputation method, when there
is partial data loss as is prevalent in using microarrays
today. A major concern in current convex algorithms is
the computational requirement. However, datasets with
hundreds of millions of points can be accurately predicted
using highly parallel processing using GPUs and the cloud.

We believe that this study will open new avenues
in research on low-rank matrix completion in biologi-
cal sciences. We show how much information is inher-
ently present in the actual matrix for gene expression
thereby telling us how many measurements we really need
to make. We believe biomedical researchers will design
actual experiments based on this information opening up
new avenues in research on such techniques.

Additional files

Additional file 1: In this supplement, we provide additional discussion
and further analysis on additional studies. (PDF 851 kb)

Additional file 2: In this file, we provide description and sources of
studies used in this study. (PDF 516 kb)
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