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Epidemiological and experimental evidence indicates that antibiotic exposure is related to
metabolic malfunctions, such as obesity and non-alcoholic fatty liver disease (NAFLD).
Liver impairment and hypertrophy of adipose cells are related to high salt consumption.
This research aims to investigated the physiological mechanism of a high salt diet (HSD)
enhanced antibiotic-induced hepatic injury and mitochondrial abnormalities in mice. The
mice were fed a HSD with or without penicilin G (PEN) for 8 weeks and the gut
metabolome, untargeted faecal metabolomics, and intestinal function were evaluated.
The results revealed that HSD, PEN and their combination (HSPEN) significantly changed
the gut microbial community. HSPEN mice exhibited more opportunistic pathogens (such
as Klebsiella and Morganella) and reduced probiotic species (including Bifidobacterium
and Lactobacillus). The main variations in the faecal metabolites of the HSPEN group were
identified, including those connected with entero-hepatic circulation (including bile acids),
tryptophan metabolism (i.e., indole derivatives) and lipid metabolism (e.g., erucic acid).
Furthermore, increased intestinal permeability and immunologic response caused greater
hepatic damage in the HSPEN group compared to the other groups. These findings may
have important implications for public health.

Keywords: high-salt diet, antibiotic exposure, gut microbiome, mitochondrial function, hepatic steatosis

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is a chronic reversible disease of the liver characterised by
metabolic syndromes such as hepatic manifestations (Rinella, 2015; Younossi et al., 2016). NAFLD
normally begins with fatty deposits in the liver, followed by liver damage, including steatohepatitis,
inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma (Syn et al., 2009; De Medeiros and
Lima, 2015). NAFLD patients do not exhibit secondary accumulation of hepatic fat due to
alcoholism, hepatitis B infection, hepatitis C infection, the use of steatogenic medication, or
hereditary disorders (Bellentani et al., 2010; Chalasani et al., 2012). Over the last decade, there
has been increasing research on NAFLD, providing a better understanding of this disease. This
research has indicated that NAFLD is related to obesity, hyperlipidaemia and gut microbial dysbiosis
(Bellentani et al., 2010; Chen et al., 2020b).

Trillions of microorganisms occupy the human body and play a role in the health of the body
(Huttenhower et al., 2012). The gut contains the densest habitat of microorganisms, with a
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microorganism biomass of approximately 0.15 kg (Sender et al.,
2016). The physiology, metabolism, immunity, and overall health
of the host are significantly influenced by the microbial
community. Individual genetics and environmental factors,
especially diet, affect the structure of the intestinal microbiota
(David et al., 2014; Rothschild et al., 2018). For instance,
individuals who eat non-Western and/or fibre-rich diets have
an abundance of the Prevotella genus (De Filippo et al., 2011;
Smith et al., 2013), since Prevotella hydrolases are specifically
designed to degrade plant fibres (Purushe et al., 2010). Consistent
with the association between Bacteroides and diets rich in animal
proteins and saturated fats, the majority of Bacteroides-specific
carbohydrate-active enzymes (CAZymes) (50%) are dedicated to
animal carbohydrates (Costea et al., 2017). Our recent studies
found that a high-salt diet (HSD) changed the structure of the
intestinal microbiota, further causing health problems such as
liver steatosis, hypertension and constipation (Zhang et al,
2019b; Chen et al,, 2020a). Additionally, previous studies have
confirmed that a HSD is closely related to hypertrophy of adipose
cells (Dobrian et al., 2003), NAFLD (Lanaspa et al., 2018) and
hepatic fibrosis (Wang et al., 2016). Given that the colon is the
primary organ responsible for sodium homeostasis, excessive salt
intake can disturb the intestinal microbiota and the “gut-liver”
axis (Lienhard et al., 2012). Specifically, microbial alterations
impair the metabolome in the gut. Several toxic metabolites, such
as deoxycholic acid and endogenous alcohol, enter the liver via
the hepatic portal vein and contribute to liver steatosis and
mitochondrial abnormalities (Bourzac, 2014; Yuan et al,
2019). Mitochondrial dysfunction is one of the pathogenic
mechanisms of NAFLD (Sumida et al.,, 2013). Mitochondrial
dysfunction plays a crucial role in the course of hepatic steatosis
in patients and animal models, not only influencing liver lipid
homeostasis but also leading to accumulation of reactive oxygen
species (ROS), which gives rise to lipid hyperoxidation, cytokine
overproduction and hepatocyte death (Begriche et al., 2013;
Koliaki et al., 2015). Additionally, environmental risk factors,
including antibiotic use (Mahana et al., 2016) and heavy metals
(Kim and Lee, 2014), may promote mitochondrial dysfunction in
the liver and contribute to the development and progression of
NAFLD.

Antibiotics have been utilised extensively for decades.
However, the presence of these substances in the environment
has only become of concern more recently. Antibiotics can be
excreted in the faeces and urine, and given that it is a common
practice to use animal faeces as a fertilizer in many countries, the
underlying effect of residual antibiotics on the environment and
crops has garnered growing international attention (Sarmah et al.,
2006). The effects of antibiotics on the intestinal microbiota has
attracted increasing concern, with shifts in dominating flora,
reduced community diversity (Grazul et al, 2016),
proliferation of drug-resistant or opportunistic bacteria
(Buelow et al, 2017), and even delayed colonization by
beneficial bacteria after drug administration (Hertz et al,
2020) observed. Furthermore, a troubling consequence of
antibiotic therapy is the persistence of antibiotic-resistant
genes in the human intestine (Jernberg et al., 2010). Therefore,
antibiotics can have a long-term effect on the intestinal
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microbiota and its metabolites, even affecting liver function
through the “gut-liver” axis (Mahana et al., 2016). However, to
the best of our knowledge, there is no published research on the
role of the liver and gut microbiota in the molecular response to
the combined influences of antibiotic exposure and HSD.

To this end, this study examined the liver function of mice
exposed to long-term low-dose penicillin G followed by
administration of a HSD, and compared the liver function of
these mice to that of control mice. It was assumed that the gut
microbiota is an essential enabling factor in NAFLD, and both
antibiotic treatment and HSD are able to change the gut
microbiota and hepatic mitochondrial function. In order to
develop novel intervention strategies, a more comprehensive
understanding of the contribution of the microbiome to
NAFLD pathogenesis is necessary.

MATERIALS AND METHODS

Animals and Exposures

Thirty-two male C57BL/6] mice (8 weeks old; specific pathogen-
free) with production license number SCXK (Lu) 2019-0003 were
obtained from Pengyue Laboratory Animal Technology Co., Ltd.
(Jinan, China). Every mouse was caged individually in a germ-
free cage under a ventilated 12h light/dark cycle; the
environmental ambient temperature was 25°C and the working
humidity was 60-70%. The Animals Ethics Committee of the
Experimental Animal Centre of Shandong University of
Traditional Chinese Medicine (No. SYXKLU20170022, Jinan,
China) approved this study, and the study was conducted in
accordance with EU Directive 2010/63/EU for the care and use of
laboratory animals.

During the first week, animals were fed a commercial
laboratory diet and water ad libitum to acclimatise them to
the surroundings, followed by the experimental period for
8 weeks. The animals were randomly assigned into four
groups, each containing eight mice: ND (normal diet, control),
HSD (supplement with 4% NaCl), PEN (6.8 mg/L Penicillin G
added to the drinking water dams) (Mahana et al., 2016), and
HSPEN (HSD plus PEN) (Figure 1). 1% NaCl was supplemented
in the potable water of the HSD and HSPEN mice (Wilck et al.,
2017). Gamma-irradiated (25kGy) diets were obtained from
BiotechHD Co., Ltd (Beijing, China) and formulated according
to the American Institute of Nutrition (AIN)-93G purified diet
criterion to meet the nutritional needs of the growing mice. The
food was kept at —20°C and was replaced daily. The weights of the
mice were recorded weekly during the 8 weeks of the study.

Sample Preparation

At the completion of the treatment protocol, the mice were
moved to single disinfected cages. Faeces were collected per
the protocol described in our previous research (Chen et al.,
2020a). After 12 h of fasting, the animals were anaesthetised by
injection of 1% sodium pentobarbital (40 mg/kg; Sigma Chemical
Co., St Louis, MO, United States) through the abdominal cavity.
Blood was acquired from the eye socket of each mouse and then
celiotomy was performed. Next, hepatic and colonic samples were
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collected. The blood specimens were centrifuged at 1000 g for
30 min at 25°C, and the serum was collected.

Levels of Serum Biomarkers, Liver Injury,

and Intestinal Dysfunction

Using an automatic biochemical analyser (Au680, Beckman
Coulter, Inc., Brea, CA, United States), the following
biochemical indicators in serum were evaluated: glucose
(GLC), glutamic-pyruvic transaminase (ALT), glutamic-
oxalacetic transaminase (AST), alkaline phosphatase (ALP)
and triglycerides (TG). Serum interleukin-17a (IL-17a) and
IL-22 levels were determined using ELISA kits (Gersion,
Beijing, China) per the manufacturer’s instructions. TG
and malondialdehyde (MDA) in the hepatic tissues were
measured according to previously described methods (Chen
et al., 2020a).

The serum levels of D-lactate (D-LA) and diamine oxidase
(DAO) were measured by specific ELISA kits (Gersion),
according to the manufacturer’s instructions, to estimate the
intestinal ~ permeability.  Colon  tissues were opened
longitudinally, and the colonic contents were scraped and
gathered to measure the pH value (Zhang et al,, 2019a). The
tissues were fixed in formalin immediately and then embedded in
paraffin and sectioned. Routine haematoxylin-eosin (H&E)
staining was then performed. The hepatic tissues were stained
using Oil Red O (ORO) for 15 min. Then, the tissues were rinsed

and counterstained with haematoxylin for 5 min to observe the
accumulation of lipids in the liver.

The expressions of CD4" and CD8" lymphocytes and IgA (1:
100, OriGene Technologies, Inc., Rockville, MD, United States) in
the colonic mucosal epithelium of the mice were detected by
immunohistochemistry (IHC) using monoclonal antibodies of
CD4", CD8" and IgA. Image Pro-Plus 6.0 software (Media
Cybernetics, Inc., Rockville, MD, United States) was used to
analyse and measure the positive control cells (tan—yellow
cytoplasm) of CD4", CD8" and IgA lymphocytes in the colon.
The protein expression levels were calculated according to the
protocol of Mao et al. (2014).

Mitochondrial Function and Integrity in the

Liver

The collagenase perfusion technique was applied to isolated
hepatocytes from mice, as previously described (Spach et al.,
1991). Afterwards, the hepatocytes were washed with
chloromethyl-X-rosamine (Mito Tracker; Thermo Fisher
Scientific, Rockford, IL, United States) for 30 min, fixed with
4% paraformaldehyde in PBS for 15 min, and then washed with
PBS three times. Then, 4',6-diamidino-2-phenylindole (DAPI;
Thermo Fisher Scientific) was employed to stain the hepatocytes
for 5 min. The fluorescence in separate liver cells was observed
with a Nikon ARI confocal microscope (Nikon Corporation,
Tokyo, Japan).
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A transmission electron microscope (TEM; Tecnai G2 Spirit,
FEI, United States) equipped with an Eagle camera (FEI) was
employed to evaluate the ultrastructure of the hepatocyte
mitochondria. In brief, the hepatic tissues were fixed in 2.5%
glutaraldehyde at 4°C for 2 h, post-fixed in 1% osmium tetroxide
at 4°C for 1h, dehydrated, and then embedded in epoxy resin.
After slicing, ultrathin hepatic tissue sections (70 nm) were placed
in copper grids, double-stained with 8% uranyl acetate and lead
citrate for comparison, and detected with the TEM system.

Mitochondria were separated from the hepatic tissues by way
of traditional differential centrifugation, as previously described
(Chweih et al., 2015). Respiratory substrates, including 300 pmol
ethylene glycol bis(B-aminoethyl ether)-N,N’-tetraacetic acid
(EGTA), 10pumol Amplex Red, and 1U/mL horseradish
peroxidase with 2.5 mmol malate plus 5 mmol pyruvate were
blended with 0.5 mg/ml of the mitochondrial suspension. The
mitochondrial H,O, release rate was assessed using a RF-5301PC
spectrofluorometer (Shimadzu, Japan), as previously described
(Navarro et al.,, 2017).

Quantitative (q)RT-PCR

For the qRT-PCR, total RNA was isolated from the liver tissue
using a RNAiso Plus kit (Tiangen Biotech Co. Ltd., Beijing,
China) according to the manufacturer’s instruction.
Quantitation of extracted RNA was confirmed by absorbance
measurements at 260 nm and evaluation of purity was performed
by the ratio of OD260/280 nm above 1.80. The RNA (25 ng) was
collected and reverse-transcribed into cDNA using a cDNA
Synthesis Kit (Tiangen Biotech) according to the
manufacturer’s instruction. All the RT-PCR steps were
performed using a 25 pl scale in a 7500 Fast Real-Time PCR
System (Applied Biosystems, United States) in triplicate using
SYBR Green I dye assays (Tiangen Biotech) for Mful, Drpl, and
FisI in the liver. Relative quantification was quantitated using the
AACt method, normalizing the housekeeping gene expression to
Actb (B-actin; Gene ID: 11461). Primers used were as previously
described (Chen et al., 2014) and follows: Mfnl (F: ATTGGG
GAGGTGCTGTCTC; R: TTCGGTCATAAGGTAGGCTTT),
Drpl (F: CGGTTCCCTAAACTTCACGA; R: GCACCATTT
CATTTGTCACG), Fis1 (F: AAGTATGTGCGAGGGCTGTT;
R: GGCAGAGAGCAGGTGAGG), and Actb (F: GGATGC
AGAAGGAGATCACTG; R: AGATCCACACGGAGTACTTG).

Gut Microbiota Profiling

A commercial DNA extraction kit (Qiagen, GmbH, Hilden,
Germany) was used to extract total genomic DNA from the
faecal samples per the manufacturer’s instructions. The
procedures for the separation of DNA, Illumina MiSeq
amplicon sequencing, and library generation were consistent
with the general methods previously described (Zhang et al.,
2020). In order to analyse the diversity of bacteria, universal
primers (515F: 5'-GTGCCAGCMGCCGCGG-3' and 907R: 5'-
CCGTCAATTCMTTTGAGTTT-3') and HiFi Hot Start Ready
Mix (KAPA Biosystems, Woburn, MA, United States) were used
to amplify the V4-V5 variable regions of the 16S rRNA gene. Gel
electrophoresis was used to observe amplicon quality, purification
was performed with AMPure XP beads (Agencourt), and PCR
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was used for secondary amplification. After purification again
with the AMPure XP beads, a Qubit dsDNA assay kit was used to
quantify the final amplicon. Equal amounts of purified amplicon
were collected for subsequent sequencing.

The original sequencing data were in FASTQ format. Paired-
end reads were pre-treated using Trimmomatic software (Bolger
et al, 2014) to test and remove undefined bases, and then
matched by FLASH software (Reyon et al., 2012) following the
parameters as previously reported (Chen et al., 2020a). Sequence
data were processed using the Quantitative Insights into
Microbial Ecology (QIIME, version 1.8.0) pipeline, with 75%
of the bases having quality scores above 20 (base-calling accuracy
of 99%) (Caporaso et al., 2010). All effective tags were clustered
into operational taxonomic units (OTUs) at a 97% stringency
threshold using the workflow provided by the QIIME package
(Edgar, 2013). The RDP classifier (Wang et al., 2007) (confidence
threshold was 70%) was employed to annotate and blast all typical
reads against the Greengenes (16S rDNA). Blast was used to
annotate and blast all representative reads against the Unite
database (ITSs rDNA) (Altschul, 1990).

Faecal Metabolomic Profiling

In brief, 20 pl of L-2-chlorophenylalanine solution (1 mg/ml in
distilled water) was used as an internal standard. The faecal pellets
were added and the metabolites were isolated with chloroform
and methanol. After homogenization and ultrasonic treatment,
the supernate was transferred to a fresh glass vial. An Agilent
7890A GC system (Agilent Technologies, Santa Clara, CA,
United States) equipped with a Pegasus HT time-of-flight
mass spectrometer (Leco, Saint Joseph, MI, United States) was
employed to analyse the microbial-host co-metabolites,
according to the parameters previously described (Zhang et al.,
2019b).

Data Analysis

All results are presented as the mean + standard deviation (SD) of
the repeated tests or as the median with interquartile range.
Independent measurements were compared with ¢-tests using
SPSS version 22.0 software (SPSS Inc., Chicago, IL, United States)
as appropriate. One-way analysis of variance was used to analyse
the differences between groups; multiple groups were compared
with the Turkey post-hoc test. Significance was determined at p
value < 0.05.

RESULTS

Characteristics of the Liver in the

Established Model

After 2 months of feeding, the effects of high salt intake and
antibiotic exposure on the liver tissues were evaluated according
to the clinical biomarkers in serum, the biochemical parameters
in liver tissues, and the liver photomicrographs. The ALT, AST,
ALP, GLC, and TG contents in serum in the HSPEN group were
obviously increased compared to those in the ND group (p < 0.05;
Table 1). In particular, the serum contents of AST, GLC, IL-17a
and IL-22 and the concentrations of TG and MDA in the liver
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TABLE 1 | Levels of clinical biomarkers in the serum and liver tissues of the different groups.

Sample

Serum

Liver

Name ND HSD
ALT (IUL) 53.34 + 3.49° 62.69 + 11.76%°
AST (IUL) 138.47 + 32.74% 185.90 + 51.92°
ALP (UL) 69.00 + 5.42° 88.75 + 14.99°
GLC (mmol/L) 7.81 + 1.447 16.65 + 3.49°
TG (mmol/L) 0.62 + 0.05° 0.75 + 0.19%
IL-17a (pg/ml) 24,64 + 2,712 28.67 + 1.90°
IL-22 (pg/ml) 17.03 + 1.15° 19.65 + 2.33%
TG (mmol/gprot) 0.15 + 0.032 0.23 + 0.04°
MDA (mmol/mgprot) 1.34 + 0.272 1.76 + 0.51°

PEN HSPEN

65.32 + 11.62° 80.94 + 7.40°

207.66 + 26.85° 259.80 + 34.04°
74.38 + 7.58% 93.60 + 8.08°
17.57 + 3.11° 23.47 + 2.32°
0.91 + 0.21%° 111 +0.33°
41.81 + 1.93° 49.19 + 5.72¢
21.06 + 0.86° 26.67 + 1.53°
0.32 + 0.06° 0.47 + 0.09°
1.66 + 0.44° 2.01 £ 0.72°

Data are expressed as the mean + SD; n = 8. Horizontally, #°Values followed by different letters are significantly different (p < 0.05).
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tissues of the HSPEN-treated mice were dramatically elevated
compared to the other three groups (p < 0.05; Table 1).
Furthermore, throughout the experiment, there were no
significant differences in diet intake (Figure 2A), fluid
consumption (Figure 2B), body weight (Figure 2C), and liver/
body mass ratio (Figure 2D) among the groups of animals
(p > 0.05).

H&E, ORO and Masson staining were employed to
examine the micromorphology of the liver tissues
(Figure 2E). In the ND group, the liver structure was
normal, with the nucleus located in the centre of the
hepatic cells; there was no apoptosis, and hepatocytes were
evenly distributed and arranged in a rope-like pattern. In the
other three groups, the liver cords were loose and disorderly;
there was neutrophilic granulocyte infiltration in the
hepatocytes, increased lipid accumulation (black arrows),
loss of cellular boundaries around the central vein of the
hepatocytes (green arrows), and obvious fibrosis in the liver
tissue (yellow arrows), particularly in the HSPEN group. This
suggests the presence of liver histological changes
(Figure 2E). These results indicate that hepatic steatosis

and liver injury had developed in the HSD- and PEN-
treated mice.

Effects of HSD and Antibiotic Exposure on

Mitochondrial Function in the Liver

Although the mechanisms underlying the progression of hepatic
steatosis are not fully understood, accumulating evidences have
indicated that mitochondrial dysfunction plays a dominant role
in the development of steatohepatitis (Koliaki et al., 2015; Zhang
et al,, 2021). In the present study, the molecular mechanisms of
steatosis induced by high salt intake and antibiotic exposure were
explored by assessing mitochondrial integrity and function in
mouse livers (Figure 3). The TEM results revealed mitochondria
swelling and disruption of the mitochondrial membrane (red
arrows) in the hepatocytes of mice treated with HSD and
penicillin, both individually and in combination (Figure 3A).
Since mitochondria are the main producers of ROS in cells,
mitochondrial ROS outputs in liver cells were assayed. DAPI-
localized nuclei and Mito Tracker Red-localized mitochondria
were separately observed with confocal microscopy according to
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the blue and red fluorescence (Figure 3B). The results indicated
that the mitochondrial ROS levels in the HSPEN group were
higher than those in the ND, HSD, and PEN groups. Given the
detrimental effects of high salt intake and antibiotic exposure on
mitochondrial integrity in steatohepatitis, we examined whether
HSD, penicillin and the combination of the two could change the
expression of genes regulating mitochondrial integrity. A family
of mitochondrial guanosine triphosphatases, including Mfnl,
Drpl, and Fisl, regulate mitochondrial metabolic function
(Romanello and Sandri, 2016). Mfnl, situated in the outer
membrane of mitochondria, is a mitochondrial fusion protein
that can accelerate mitochondprial fusion (Santel and Fuller, 2001).
Drpl and Fisl can promote the division of mitochondria
(Smirnova et al., 2001; Koch et al., 2005). In comparison with
the ND group, the Mfnl mRNA level was reduced and the Drp1
and Fis] mRNA levels were significantly increased in the HSD,
PEN, and HSPEN groups (p < 0.05). Moreover, the Drp1 and FisI
mRNA levels were significantly elevated in the HSPEN group
compared to the HSD and PEN groups (p < 0.05; Figure 3C).

Furthermore, the production of mitochondrial H,0, was
dramatically increased in HSPEN-treated mice compared with
ND-, HSD- and PEN-treated mice (p < 0.05; Figure 3D). These
findings suggest that the HSD- and PEN-treated mice exhibited
dysfunction and abnormalities of mitochondria.

HSD and Antibiotic Exposure Induce Enteric

Dysbacteriosis in Mice

After removing unqualified sequences, the ND, HSD, PEN and
HSPEN groups returned more than 46,329, 63,888, 58,019 and
51,919 effective tags, respectively. The species were annotated
using typical OTU 16S rRNA gene sequences. The valid
sequences of all OTU-qualifled samples were clustered based
on >97% sequence identity. The heatmap (Figure 4A) shows the
normalized values of 18 phyla in the different groups. The mouse
intestinal bacteria mainly consisted of Bacteroidetes, with the
abundances of 69.16, 74.40, 72.61, and 81.46%, and Firmicutes,
with abundances of 19.41, 14.12, 18.54, and 13.13% in the ND,
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FIGURE 5 | Faecal metabolic analysis in the ND, HSD, PEN, and HSPEN groups. (A) Scatterplot of PCoA scores in the various groups. (B) The differential variables
between the ND and HSPEN groups are shown via a volcano plot. Each metabolite is indicated by a dot, with down-regulation represented by red dots, up-regulation
represented by blue dots, and no statistical difference represented by green dots. (C) Heatmap of 90 metabolites that were differentially (o < 0.01) abundant at
standardised levels between the ND and HSPEN groups. The distances of the metabolites are expressed by the dendrogram according to their relative
abundances. The normalised abundance values are described intuitively from red to blue, expressing the maximum and minimum abundances, respectively. (D)
Enriched KEGG pathways in the ND group in contrast to the HSPEN group. The statistical significance values (p < 0.05) are described intuitively from red to green,
showing the most and least differences, respectively. The size of the dot on the vertical axis indicates the metabolite count in the metabolic pathway.
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HSD, PEN and HSPEN groups, respectively. The chord diagram
reveals the top 20 abundant genera in the faeces (Figure 4B),
showing that the three dominant taxa in all groups were
Ambiguous_taxa, Alistipes and Bacteroides, accounting for
1.01-39.95% of the entire OTUs. The differential abundance
of bacterial genera in the four groups was identified by linear
discriminant analysis effect size (LEfSe; Figure 4C). At the genus
level, Odoribacter, Bifidobacterium, Lactobacillus, Muribaculum
and Anaerovorax, as biomarkers, were more abundant in the ND
group, while Bateroides, Parabacteroides, Morganella,
Ramlibacter, Butyricimonas and Akkermansia, as biomarkers,
were more abundant in the HSPEN group. The a-
diversity—which consists of richness estimates (i.e., Chao 1
index) and diversity values (including Shannon-Wienner
indices)—of the microbial communities was measured. The
richness estimates of the microbial communities in the HSD,
PEN, and HSPEN groups were strikingly decreased compared to
the ND group (p < 0.01), while the diversity values of the
microbial communities in the PEN and HSPEN groups were
less than the ND group (p < 0.05; Figure 4D). PCoA showed the
bacterial diversity among the four groups; 27.92% of the
population variance was attributed to the three principal
components (PC1, PC2, and PC3), which were consistent and
reliable. Overall, the differential abundance among the four

groups indicated that high salt intake, antibiotic exposure, and
the combination of the two can cause changes in the levels of liver
injury and the structure of the mouse gut microbiome.

Effects of HSD and Antibiotic Exposure on

Metabolic Functionality in Mice

The intestinal microbiota has an effect on the host-microbe
metabolic axis, and faecal metabolomics is a helpful tool to
detect the interplay between bacteria and host phenotypes
(Zierer et al,, 2018). The interquartile range denoising method
was applied to identify a total of 583 peaks and 468 metabolites
that persisted after eliminating background noise. Half of the
minimum value was used to replace missing values in the original
data. The principal component scores were determined using
PCoA (Figure 5A). The results showed that faecal samples
clustered significantly, indicating that the faecal metabolites of
the four groups were different. PC1, PC2 and PC3 accounted for
55.98, 14.12, and 8.46% of the total variance, respectively, which
suggests that the model was consistent and reliable. The volcano
plot (Figure 5B) represents the variables with different contents
between the ND and HSPEN groups, with each dot representing a
metabolite: upregulated metabolites are represented by red dots,
downregulated metabolites are represented by blue dots, and
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FIGURE 6 | The regulatory networks between 32 gut microbiota (o < 0.01) and 33 faecal metabolites (o < 0.001) in the ND group in comparison with the HSPEN
group. The Pearson’s rank correlations (R-value > 0.40) are expressed as red and green lines, representing positive and negative correlations, respectively.
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metabolites with nonsignificant differences are represented by
green dots (p > 0.05). However, the volcano plot is complex due to
the inclusion of numerous variables. Therefore, the variable
importance projection (VIP) value (>1.0) of the orthogonal
partial least squares discriminant analysis and the p value
(<0.01) of a Student’s t-test were used to identify 90
differential metabolites between the ND and HSPEN groups.
Then, heatmap visualization (Figure 5C) was applied to indicate
discrepant metabolites. Totally, 74 metabolites, such as -lactic
acid, §-tocopherol, chenodeoxycholic acid and taurine showed
significantly reduced abundance in the faeces of HSPEN-treated
mice, while 16 metabolites, including lithocholic acid, erucic acid,
putrescine and 3-hydroxypalmitic acid, showed markedly

increased abundance as compared to the faeces levels of ND-
treated mice (Figure 5C and Supplementary Table S1).

A critical element in the adjustment of tryptophan metabolism
to indole derivatives is the intestinal microbiota, and indole
derivatives are increasingly recognized as protective molecules
against liver disease (Agus et al., 2021). In the present research, in
the faeces of HSPEN-treated mice, the level of tryptophan was
significantly increased, whereas the levels of indole
derivatives—such as indole-lactic acid, indole-3-acetate and 5-
methoxyindoleacetate—were significantly reduced compared
with the ND-treated mouse faeces (Figure 5C and
Supplementary Table S1). The biochemical pathways in the
KEGG database were then analysed in relation to the
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prominent metabolites that differed between the ND- and
HSPEN-treated mice. The differentially enriched metabolites
in the HSPEN group were all associated with the cAMP
signalling  pathway, =~ ABC  transporters,  neuroactive
ligand—-receptor interaction and regulation of lipolysis in
adipocytes [p < 0.01, frequency-distance-relationship (FDR)
correction; Figure 5D].

Integration of Microbiomic and

Metabolomic Analyses
The correlations between the intestinal microbiota and their
metabolites were determined using Pearson’s correlation

analysis. Positive and negative correlations between the
determined genera and the abundances of metabolites are
presented through the resulting metabolic association networks
(Figure 6). Supplementary Table S2 shows the R-values for these
associations. The predominant genera in the ND group, including
Odoribacter, Bifidobacterium, Lactobacillus, Muribaculum, and
Anaerovorax, displayed strong positive correlations with taurine,
tocopherol acetate, indole-lactic acid and 4-pyridoxic acid. The
dominant genera in the HSPEN group, including Bateroides,
Parabacteroides, Morganella, Butyricimonas, and Akkermansia,
displayed strong positive correlations with 2-aminoheptanedioic
acid, N-carbamylglutamate, 5-methoxytryptamine, boric acid,
sulfuric acid and pyrrole-2-carboxylic acid. Collectively, high
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salt intake, antibiotic exposure and the combination of the two
can influence bacteria components and significantly alter the
faecal metabolome.

HSD and Antibiotic Exposure Affect the Gut

Function and Morphology in Mice

The tissues and function of the colon are affected by changes in
the constitutes of the gut flora, since the colon contains 90% of the
microorganisms in the host (Savage, 1977). Thus, the intestinal
permeability, immunologic function of colonic epithelial cells,
and pathology of the ND, HFD, PEN, and HSPEN groups were
observed. The influences of HSD and antibiotic exposure on
intestinal permeability in mice were investigated by measuring
DAO and p-LA levels in the serum. DAO activity in serum and
the concentration of p-LA were dramatically increased (p < 0.05)
in the ND group compared to the HSD, PEN, and HSPEN groups,
indicating that intestinal permeability in the HSD-, PEN- and
HSPEN-treated mice was higher (Figures 7A,B). In particular,
the permeability indices in the HSPEN group were elevated
compared with those in the HSD and PEN groups (p < 0.05;
Figures 7A,B). The results of IHC staining for intestinal immune
responses (x200 magnification) revealed the expressions of CD4",
CD8" and IgA in colonic epithelial cells and mucosal
lymphocytes  (Figure 7D). CD4" (Figure 7E), CD8"
(Figure 7F) and IgA (Figure 7G) protein expressions in the
HSPEN group were significantly elevated compared with those in
the other three groups (p < 0.05). The structures of the mucosal,
submucosal, muscularis, and serous layers of the colonic tissues in
the ND group were distinct and the borders were obvious.
However, in the HSD, PEN, and HSPEN groups, there was
submucosal oedema and space enlargement (red arrows), as
well as visible inflammatory cell infiltration between the
mucosal glands (black arrows) (Figure 7C). Moreover, the pH
of the colonic contents was dramatically higher in the HSD and
HSPEN groups than the ND and PEN groups (p < 0.05); there
was no obvious difference in pH between the HSD and HSPEN
group (p > 0.05; Figure 7H).

DISCUSSION

Poor health and even various diseases can be caused by long-term
antibiotic exposure and high salt consumption. Epidemiological
evidence suggests an association between these two risk factors in
the process of NAFLD (Choi et al., 2016; Schneider et al., 2021).
Several studies have demonstrated the exacerbation of liver
damage in relation to the combination of two or multiple risk
factors, such as drug abuse, ambient fine particulate matter, and
unhealthy dietary habits (Mahana et al., 2016; He et al., 2022).
Our previous study confirmed that both HSD and alcohol
consumption strongly influence microbial composition, and
consumption of a HSD with alcohol promotes the process of
fatty liver disease development (Chen et al., 2020a). Uetake et al.
(2015) found that HSD for 8-weeks could cause inflammation
and fibrosis in liver steatosis induced by oxidative stress and
dyslipidemia in mice. Mahana et al. (2016) demonstrated that

Antibiotic and Sodium Induce NAFLD

penicillin G exposure for 8-weeks significantly increased the body
fat and insulin resistance, and penicillin G plus dietary fat
exacerbated obesity, type 2 diabetes and NAFLD due to
microbiome dysbiosis in mice. As expected, a HSD or
antibiotics (specifically, penicillin G) alone produced liver
steatosis and injury in this study, while their combination
exacerbated the progression toward liver damage (Figure 2E
and Table 1). However, evidence to date on the effects of
antibiotics on liver function has been conflicting. For instance,
Bergheim et al. (2008) indicated that fructose-induced hepatic
lipid accumulation and endotoxemia can be markedly reduced by
concomitant treatment with antibiotics (e.g., neomycin) for
8 weeks in mice. The opposite effects of antibiotics on liver
function have contributed to confusion regarding the clinical
application of antibiotics. The potential mechanism underlying
the opposite effects of antibiotics on liver function may involve
the category of antibiotics administered to the host. Firstly,
penicillin G, as a B-lactam antibiotic, can cause gut bacteria to
release significant quantities of peptidoglycan subunits which
potently induce a peptidoglycan storm, resulting in NAFLD in
mice (Cho et al., 2014; Jiet al., 2019; Tan et al., 2021). In contrast,
aminoglycosides, such as neomycin, can disorganize the bacterial
cell envelope, as manifested by major perturbation in
peptidoglycan and lipopolysaccharide biosynthesis (Han et al.,
2019; Hussein et al., 2020). Further, antibiotic classes display
obvious inhibition spectra and behaviours, including phylogeny
independence for PB-lactams, which can strongly influence the
effect of the antibiotics on the host’s gut microbiome (Maier et al.,
2021).

Blood from the intestine flows through the portal venous
system to the liver, comprising more than two-thirds of the
hepatic blood; thus, there is a close link between the intestine
and liver, the so-called “gut-liver” axis. The blood flow drives
several microbial derivates to the liver, including harmful and
beneficial metabolites (Ianiro et al., 2016). Increasing evidence
indicates that intestinal flora plays a pivotal role in the
pathogenesis of several chronic liver diseases (Tripathi et al.,
2018). As previously observed (Mahana et al., 2016; Zhang et al,,
2019b), in the current study, HSD and penicillin G changed the
microbial community composition in mice, with structural
differences between the four groups. Here, a HSD with or
without penicillin G significantly lowered the abundance of
probiotics (such as Bifidobacterium and Lactobacillus) in the
gastrointestinal tract compared to the control animals
(Figure 4C). Strikingly, in this study, the microbiota of the
HSPEN group was extremely abundant with Akkermansia
species (Figure 4C). Previous studies have indicated that
Akkermansia may be regulated by bile acids and increased
levels of bile acids can reduce the population of Akkermansia
in mice (Higarza et al., 2021; Keshavarz Azizi Raftar et al., 2021).
This finding seems to be in contradiction with the acknowledged
enrichment of probiotic species within this genus. Interestingly,
increased abundances of faecal Akkermansia has been found in
individuals with a high-fat high-sucrose diet (Carmody et al,
2015) and patients with NAFLD (Moreira et al, 2018),
inflammatory bowel disease (Seregin et al., 2017), acute graft-
versus-host disease (Yang et al., 2021), and multiple sclerosis
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(Berer et al., 2017; Cekanaviciute et al., 2017). Thus, these results
suggest that intervention with probiotics (especially
Akkermansia) in patients with a HSD or/and penicillin
G-associated health problems should be applied with caution.
In this study, the HSD, antibiotics, and the combination of the
two resulted in an overall decrease in intestinal microbial
diversity (Figure 4D). This is consistent with the findings of
Moghadamrad et al. (2019), indicating that complicated gut
microbiota may play a hepatoprotective role.

Metabolism of tryptophan to indoles can be efficiently
accomplished by the intestinal microbiota, thereby reducing
inflammation and the fatty degeneration of the liver. This study
verified that the abundance of tryptophan in the faeces of HSD-,
PEN- and HSPEN-treated mice was markedly elevated compared to
ND-fed mice (Figure 5C and Supplementary Table S1). In
particular, intestinal permeability, inflammatory responses and the
accumulation of ROS in the intestine can be reduced by indole-lactic
acid, indole-3-acetate and 5-methoxyindoleacetate, as endogenous
and beneficial metabolites (Wlodarska et al., 2017; Ehrlich et al.,
2018). Furthermore, 3-hydroxypalmitic acid can significantly induce
mitochondrial dysfunction to contribute to the severe hepatic clinical
manifestations observed in affected patients (Cecatto et al,, 2018).
Putrescine and erucic acid can induce lipid dysmetabolism and
intrahepatic cholestasis in animal models (Shelepov et al, 1990;
Reyes et al, 1995). In the present study, the abundances of 3-
hydroxypalmitic ~acid, putrescine, and erucic acid were
dramatically increased in the HSPEN group, while the abundances
of beneficial metabolites from the gut microbiota, including ; -lactic
acid (Shan et al, 2020), §8-tocopherol (Bril et al, 2019) and
chenodeoxycholic acid (Malhi and Camilleri, 2017), were
significantly decreased in comparison with the ND group
(Figure 5C and Supplementary Table S1); these changes may
induce harmful effects on the liver function. Moreover,
metabolites associated with the cAMP signalling pathway, ABC
transporters, neuroactive ligand-receptor interaction and
regulation of lipolysis in adipocytes were dramatically changed in
the HSPEN group compared with the ND group (Figure 5D); these
pathways are involved in cystic fibrosis, obesity and NAFLD
(Reynisdottir et al., 1995; Manson et al., 2011; Fuchs et al., 2014).
Increased intestinal permeability is the main cause of the
inflammatory reactions and immune responses that induce
hepatic disorders (Chopyk and Grakoui, 2020). Penicillin is only
bactericidal when it is applied at the early growth stages; however, as
the bacterial composition changes, susceptibility decreases (Moore
et al,, 2003). Previous studies have indicated enhancement of pro-
inflammatory activity by penicillin during treatment for
inflammatory diseases (Stevens et al., 1993; Moore et al., 2003). In
this study, the IgA reaction and T cell (e.g., CD4") release in the PEN
group were significantly increased compared to the HSD and ND
groups (Figures 7E,G), indicating higher inflammatory reactions
caused by antibiotic exposure in the intestine. The limitless
movement of toxic metabolites and pro-inflammatory cytokines
through the damaged colonic barrier (Figures 7A,B) into the
portal venous system can induce hepatotoxicity in vivo.

Mitochondrial dysfunction is reported to be involved in the
progression of steatohepatitis (Loomba et al., 2021). Recently,
evidences have confirmed that mitochondrial function is related
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to the intestinal microbiota, which may be linked with microbial
metabolites (Begriche et al., 2006; Zhang et al., 2021). The results
of this study revealed impairment in mitochondrial integrity
(Figure 3A) and microbial metabolic function (Figure 3B) in
the HSD and PEN groups, especially in the HSPEN group; this is
consistent with the pathological findings of liver damage
(Figure 2E). To further confirm the molecular mechanism by
which salt consumption, antibiotic exposure and their
combination  caused  mitochondrial abnormalities  in
hepatocytes, ROS accumulation and H,0, release were
detected in the current study. Consistent with previous studies
(Chen et al, 2020b; Zhang et al, 2021), substantial ROS
accumulation in hepatocytes induced lipid dysmetabolism and
liver damage in HSPEN-treated mice. Mitochondrial dysfunction
induces accumulation of fatty acids, which are partly metabolized
by peroxisomes (Fritz et al.,, 2007) and microsomes, and this is
followed by ROS production and lipid peroxidation. Moreover,
products such as MDA (Table 1) have a longer half-life than ROS
and can spread to other areas of the body to induce oxidative
stress (Rolo et al., 2012; Borrelli et al., 2018). Together, all findings
suggest that mitochondrial and liver function may be damaged
under HSD and antibiotic exposure. Overall, long-term salt and
antibiotic exposure changed the structure of the gut microbiota
and its metabolites, aggravated intestinal dysfunction, caused
hepatic mitochondrial abnormalities, induced hepatic lipid
accumulation, and contributed to NAFLD progression.

CONCLUSION AND PERSPECTIVES

To the best of our knowledge, this is the first study to present a global
view of the combined effects of sodium and antibiotic exposure on the
liver health of mice. The results of this study indicated that these two
risk factors might affect hepatic functions and induce gut microbial
dysbiosis and metabolic disorders. Antibiotic exposure may enhance
the intestinal immune response and induce ROS accumulation and
mitochondrial abnormalities in hepatocytes, thereby aggravating the
adverse effects observed in HSD-fed mice. Due to the popularity of
antibiotic abuse and exposure worldwide, the findings of this study
not only contribute to a better understanding of the molecular
mechanism underlying the hepatic response to antibiotic exposure
and the excessive intake of salt/sodium but also provide a model for
studying the toxicological mechanism of antibiotics in multi-organ
systems. However, the mouse’s average daily salt consumption was
significantly higher than their tolerance in this study, which likely
does not occur in humans for extended periods (Relman, 2017).
Human hepatic injury results from excessive salt intake and other
clinical and environmental factors over long periods (Meola et al,
2016). Thus, the effects of HSD enhanced antibiotic-induced hepatic
injury and mitochondrial abnormalities requires further clinical and
epidemiological investigation.
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