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Prostate cancer (PC) is one of the major male cancers. Differential diagnosis of PC is indispensable for the
individual therapy, i.e., Gleason score (GS) that describes the grade of cancer can be used to choose the
appropriate therapy. However, the current techniques for PC diagnosis and prognosis are not always
effective.
To identify potential markers that could be used for differential diagnosis of PC, we analyzed miRNA-

mRNA interactions and we build specific networks for PC onset and progression. Key differentially
expressed miRNAs for each GS were selected by calculating three parameters of network topology mea-
sures: the number of their single regulated mRNAs (NSR), the number of target genes (NTG) and NSR/
NTG. miRNAs that obtained a high statistically significant value of these three parameters were chosen
as potential biomarkers for computational validation and pathway analysis.
20 miRNAs were identified as key candidates for PC. 8 out of 20 miRNAs (miR-25-3p, miR-93-3p, miR-

122-5p, miR-183-5p, miR-615-3p, miR-7-5p, miR-375, and miR-92a-3p) were differentially expressed in all
GS and proposed as biomarkers for PC onset. In addition, ‘‘Extracellular-receptor interaction”, ‘‘Focal
adhesion”, and ‘‘microRNAs in cancer” were significantly enriched by the differentially expressed target
genes of the identified miRNAs. miR-10a-5p was found to be differentially expressed in GS 6, 7, and 8 in
PC samples.
3 miRNAs were identified as PC GS-specific differentially expressed miRNAs:miR-155-5pwas identified

in PC samples with GS 6, and miR-142-3p and miR-296-3p in PC samples with GS 9.
The efficacy of 20 miRNAs as potential biomarkers was revealed with a Random Forest classification

using an independent dataset. The results demonstrated our 20 miRNAs achieved a better performance
(AUC: 0.73) than miRNAs selected with Boruta algorithm (AUC: 0.55), a method for the automated feature
extraction.
Studying miRNA-mRNA associations, key miRNAs were identified with a computational approach for

PC onset and progression. Further experimental validations are needed for future translational
development.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Prostate cancer (PC) is the first leading cause of cancer in males
as reported in Cancer Statistics 2020 [1]. As the development and
progression of PC is highly heterogeneous further investigations
are needed for precision medicine and personalized treatments
in PC samples [2].
Gleason score plays a key role in predicting patient outcomes as
it correlates with malignancy and aggressiveness of PC. Indeed, it is
used for patient risk stratification in clinical practice [3]. Gleason
score � 6 represents the group with the best overall prognosis
(grade group 1). Gleason score 7 is divided into Gleason 3 + 4
(grade group 2) and Gleason 4 + 3 (grade group 3), as evidence
showed poorer prognosis in Gleason 4 + 3 tumors compared to
Gleason 3 + 4. Gleason score 8 tumors represent grade group 4,
and Gleason score 9 or 10 comprise the worst prognostic group
(grade group 5) [3].
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Currently, many studies identified single molecules as biomark-
ers for diagnosis and prognosis of cancer including PC [4-6]. The
molecules are detected from high-throughput experimental data
(e.g. microarray, and next-generation sequencing) using statistical
or advanced computational approaches, for example, screening dif-
ferentially expressed molecules between disease and control
groups [4,5].

Prostate-specific antigen (PSA) is an example of a molecule
translated from basic research to clinical practice as it is currently
quantified for PC disease prediction. However, in clinical practice,
although the level of PSA in serum and Magnetic Resonance Imag-
ing (MRI) techniques are commonly used for PC screening, their
sensitivity and specificity are not optimal to avoid unnecessary
biopsy [7,8].

The occurrence of a disease is often the effect of multi-level sys-
tems rather than the alteration of a single molecule. Therefore, the
detection of a single molecular biomarker from groups of patients
with the same disease is often not reliable in a set of heteroge-
neous patients because of the complexity of disease [9]. In line
with this scenario, a solution to resolve this issue, is the identifica-
tion of network biomarkers, which include the altered molecules
(nodes) as well as their relations (edges) [10].

microRNAs (miRNAs) are a class of post-transcriptional regula-
tors deregulated in many cancers including PC [11]. Previous stud-
ies showed that miRNAs could regulate mRNAs through
complementary sequences in the 30 untranslated region (30 UTR)
of mRNA target. Based on the intensity of homology to the 30UTR
complementary sequence, miRNAs can cause the inhibition or
degradation of mRNA target. In addition, this interaction could
eventually modify the cross-talk among pathways and the biolog-
ical processes of cellular activities [12,13].

Since miRNAs can be both oncogenes and tumor suppressor
genes, the identification of complex genetic interactions including
mRNA-miRNAs as biomarkers for early differential diagnosis, prog-
nosis and theranostics in PC is of clinical interest [11].

Zhang et al. investigated the distribution of mRNA-miRNA
interactions and they found that their distribution follows a power
law, which suggested that miRNAs with more targets are few [14].
In addition, they identified a set of genes uniquely regulated by a
specific miRNA. A statistical analysis on the topological character-
istics of miRNA biomarkers in the network showed that miRNA
biomarkers were able to regulate genes independently. In line with
this observation, Yan et al. [15] demonstrated that specific miRNAs
able to regulate a high percentage of transcription factors were
more likely biomarkers.

These studies [14,15] proposed two topological features to
characterize miRNA biomarkers based on miRNA-mRNA network:
the number of single-line regulation (NSR) and transcription factor
gene percentage (TFP). NSR can quantify the tendency of a miRNA
to be a candidate biomarker for a specific disease, as it indicates the
number of mRNA independently regulated by a specific miRNA,
and a recent study demonstrated that miRNAs with higher NSR
were biomarkers for cancer management [16]. Another measure
to characterize miRNA biomarkers is TFP, defined as the percentage
of transcription factor genes targeted by a unique miRNA [17].

In a previous study, a network-based approach called POMA
(Pipeline of Outlier MicroRNA Analysis) was applied to explore
the topological feature of miRNA-mRNA network to predict miRNA
biomarkers for diagnosis and prognosis [18]. The approach is based
on the integration of structural interaction of miRNA-mRNA net-
work and miRNA/mRNA expression data, using NSR and TFP [18].
They identified differentially expressed miRNAs and mRNAs and
they selected miRNAs with high NSR and TFP as PC biomarkers
[18].

Based on these previous studies [16-18], in a recent study the
number of targeted genes (NTG) for each miRNA, was also pro-
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posed to measure the regulatory interactions of miRNAs in the net-
work [19]. They identified key miRNAs considering miRNA-mRNA
networks for predicting the development and progression of PC
[19].

We extended our study and proposed a bioinformatic approach
to identify common and specific miRNAs for the different PC Glea-
son scores. We identified PC Gleason score-specific miRNAs char-
acterized by network topological measures and we proposed as
PC biomarkers miRNAs with high NSR, NTG and NSR/NTG. The
aim was to develop a method able to efficiently combine miRNAs
and mRNAs in order to identify a reduced number of miRNAs as
diagnostic biomarkers for the Gleason score.
2. Materials and methods

2.1. Data collection and pre-processing

Gene and microRNA expression levels of PC samples were col-
lected from the Cancer Genome Atlas (TCGA) dataset. TCGAbiolinks
package was used to download and pre-process the data (Access
date: 14 October 2021) [20]. We considered for this study miRNA
and gene expression profiles derived from the same patients. We
grouped the samples based on the Gleason score which allows
patients with PC to be divided into 5 different groups considering
the aggressiveness of the tumor.

Experimentally validated miRNA-mRNA interactions were
established using miRTarBase platform, a database of microRNA-
target interactions validated in vitro by reporter assay, western
blot, microarrays and next generation sequencing expresses
(NGS) (Access date: 1 July 2021) [21]. miRBaseConverter was used
for converting the name of miRNAs in different miRBase versions
(Access date: 1 July 2021) [21,22].

2.2. Differential expression analysis

Differential expression analysis was performed among different
PC sample groups, i.e., Gleason score � 6 vs normal samples. Differ-
entially expressed miRNAs and genes were identified using the
TCGAanalyze_DEA function of the TCGAbiolinks package [20].
The criterion for the identification of differentially expressed miR-
NAs and genes was | LogFC | � 1 and adjusted p-value < 0.01.

2.3. Network construction

We developed a miRNA-mRNA network consisting of differen-
tially expressed miRNAs for each Gleason score. The human
miRNA-mRNA network was built integrating validated miRNA-
mRNA interactions from miRTarBase. Overall, a total of 5 networks
based on Gleason score of PC samples were identified. To measure
the regulatory interactions, we calculated the three parameters
NSR, NTG, and NSR/NTG for each differentially expressed miRNA
in the different PC Gleason scores. Fig. 1 shows an example of
NSR and NTG for miRNAs.

Differentially expressed miRNAs specific for each Gleason score
with significantly high NSR, NTG, and NSR/NTG values (p-
value < 0.05, Wilcoxon signed-rank test), as well as those miRNAs
shared by more Gleason score were selected as key biomarkers for
the development and progression of PC. Wilcoxon signed-rank test
was used to select miRNAs with a significantly high NSR, NTG, and
NSR/NTG value.

2.4. Validation dataset

In order to verify if differentially expressed genes obtained with
TCGA dataset are consistent with other independent datasets, we



Fig. 1. Description of number of single-line regulation (NSR) and number of targeted genes (NTG) for each differentially expressed miRNA. We reported in blue squares the
genes regulated by a unique miRNA and in a white square the genes regulated by more miRNAs. miRNAs are represented with a green circle. As example, the gene 1 (G_1) is
regulated by a single miRNA (miRNA_1), while the gene 2 (G_2) is regulated by two miRNAs (miRNA_1 and miRNA_2). NSR of miRNA_1 is 2 as genes G_1 and G_3 are
specifically regulated by that miRNA alone. NTG of miRNA_1 is 4 as it regulates 4 genes (G_1, G_2, G_3 and G_4). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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considered validation datasets from 5 Gene Expression Omnibus
(GEO): GSE118038, GSE21036, GSE45604, GSE46738, and
GSE26367. We performed a differential expression analysis
between normal samples and PC samples with different Gleason
scores (FDR < 0.05 and |logFC| �1), using GEO2R.
2.5. Pathway analysis

We performed a pathway analysis using the R-package, clus-
terProfiler [23]. Hypergeometric distribution for KEGG pathways
and p-value < 0.01 were considered for the statistical test. We
studied the biological processes of differentially expressed miRNAs
analyzing the pathways that are over-represented by differentially
expressed target genes.
2.6. Assessing diagnostic relevance of miRNA

To investigate the efficacy of selected miRNAs as potential diag-
nostic markers for prostate cancer, we setted up a classification
problem to predict a given GS score (independent variable) in a
one-vs-all setting, using the differentially expressed miRNAs for
that GS score as input features (dependent variables). We used
the dataset GSE118038 (Access date: 1 July 2021). A Random For-
est classifier [24] with 500 trees was used, typically among the best
performing features-based classifiers. As baseline, we also selected
features (miRNAs) using the Boruta algorithm, a state-of-the-art
method for the automated feature extraction [25]. This algorithm
was allowed to automatically select for each GS score the set of
most relevant miRNAs among the entire set of miRNAs in the data-
set. The classifier was validated in a 10-fold cross validation set-
ting, reporting the performance averaged across folds.
Table 1
Number of samples for each Gleason score.

Gleason Score N� of samples

6 (3 + 3, 2 + 4) 45
7 (3 + 4) 145
7 (4 + 3) 100
8 (4 + 4, 3 + 5, 5 + 3) 64
9, 10 (4 + 5, 5 + 4, 5 + 5) 139

Tot.493
2.7. Assessing prognostic relevance of miRNA

We performed a survival analysis using the software UALCAN
[26] using miRNA expression profiles from TCGA. Statistical signif-
icance of survival difference between groups was calculated with
the p-value identified from log-rank test [26]. The patients were
divided into groups with high and low expression of the miRNA.
Specifically, high expression patients exhibit expression
value > 3rd quartile of the expression distribution.
866
3. Results

3.1. Differential analysis in PC progression

We selected 493 PC samples from TCGA that contain both gene
and miRNA expression profiles and grouped the PC samples based
on Gleason score in 5 grade groups: PC patients with GS 6, GS 7
(3 + 4), GS 7 (4 + 3), GS 8, and GS � 9. We also identified 52 normal
samples that contain both gene and miRNA expression profiles
from normal prostate tissues. Table 1 shows PC samples from TCGA
divided by Gleason score.

The results obtained by differential expression analysis are pre-
sented in Table 2.
3.2. PC Gleason score-specific miRNA network

We generated five PC Gleason score-specific networks based on
differentially expressed miRNAs and mRNAs.

NSR, NTG and NSR/NTG parameters for each differentially
expressed miRNA were calculated to characterize the regulatory
pattern of the miRNAs in the network and to identify miRNAs that
could have a crucial role in the progression of PC

Table 3 reports the number of miRNAs with a significant high
value of NSR, NTG, and NSR/NTG, and miRNAs that obtained a sig-
nificant value for all three parameters. Supplementary file 1 shows
the miRNAs for each NSR, NTG and NSR/NTG.

Overall, we obtained 20 miRNAs that showed a differential
expression in PC samples with significantly high NSR, NTG and
NSR/NTG values.

We identified 8 differentially expressed miRNAs (miR-25-3p,
miR-93-3p, miR-122-5p, miR-183-5p, miR-615-3p, miR-7-5p, miR-
375, and miR-92a-3p) in all Gleason score samples with signifi-
cantly high NSR, NTG and NSR/NTG values.



Table 2
Differential expressed genes between prostate cancer and normal samples.

Comparison Up-regulated
genes

Down-regulated
genes

Tot

GS 6 vs normal samples 676 944 1620
GS 7 (3 + 4) vs normal samples 713 1017 1730
GS 7 (4 + 3) vs normal samples 952 1266 2218
GS 8 vs normal samples 1095 1288 2383
GS >= 9 vs normal samples 1123 1206 2329
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miR-10a-5p was differentially expressed in PC samples with GS
6, GS 7 (3 + 4), GS 7 (4 + 3) and GS 8 with high statistically signif-
icant values of NSR, NTG and NSR/NTG values. In addition, its high
expression in PC was associated with a poor prognosis through a
survival analysis (Fig. 2).

Differentially expressed miR-18a-3p and miR-18a-5p in GS 6, GS
7 (4 + 3), GS 8 and GS 9 PC samples have a significant high value of
NSR, NTG and NSR/NTG.miR-423-3pwas differentially expressed in
GS 7 (3 + 4), GS 7 (4 + 3), GS 8 and GS 9 PC samples with signifi-
cantly high NSR, NTG and NSR/NTG values.

miR-197-3p was differentially expressed in GS 6, GS 8 and GS 9
PC samples with significant high NSR, NTG and NSR/NTG values.
miR-221-3p was differentially expressed in GS 7 (4 + 3), GS 8,
and GS 9 with significantly high NSR, NTG and NSR/NTG values.

miR-21-5p was differentially expressed in GS 8, and GS 9 with
significantly high NSR, NTG and NSR/NTG values. miR-320a was
differentially expressed in GS 6, and GS 7 (3 + 4) with significantly
high NSR, NTG and NSR/NTG values. miR-9-5p was differentially
expressed in GS 6, and GS 9 with significantly high NSR, NTG and
NSR/NTG values.

PC grade group-specific differentially expressed miRNAs were
also identified: miR-155-5p was identified in PC samples with GS
6. miR-142-3p and miR-296-3p in PC samples with GS 9.

We considered validation datasets from 5 GEO datasets:
GSE118038, GSE21036, GSE45604, GSE46738, and GSE26367. We
applied a differential expression analysis on GEO datasets consid-
ering normal samples and PC samples with different Gleason
Table 3
Differentially expressed miRNAs for each prostate cancer grade group with a significant hig
NSR/NTG. miRNAs that have all 3 significant parameters were presented in the last colum

Gleason
Score (GS)

# miRNAs (NSR) # miRNAs NTG

GS 6 27 27

GS 7 (3 + 4) 22 22

GS 7 (4 + 3) 24 26

GS 8 35 31

GS 9 33 36

867
scores. Table 4 shows the number of normal and PC primary tumor
for each GEO dataset.

9 out of 20 miRNAs (miR-10a-5p, miR-183-5p, miR-18a-5p, miR-
21-5p, miR-221-3p, miR-25-3p, miR-375, miR-7-5p, and miR-93-3p)
that obtained a statistically significant value of NSR, NTG and
NSR/NTG were differentially expressed in at least one of 5 GEO
datasets.

For Gleason score 6, 2 miRNAs (miR-183-5p, and miR-375) were
differentially expressed in GSE21036 and GSE26367.

As the GEO datasets do not contain the information of Gleason
score 3 + 4 and 4 + 3 for PC samples with Gleason score 7, we could
not distinguish the two groups. For Gleason score 7: 3 miRNAs
(miR-183-5p, miR-375, and miR-221-3p in GSE21036; miR-375,
miR-183-5p, miR-221-3p in GSE45604; miR-183-5p, and miR-375
in GSE26367) out of 14 (miR-423-3p, miR-10a-5p, miR-25-3p, miR-
93-3p, miR-122-5p, miR-183-5p, miR-320a, miR-615-3p, miR-7-5p,
miR-375, miR-92a-3p, miR-18a-5p, miR-221-3p, and miR-18a-3p)
were differentially expressed in PC patients with Gleason score 7
in the GEO datasets.

For Gleason score 8 8 miRNAs (miR-10a-5p, miR-183-5p, miR-
18a-5p, miR-21-5p, miR-221-3p, miR-25-3p, miR-375, and miR-7-
5p), out of 15 miRNAs (miR-423-3p, miR-10a-5p, miR-18a-5p, miR-
25-3p, miR-93-3p, miR-221-3p, miR-122-5p, miR-183-5p, miR-197-
3p, miR-18a-3p, miR-21-5p, miR-615-3p, miR-7-5p, miR-375, and
miR-92a-3p) were differentially expressed in PC samples with
Gleason score 8 in GEO datasets.

Specifically, in GSE118038miR-10a-5p, miR-18a-5p, miR-221-3p,
miR-183-5p, and miR-21-5p; in GSE21036 miR-18a-5p, miR-221-3p,
miR-183-5p, miR-7-5p, and miR-375; in GSE46738 miR-25-3p, miR-
183-5p, miR-21-5p, andmiR-375; in GSE26367miR-25-3p, miR-183-
5p, and miR-375.

5 out of 17 differentially expressed miRNAs in Gleason score>=
9 of TCGA data were differentially expressed in Gleason score>= 9
of GEO datasets (miR-25-3p, miR-221-3p, miR-183-5p, and miR-375
in GSE21036; miR-93-3p, and miR-221-3p in GSE45604). The
reduced number of differentially expressed miRNAs can be due
to the low number of samples with Gleason score 9 in GEO dataset.

Fig. 3 summarizes the results obtained in TCGA data.
h value of number of single-line regulation (NSR), number of targeted genes (NTG) and
n.

# miRNAs
NSR/NTG

# miRNAs
NSR

T
NTG

T
NSR/NTG

26 miR-10a-5p, miR-18a-5p, miR-25-3p,
miR-93-3p, miR-122-5p, miR-183-5p,
miR-197-3p, miR-18a-3p, miR-9-5p,
miR-320a, miR-155-5p, miR-615-3p,
miR-7-5p, miR-375, miR-92a-3p

23 miR-423-3p, miR-10a-5p, miR-25-3p,
miR-93-3p, miR-122-5p, miR-183-5p,
miR-320a, miR-615-3p, miR-7-5p,
miR-375, miR-92a-3p

27 miR-423-3p, miR-10a-5p, miR-18a-5p,
miR-25-3p, miR-93-3p, miR-221-3p,
miR-122-5p, miR-183-5p, miR-18a-3p,
miR-615-3p, miR-7-5p, miR-375,
miR-92a-3p

32 miR-423-3p, miR-10a-5p, miR-18a-5p,
miR-25-3p, miR-93-3p, miR-221-3p,
miR-122-5p, miR-183-5p, miR-197-3p,
miR-18a-3p, miR-21-5p, miR-615-3p,
miR-7-5p, miR-375, miR-92a-3p

36 miR-423-3p, miR-18a-5p, miR-25-3p,
miR-93-3p, miR-221-3p, miR-296-3p,
miR-122-5p, miR-183-5p, miR-197-3p,
miR-18a-3p, miR-9-5p, miR-21-5p,
miR-142-3p, miR-615-3p, miR-7-5p,
miR-375, miR-92a-3p



Fig. 2. Survival analysis applied to miR-10a-5p. The high expression of miRNA shows a poor overall survival in patients with prostate cancer.

Table 4
Number of normal and primary tumor tissues for GSE118038, GSE21036, GSE45604, GSE46738, and GSE26367 considered for the analysis of differentially expressed miRNAs. The
primary tumors are divided by Gleason score (GS).

DATASET NORMAL PRIMARY TUMOR GS � 6 GS 7 GS 8 GS 9o 10 GS NA

GSE118038 37 33 0 11 12 9 1
GSE21036 28 99 57 33 6 3 0
GSE45604 10 50 15 25 6 4 0
GSE46738 4 53 15 13 21 4 0
GSE26367 11 173 46 86 29 3 9
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3.3. Pathway analysis

In order to investigate the biological role of 20 miRNAs, we per-
formed a pathway analysis. The analysis revealed for each miRNA
the pathways enriched with differentially expressed genes for each
Gleason score that are targets of that miRNA. Table 5 reported the
pathways over-represented by differentially expressed genes that
are targets of the 20 miRNAs.

We explored the pathways enriched with the targets of the 8
differentially expressed miRNAs (miR-25-3p, miR-93-3p, miR-122-
5p, miR-183-5p, miR-615-3p, miR-7-5p, miR-375, and miR-92a-3p)
presented all Gleason score.

Differentially expressed genes that are targets of miR-25-3p are
enriched in the pathway ‘‘Mucin type O-glycan biosynthesis” in
Gleason score 7 (3 + 4), ‘‘Oocyte meiosis”, ‘‘Mucin type O-glycan
biosynthesis”, and

‘‘Fanconi anemia” in Gleason score 7 (4 + 3) and GS 8, ‘‘Oocyte
meiosis” in GS > 9.

Differentially expressed targets ofmiR-93-3p are enriched in the
pathway ‘‘ECM-receptor interaction” in GS 7 (3 + 4) and (4 + 3).

miR-122-5p is enriched in the pathways ‘‘Mucin type O-glycan
biosynthesis”, and ‘‘Glycosphingolipid biosynthesis - ganglio
series”.

The pathways ‘‘Arrhythmogenic right ventricular cardiomyopa-
thy”, ‘‘ECM-receptor interaction”,” Hypertrophic cardiomyopathy”,
868
and ‘‘Dilated cardiomyopathy” are enriched with differentially
expressed targets of miR-183-5p in GS 6; ‘‘Progesterone-mediated
oocyte maturation” and ‘‘Oocyte meiosis” are enriched with differ-
entially expressed targets of miR-183-5p in GS 7 (4 + 3), GS 8 and
GS < 9.

miR-615-3p significantly regulates the pathways ‘‘ECM-receptor
interaction”, ‘‘Focal adhesion” and

‘‘Viral carcinogenesis” in GS 6; ‘‘Viral carcinogenesis” in GS 7
(3 + 4); ‘‘Focal adhesion”, ‘‘Viral carcinogenesis”,

‘‘ECM-receptor interaction”, ‘‘Cell cycle”, ‘‘Systemic lupus ery-
thematosus”, and ‘‘PI3K-Akt signaling” in GS 7 (4 + 3); ‘‘Viral car-
cinogenesis” and ‘‘Cell cycle” in GS 8; ‘‘Viral carcinogenesis” in
GS > 9.

Differential expressed genes in Gleason score 6, 7 (3 + 4), 7
(4 + 3), 8, and > 9, targets of miR-375 are enriched in the pathway:
‘‘MicroRNAs in cancer”.

PC grade group-specific differentially expressed miRNAs were
also identified: miR-155-5p was identified in PC samples with GS
6. miR-142-3p and miR-296-3p in PC samples with GS 9.

In addition, we analyzed the pathways regulated by miRNAs
specific for Gleason score. For miR-155-5p, specific for Gleason
score 6, its differentially expressed genes are enriched in the path-
way ‘‘Neutrophil extracellular trap formation”. For miR-196a-5p,
specific for Gleason score 7 (4 + 3) its differentially expressed genes
are enriched in the pathway ‘‘Cell cycle”. 3 pathways ‘‘Human T-



Fig. 3. 20 differentially expressed miRNAs in TCGA data grouped by Gleason score with a significant number of single-line regulation (NSR), number of targeted genes (NTG)
and NSR/NTG. The cells colored in blue indicate that the miRNA is differentially expressed in that Gleason score. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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cell leukemia virus 1 infection”, ‘‘Cushing syndrome”, and ‘‘Endo-
crine resistance” are enriched with differential expressed genes
in Gleason score 8 targets of miR-331-3p specific for Gleason score
8. Differentially expressed genes in Gleason score 9 and 10, targets
of miR-335-5p, are enriched in 2 pathways ‘‘Hypertrophic car-
diomyopathy”, and ‘‘Wnt signaling pathway”.

3.4. miRNAs as potential diagnostic markers

To evaluate the diagnostic ability of the 20 miRNAs identified
we classified the samples of the PC dataset GSE118038. The dataset
GSE118038 was used, since both normal and primary tumor
classes are almost equally represented.

We achieved a good performance: 0.83 as AUC for the classifica-
tion GS 7 vs others, 0.68 for GS 8 vs other and 0.69 for G9 vs others
using the 20 miRNAs. In addition, our miRNA signature achieved a
better performance than Boruta algorithm. In Table 6 the accuracy
and area under receiver operating characteristic (ROC) curve were
reported for each GS score separately.

4. Discussion

In clinical practice, there is an increasing of screening and mon-
itoring strategies for PC [3]. However, they lack accuracy to show
the dynamical changes during PC progression [3]. miRNAs are
important regulators of expression in several biological processes
including pathways associated to PC, which makes them as appeal-
ing biomarkers for PC personalized medicine [11]. It is widely
known that altered miRNAs are associated with different diseases,
including PC [11].

In this study, we explored key miRNAs as candidate biomarkers
for PC development and progression. We performed a computa-
tional approach based on system biology to integrate translational
informatics with medicine. We investigated miRNA and gene
expression levels from TCGA and we divided PC samples based
on Gleason score. Then a differential expression analysis from the
comparison between PC samples with a specific Gleason score
and normal samples is applied, and we identified differentially
expressed miRNAs and genes. For each differentially expressed
869
miRNA the mRNA targets have been studied, and we built a
miRNA-mRNA network specific for each Gleason score. Network
topological measures (NSR, NTG, and NSR/NTG) were calculated
for each miRNA in the networks, yielding a list of interesting miR-
NAs with a potential role in PC. Compared with a previous study
[19] that considered solely localized PC and metastatic PC samples,
our study analyzed miRNAs associated with the development and
progression processes of PC based on different Gleason score of
cancer. Specifically, NSR, NTG, and NSR/NTG for each differentially
expressed miRNA in a specific Gleason score were calculated for
the first time to measure the regulatory power of miRNAs. Overall,
we found 20 differentially expressed miRNAs in TCGA data with a
role in PC and with a statistically significant value of NSR, NTG and
NSR/NTG. We used GEO independent datasets to validate the dif-
ferential expression of these miRNAs and we found that 9 out 20
miRNAs were differentially expressed also in at least one of 5
GEO datasets considered. To investigate the efficacy of 20 miRNAs
as potential tool for differential diagnosis of PC, we performed a
Random Forest classification using an independent dataset. We
compared our 20 miRNAs with miRNAs selected by the Boruta
algorithm, a well-known state-of-the-art method for the auto-
mated feature extraction. The results demonstrated that our 20
miRNAs are at least as informative as the boruta features for the
predicion of the Gleason score.

We found 8 differentially expressed miRNAs (miR-615-3p, miR-
7-5p, miR-375, miR-92a-3p, miR-25-3p, miR-93-3p, miR-122-5p, and
miR-183-5p) in all Gleason score samples with statistically signifi-
cant high value of NSR, NTG and NSR/NTG that could be responsi-
ble of PC onset.

The high expression of miR-615-3p was already associated with
poor outcome in PC patients indicating its oncogenic role [27]. In
addition, functional studies demonstrated that miR-615-3p
increases cell viability, apoptosis, and proliferation [28]. Pathway
analysis in our study, reported its association with ‘‘Extracellular-
receptor interaction” and ‘‘Focal adhesion”.

miR-7-5p has been proposed as a tumor suppressor miRNA. In
particular, in those PC samples with a lymphatic dissemination
phenotype, this miRNA is upregulated [29]. Indeed, in PC, as well
as in breast cancer, hepatocarcinoma and glioblastomamultiforme,



Table 5
Number of pathways enriched with differentially expressed genes (DEGs) that are targets of the 20 miRNAs involved in prostate cancer.

miRNA GS 6 GS 7 (3 + 4) GS 7 (4 + 3) GS 8 GS 9/10

miR-10a-5p 1) Bile secretion
(DEGs: 24)

(DEGs: 27) (DEGs: 39) 1) Cell cycle
(DEGs: 38)

1) Cell cycle
(DEGs: 38)

miR-122-5p 1) Mucin type O-glycan biosynthesis
2) Glycosphingolipid biosynth -
ganglio series
(DEGs: 46)

1) Mucin type O-glycan
biosynthesis
2) Glycosphingolipid
biosynth - ganglio series
(DEGs: 48)

(DEGs: 64) (DEGs: 63) (DEGs: 61)

miR-142-3p (DEGs: 23) (DEGs: 24) (DEGs: 32) (DEGs: 36) (DEGs: 27)
miR-155-5p (DEGs: 47) (DEGs: 53) 1) Melanoma

2) Regulation of actin cytoskeleton
3) Cellular senescence
4) AGE-RAGE signaling pathway in
diabetic complications
5) Insulin resistance
6) PI3K-Akt signaling pathway
7) Pancreatic cancer
8) Focal adhesion
(DEGs: 68)

(DEGs: 67) (DEGs: 65)

miR-183-5p 1) Arrhythmogenic right ventricular
cardiomyopathy
2) ECM-receptor interaction
3) Hypertrophic cardiomyopathy
4) Dilated cardiomyopathy
(DEGs: 17)

(DEGs: 19)

1) Progesterone-mediated oocyte
maturation
2) Oocyte meiosis
(DEGs: 26)

1) Progesterone-mediated oocyte
maturation
2) Oocyte meiosis
(DEGs: 23)

1) Progesterone-mediated
oocyte maturation
2) Oocyte meiosis
(DEGs: 27)

miR-18a-3p (DEGs: 25) (DEGs: 24) (DEGs: 32) (DEGs: 29) (DEGs:33)
miR-18a-5p 1) Focal adhesion

(DEGs: 13)
1) Focal adhesion
(DEGs: 13)

1) Nitrogen metabolism
(DEGs: 21)

1) Nitrogen metabolism
(DEGs: 19)

1) Nitrogen metabolism
(DEGs: 23)

miR-197-3p (DEGs: 25) (DEGs: 30) (DEGs: 35) (DEGs: 39) (DEGs: 38)
miR-21-5p 1) Prostate cancer

2) MicroRNAs in cancer
(DEGs): 36

1) MicroRNAs in cancer
(DEGs: 37)

1) MicroRNAs in cancer
2) Prostate cancer
3) Hypertrophic cardiomyopathy
4) Dilated cardiomyopathy
5) Endocrine resistance
(DEGs: 51)

1) MicroRNAs in cancer 2)
Hypertrophic cardiomyopathy
3) Dilated cardiomyopathy
4) Prostate cancer 5) Bladder
cancer 6) Melanoma
7) Hepatitis C 8) Hepatitis B
9) Arrhythmogenic right
ventricular cardiomyopathy
10) Endocrine resistance
(DEGs: 52)

1) MicroRNAs in cancer 2) Prostate cancer
3) Hepatitis B 4) Endocrine resistance
5) Melanoma 6) Hepatitis C
7) Small cell lung cancer 8) Bladder cancer
9) Epstein-Barr virus infection 10) Chemical
carcinogenesis - receptor activation
(DEGs: 57)

miR-221-3p 1) MAPK signaling
2) MicroRNAs in cancer
(DEGs:24)

1) MAPK signaling
(DEGs:27)

(DEGs: 40) (DEGs:38) (DEGs: 40)
miR-25-3p (DEGS: 32) 1) Mucin type O-

glycan biosynth.
(DEGS:25)

1) Oocyte meiosis 2) Mucin type O-
glycan biosynth.
3) Fanconi anemia
(DEGs: 44)

1) Oocyte meiosis 2) Mucin type O-
glycan biosynth.
3) Fanconi anemia
(DEGS:40) 1) Oocyte meiosis

(DEGs: 49)
miR-296-3p (DEGs: 14) (DEGs:15) 1) Viral carcinogenesis

2) Systemic lupus erythematosus
3) Alcoholism 4) Neutrophil
extracellular trap formation
5) Central carbon metabolism in

(DEGs:20) (DEGs: 19)
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Table 5 (continued)

miRNA GS 6 GS 7 (3 + 4) GS 7 (4 + 3) GS 8 GS 9/10

cancer 6) Melanoma
(DEGs: 21)

miR-320a 1) MicroRNAs in cancer
2) Adherens junction
(DEGs: 29) 1) Neutrophil extracellular

trap formation
(DEGs: 36)

1) MicroRNAs in cancer
2)Neutrophil extracellular trap
formation
3) Viral carcinogenesis
4) Systemic lupus erythematosus
5) Adherens junct.
(DEGs:42)

(DEGs:45) (DEGs:39)

miR-375 1) MicroRNAs in cancer
(DEGs: 31)

1) MicroRNAs in cancer
(DEGs:34)

1) MicroRNAs in cancer
(DEGs: 39)

1) MicroRNAs in cancer
(DEGs:40)

1) MicroRNAs in cancer
(DEGs:37)

miR-423-3p (DEGs: 10) (DEGs:13) 1) Fatty acid metabolism
(DEGs:18)

1) Fatty acid metabolism
(DEGs: 16)

1) Fatty acid metabolism
(DEGs: 16)

miR-615-3p 1) ECM-receptor interaction
2) Focal adhesion
3) Viral carcinogenesis
(DEGs:38)

1) Viral carcinogenesis
(DEGs:35)

1) Focal adhesion 2) Viral
carcinogenesis
3) ECM-receptor interaction
4) Cell cycle 5) Systemic lupus
erythematosus
6) PI3K-Akt signaling
(DEGs:64)

1) Viral carcinogenesis
2) Cell cycle
(DEGs:53)

1) Viral carcinogenesis
(DEGs: 59)

miR-7-5p (DEGs: 43) (DEGs: 35) (DEGs:51) (DEGs: 52) (DEGs: 55)
miR-9-5p 1) Endocrine

resistance
(DEGs: 28)

(DEGs: 27) 1) Endocrine resistance
(DEGs: 38)

(DEGs: 37) 1) Endocrine
resistance
(DEGs: 39)

miR-92a-3p (DEGs:64) (DEGs:60) (DEGs:99) (DEGs:105) (DEGs: 104)
miR-93-3p

(DEGs: 9)
1) ECM-receptor inter.
(DEGs: 10)

1) ECM-receptor inter.
(DEGs: 17)

(DEGs:14)
(DEGs:15)
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Table 6
Area Under Curve (AUC) and accuracy were reported as obtained from the classification of prostate cancer samples from GSE118038 using 20 miRNAs and Boruta algorithm.

GS score selected miRNAs Boruta miRNAs

AUC Accuracy AUC Accuracy

7 0.829 0.814 0.655 0.771
8 0.677 0.828 0.417 0.743
9 0.692 0.871 0.579 0.814
Average 0.732 ± 0.083 0.838 ± 0.030 0.55 ± 0.121 0.776 ± 0.036
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this miRNA has a role in metastasis, inhibiting proliferation, inva-
sion, and migration of the cell by targeting PI3K/Akt, FAK and
KLF4 expression [29].

miR-375 is a well-known PC-associated miRNA, as it has been
proposed as a biomarker for PC diagnosis and prognosis [30,31].
Its overexpression is associated to poor overall survival [32] and
to chemo-resistance [33]. Pathway analysis found its association
with ‘‘microRNAs in cancer”.

Urinary exosomal miR-92-a-3p has been found in PC subjects
compared to control subjects [34]. This miRNA is able to regulate
SOX4 expression and seems to be regulated by its target [35]. In
PC, miR-92a is downregulated and its loss increases cell viability,
migration, and invasion [35].

miR-25-3p part of the miR-106b-25 cluster, was previously
observed to be upregulated in prostate primary tumor and distant
metastases [36].A previous study of correlation betweenmiR-25-3p
and Gleason score showed a positive association [28]. The pathway
analysis reported that pathway ‘‘Mucin type O-glycan biosynthe-
sis” is regulated by miR-25-3p.

Elevated levels of miR-93-3p were reported to be predictive
biomarkers for triple negative breast cancer (TNBC) suggesting it
as non-invasive test. In addition, it seems to play a role in the
chemoresistance in TNBC regulating Wnt/ b-catenin signaling by
reducing SFRP1 [37]. Our analysis found that the pathway
‘‘Extracellular-receptor interaction” is regulated by miR-93-3p in
G7.

miR-122-5p was reported to be a tumor suppressive gene in dif-
ferent cancers. However, the role in PC has not been elucidated
[38,39]. Its potential mechanism of action could be the regulation
of its target DUSP4. miR-122-5p could inhibit the migration and
metastasis by downregulating DUSP4 [40]. The pathway analysis
revealed that ‘‘Mucin type O-glycan biosynthesis” and ‘‘Glycosph-
ingolipid biosynthesis - ganglio series” are regulated by miR-122-
5p in G6 and GS7 (3 + 4).

In breast cancer miR-183-5p regulates a known tumor suppres-
sor gene PTEN, promoting cell proliferation in a regulatory network
that involves FOXO3a and cyclin-dependent kinase inhibitors p27
and p21 [41,42].

miR-10a-5p was found to be differentially expressed in GS 6, 7,
and 8. Moreover, in our study its high expression was correlated
with a poor prognosis through a survival analysis in PC samples.
Previous studies showed an association between PC and miR-10a-
5p [43,44].

In addition, in our study we identified PC Gleason score-specific
differential expressed miRNAs: miR-155-5p was identified only in
PC samples with GS 6, miR-142-3p and miR-296-3p only in PC sam-
ples with GS 9.

Although there are studies that associated miR-155-5p with PC,
there are not in the literature studies that showed an association of
this miRNA with Gleason score 6 [45-47]. miR-142-3p has been
reported upregulated in urine samples of metastatic PC patients,
but no association with GS 9 has been previously demonstrated
[48]. miR-296-3p plays a role in tumour cell resistance to natural
killer cell downregulating ICAM-1. Although no association has
872
been previously reported with GS 9 miR-296-3p promotes PC
metastasis correlating it with a more aggressive phenotype [49].

In the era of high throughout data, translational informatics and
in-silico studies offer great opportunities to extract knowledge
from multi-omics data. In contrast to wet-lab experiments, big
data such as transcriptome and epigenomic are essential for the
feature selection and the accurate discovery of disease signatures.
Previous studies analyzed miRNA-mRNA interactions [10,11].
However, few studies have focused on miRNAs with stronger reg-
ulatory power and miRNAs that independently regulate a gene. The
strength of our study is the feature selection based on miRNA
expression levels, miRNA-mRNA interactions, and network topo-
logical measures. The study of miRNA expression levels allows us
to select miRNAs that are altered by the disease, and miRNA-
mRNA interactions consider their functional synergism. Network
topological measures (NSR and NTG) quantify the regulatory role
of single miRNAs in the network.

There are some limitations in our study that should be consid-
ered in subsequent works. Firstly, genes in the miRNA-mRNA net-
work were considered as having equal importance. However, a
gene could have a more prominent role in the disease etiology,
and a correlation analysis could be used to test the accuracy of
the interactions [50]. Secondly, to better characterize the hetero-
geneity of PC, other clinical conditions could be included such as
invasion and metastasis. Thirdly, a wet lab validation for future
translation application should be carried out.

In conclusion, our study suggested 20 miRNAs as potential
biomarkers involved in the regulation of target genes crucial for
the onset and progression of PC. 8 out of 20 miRNAs (miR-615-
3p, miR-7-5p, miR-375, miR-92a-3p, miR-25-3p, miR-93-3p, miR-
122-5p, and miR-183-5p) seem to be common biomarkers in all
Gleason score and proposed as biomarkers for PC onset. The path-
ways ‘‘Extracellular-receptor interaction”, ‘‘Focal adhesion”, and
‘‘microRNAs in cancer” were significantly enriched by the differen-
tially expressed target genes of several of identified miRNAs.

miRNAs were identified as PC Gleason score-specific miRNAs:
miR-155-5p was identified in PC samples with Gleason score 6,
and miR-142-3p and miR-296-3p in PC samples with Gleason
score � 9.
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