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Abstract: Therapeutic proteins as biopharmaceuticals have emerged as a very important class of
drugs for the treatment of many diseases. However, they are less stable compared to conventional
pharmaceuticals. Their long-term stability in solid forms, which is critical for product performance,
depends heavily on the retention of the native protein structure during the lyophilization (freeze-
drying) process and, thereafter, in the solid state. Indeed, the biological function of proteins is directly
related to the tertiary and secondary structure. Besides physical stability and biological activity,
conformational stability (three-dimensional structure) is another important aspect when dealing with
protein pharmaceuticals. Moreover, denaturation as loss of higher order structure is often a precursor
to aggregation or chemical instability. Careful study of the physical and chemical properties of
proteins in the dried state is therefore critical during biopharmaceutical drug development to deliver
a final drug product with built-in quality that is safe, high-quality, efficient, and affordable for patients.
This review provides an overview of common analytical techniques suitable for characterizing
pharmaceutical protein powders, providing structural, and conformational information, as well as
insights into dynamics. Such information can be very useful in formulation development, where
selecting the best formulation for the drug can be quite a challenge.

Keywords: solid pharmaceuticals; lyophilization; analytical tools; protein characterization; protein
structure; formulation development; antibody; excipients; stable drug product; safe drug

1. Introduction

Biological drugs based on proteins as active substance, have emerged as a very im-
portant class of drugs offering promising alternatives for the treatment of many diseases,
such as various forms of cancer, autoimmune diseases, and hormonal disorders. Due to the
complexity of protein structures and their high susceptibility to aggregation, fragmentation,
and chemical modifications, successful drug development and production is extremely
challenging [1]. To increase the stability of proteins in solution, they are formulated as
solid pharmaceutical forms, the most common of which are lyophilizates (obtained by
lyophilization or freeze-drying process). Pharmaceutical proteins are subjected to various
stress conditions during the preparation of the lyophilization solution, during the time they
are dissolved in the solution prior to the initiation of lyophilization, and in the lyophiliza-
tion process where they are subjected to freezing, and primary and secondary drying. All
stress factors, in combination with selected excipients for the chosen formulation, can alter
the physical and/or molecular properties of the protein in solution or in the final solid
pharmaceutical form. If the native structure is not maintained during the lyophilization
process, this may be reflected in the unstable final product and, hence, in the product
quality, safety, and efficiency [2]. It is also known that proteins can easily fold back during
rehydration and exhibit native structures despite partial or complete unfolding in the solid
state [3,4]. Nevertheless, the protein may exhibit poor storage stability [5,6]. Therefore,
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preservation of the native structure in the dried state is crucial for adequate storage stability
of proteins [7,8].

Protein drug development is based on stability studies in which critical properties
of protein formulations are evaluated using various analytical methods. During these
studies, formulations containing proteins are subjected to various forms of stress, including
temperature, pH, and freezing, and their properties are monitored over time. The evo-
lution also depends on the choice of excipients, stabilizing agents to protect the protein
structure during freezing and drying, and the lyophilization cycle [9]. Usually, several
different excipients must be used because different or even opposite protective functions
are required. For example, buffers to reduce the pH consequences of concentration changes
during freezing [10], solutes that are preferentially excluded from the surface of the drug
pharmaceutical to protect against the effect of removal of local water during freezing [11],
and also surfactants that can reduce the surface denaturation of proteins during freezing
by reducing the ice-water interface [12]. Furthermore, carbohydrates are often added
because they can bind to the surface of biological material (the interactions involve hy-
drogen bonding) and thus protect against drying damage [13–15]. Carbohydrates with
higher molecular weight have less protective effect than smaller carbohydrates such as
sugars, as there are fewer free hydroxyl groups available to interact with protein. Therefore,
sugars, such as trehalose, which is known to be particularly effective in this regard [16,17],
and others have been used as very effective lyoprotectants. The molar ratio of excipient
to protein is also important in stabilizing the protein during lyophilization. In addition,
excipients that remain amorphous in the solid state have a better ability to prevent protein
aggregation. [18]

Solid-state characterization is currently less established. Usually, analytical methods
evaluate critical properties of the protein formulation in solution after reconstitution,
which is not necessarily indicative of adequate protein stabilization in the solid phase
and therefore cannot guarantee long-term stability of the pharmaceutical form. The less
frequent use of solid-phase characterization can also be attributed to the general lack of
high-resolution methods. Nevertheless, methods based on structural characterization
of proteins in solid form can evaluate both secondary and tertiary structure of proteins
in solid-state during formulation development. Thus, only relevant formulations that
are able to preserve the native structure of proteins in the solid state can be included
in stability studies. The use of such an approach can guide the development of solid-
state protein pharmaceuticals and reduce the risk of selecting unsuitable formulations for
stability studies as a basis for selecting the final formulation. However, there is a general
need for the development of appropriate high resolution analytical techniques for the
characterization of proteins in the solid state [19,20].

This review presents the most common analytical methods for the structural charac-
terization of proteins in solids (Figure 1), their basic principles, and a brief discussion with
selected examples for each method. For the characterization of protein secondary structure
in the solid state, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy,
and near-infrared spectroscopy (NIR) are the most commonly used methods. Solid-state
fluorescence and UV–Vis spectroscopy can be used to follow the tertiary structural changes
of proteins to some extent. Circular dichroism can be used to study both secondary and
tertiary protein structures by measuring the difference in absorbance. Solid-state nuclear
magnetic resonance (ssNMR) is used to characterize both structural and dynamic changes.
Differential scanning calorimetry (DSC) is useful for characterizing molecular mobility,
crystallization kinetics, degree of crystallinity and denaturation, and for determining glass
transition temperature (Tg). Dielectric relaxation spectroscopy (DRS) as a complementary
method to DSC can provide insights into protein dynamics, while X-ray diffraction (XRD)
analysis can be used to study the powder structure (amorphous/crystalline) of lyophilized
proteins. Moreover, recently developed methods based on mass spectrometry, such as
solid-state hydrogen-deuterium exchange mass spectrometry (ssHDX-MS), can be used
to study the protein structure and conformation in the solid state with high resolution.
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In addition to structural characterization, monitoring protein aggregation is also very
important for the stability, quality, safety, and efficiency of the final drug. Aggregation,
along with protein denaturation and surface adsorption, can affect the amount of native
protein and, thus, the activity of the drug. This review also presents two regularly used
techniques for the analysis of aggregated species: size-exclusion chromatography (SEC)
and dynamic light scattering (DLS) [21–23].
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Figure 1. The most common analytical techniques for the structural characterization of proteins in
solid pharmaceutical forms are presented with corresponding type of measurements. Changes in
secondary/tertiary structure and conformation can be studied on a global and local scale. Protein dy-
namics can also be traced using some of the above methods. FTIR—fourier transform infrared; NIR—
near-infrared; CD—circular dichroism; ss—solid-state, HDX-MS—hydrogen-deuterium exchange
mass spectrometry; DSC—differential scanning calorimetry; NMR—nuclear magnetic resonance;
DRS—dielectric relaxation spectroscopy.

2. Methods for Structural Characterization
2.1. Fourier-Transform Infrared Spectroscopy (FTIR)

Examination of protein secondary structure in the solid state immediately after
lyophilization can be very useful in predicting long-term storage stability. The preser-
vation of native structure in the dried state can be directly correlated with the prevention
of aggregation and protection of activity of labile proteins after rehydration [3]. Infrared
spectroscopy is one of the fundamental and most widely used analytical techniques for
characterizing protein secondary structures, both in solution and in the solid state. Modern
infrared spectrometers are usually Fourier transform infrared (FTIR) spectrometers, since
the detector signal is Fourier transformed into the measured spectrum. FTIR spectroscopy
can be used to monitor the conformational stability of proteins both prior to lyophilization
and after reconstitution, as well as in the lyophilized solids. It is a rapid method, but
has some limitations due to water (if present in the sample), which can interfere with the
FTIR spectra. Moreover, formulations containing various excipients may be too chemically
complex for interpretation. Nevertheless, Fourier transform infrared spectroscopy (FTIR) is
a very popular method for studying the loss of native structure or the degree of disruption
of secondary structure during freeze-drying of proteins.

Multiple vibrational modes in the mid-infrared range are common for proteins because
the amide bonds form the backbone of the protein [24]. The vibrational mode most com-
monly studied for the analysis of the secondary structure of proteins is the amide I region
(1650 cm−1) [24,25]. It is directly related to the conformation of the backbone and originates
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mainly from the C=O stretching vibration with minor contributions from the C–N stretching
vibration (Figure 2) [26,27]. In addition, the amide region II (1550 cm−1) can also provide
useful information about changes in secondary structure derived mainly from in-plane N–H
bending [28,29]. Characteristic frequency shifts can be observed depending on the hydrogen-
bonding pattern of the amide bonds. This pattern is closely related to the type and amount of
structural elements, such as α-helix, β-sheets, and γ-turns [27]. From this information, the
secondary structure can usually be deduced. Even though amide I is the region of choice for
protein conformational investigations the band arising from water can interfere with protein
bands. For protein samples with higher water content, the water-insensitive region amide III
(1300 cm−1) is preferable for secondary structure analysis. Since proteins are composed of sev-
eral different secondary structure types, infrared spectra usually consist of many overlapping
bands originating from the different structure types. These overlapping bands are difficult to
resolve and often result in a single broad amide band. Therefore, mathematical manipulations
must be applied to obtain useful structural information. The most commonly used method
is spectral derivative (second), which narrows the band and improves the resolution of the
signal [30]. There is often some band broadening in the FTIR spectra of freeze-dried proteins.
On the other hand, there are also shifts in the band position and intensities of the amide
I spectral components due to the physical environmental changes. The shifts can be very
significant [7,31]. The formation of protein aggregates, which may be associated with the
formation of strongly hydrogen-bonded, antiparallel intermolecular β-sheet structures [32],
is closely associated with evidence of the formation of bands around 1620–1625 cm−1 and
around 1680–1700 cm−1 [3,31].
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Figure 2. Second derivative FTIR (fourier transform infrared) spectra of lyophilized lactate dehydro-
genase (LDH). Different types of secondary structures are shown, as well as different % of remaining
LDH activity after reconstitution. Reproduced with permission from [24], Elsevier, 2013.

Several studies have been published on structural changes in lyophilized protein
formulations using FTIR spectroscopy. Xu et al. predicted protein degradation rates in
glassy solid matrices [33], several studies have been published on structural changes in
lyophilized protein formulations using FTIR spectroscopy. Xu et al. predicted protein
degradation rates in glassy solid matrices [34]. In addition, interpretation of Gaussian
deconvolution of amide bands provided insights into estimating the content of secondary
structure elements (α-helix and β-sheets) [35]. FTIR was also used to study the effects of
mannitol content, for example in the spray-dried antibody formulations [36]. It was used
to monitor the effects of sucrose and sorbitol in lyophilizates [37], and for a comparison
between different sucrose contents (Figure 3) in selected antibody solids (freeze-dried,
foam-dried and spray-dried) [38]. Prestrelski et al. also studied the preservation of native
protein structure by disaccharides in the solid state. The infrared spectra of proteins in
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the pre-lyophilized, lyophilized, and rehydrated states were similar in the presence of
disaccharides, except for some formulations containing mannitol [4]. In general, increasing
the carbohydrate content in lyophilized formulations resulted in higher intensity of FTIR
bands [34]. Samples for FTIR analysis are usually prepared as pellets containing KBr
(approximately 5% of the protein), which may have some disadvantages. One of them is
aggregation, which can occur during sample separation preparation. Therefore, attenuated
total reflectance (ATR) mode has recently emerged as a prominent alternative that is being
used more and more frequently [39].
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Figure 3. Second derivative FTIR spectra of immunoglobulin G1 (IgG1) in solid form in two different
formulations with sucrose—sucrose:IgG1 = 4:1 (A) and sucrose:IgG1 = 1:4 (B). Formulations with
higher sucrose content show better stability and thus preservation of the native secondary structure.
Reproduced with permission from [33], Wiley, 2007.

Although infrared spectroscopy is a very useful analytical tool for characterizing
freeze-dried proteins (Figure 4), it also has some disadvantages, such as low resolution,
semi-quantitative measurement, and poor ability to predict degradation in the solid state.
In addition, FTIR can only measure global protein conformations and is unable to monitor
local changes that may affect stability. Aggregation, which can occur due to tertiary
structural changes, also cannot be detected by infrared spectroscopy, demonstrating the
need for a method with better resolution that can measure other than just global secondary
structural properties [37,40–43].
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Figure 4. Second derivative FTIR spectra of lyophilized antibody formulations with different ex-
cipients used. The ratio between the sugars and the antibody is 1:1. Native structure spectra were
recorded with pure antibody in 5 mM phosphate buffer at pH 7. Reproduced with permission
from [41], Elsevier, 2005.

2.2. Near-Infrared Spectroscopy (NIR)

Although Fourier transform infrared spectroscopy (FTIR) is the method of choice, near-
infrared spectroscopy (NIR) is increasingly used as an analytical tool to study the secondary
structure of proteins. It is one of the most valuable non-destructive and non-invasive
analytical methods that has found extensive application in the study of pharmaceutical
secondary structures [44–47]. As a non-destructive method, NIR is of particular interest
for the study of lyophilized amorphous solid formulations that are prone to moisture
absorption [48]. NIR also has several advantages over FTIR and Raman spectroscopy
for characterizing protein structure in solids. Unlike FTIR, the instrument does not need
to be purged with nitrogen gas, as moisture content tends to show weak interference
in NIR spectra. In addition, the experiment time to acquire an NIR spectrum of the
analyzed sample is usually no more than 2 min per sample which is quicker than FTIR
and much more quicker than Raman [46,49]. Furthermore, there is no sample preparation
and no hazardous chemicals are used. In contrast to Raman, samples are preserved
during NIR measurements and can be recovered after the analysis (Raman uses laser
light that usually damages proteins in samples). While FTIR analyzes require extensive
data manipulation to obtain relevant information about protein structure, this is not the
case with NIR analyzes [44]. The low absorptivity of water in the NIR range allows
for much longer optical path lengths compared to infrared spectroscopy (from 0.5 mm
up to 10 mm) [50]. It also allows measurement in reflectance mode, so spectra can be
collected directly from the lyophilization vial. NIR can also be used to obtain information
on the crystallinity of samples, as well as to determine the residual moisture content in
lyophilizates when studying their effect on stability [44,49,51]. As a method, NIR has
several advantages over Karl Fischer moisture determination. One of them is undoubtedly
that it is a non-destructive analytical tool. Therefore, the same sample can be subjected to a
different method for stability studies, thus providing a direct correlation between residual
moisture and stability [52–54].

Bai et al. investigated the secondary structure of proteins in lyophilized formula-
tions using nondestructive NIR spectroscopy (Figure 5) [51]. In general, different protein
secondary structures yield different NIR spectra [55]. Using band narrowing techniques,
such as second derivative, we can gain some insight into the correlation between protein
absorption bands and different secondary structure elements [56]. For example, the amount
of intramolecular hydrogen bonding can predict the conformational stability of a protein
in the solid state. A properly folded protein will have many more intramolecular hydrogen
bonds, as reflected by a decrease in amide II band frequency [57,58].
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In the spectra of lyophilized proteins, bands near 4369 and 4604 cm−1 can be associated
with an α-helical structure, while β-fold structures are associated with bands at 4323, 4417,
and 4525–4535 cm−1 [47,56]. It has also been documented that loss of α-helix structure due
to exposure to higher temperatures can lead to an increase in β-sheet structure [3,47,56].
NIR has also been shown to be useful for monitoring protein conformation and stabil-
ity throughout the entire lyophilization process, i.e., from solution to final solid drug
product [59,60]. Near-infrared spectroscopy can be a promising alternative to infrared
spectroscopy in the biopharmaceutical industry in the development of lyophilized protein
pharmaceuticals. It has several advantages over FTIR and Raman spectroscopy, the most
important of which are collection of spectra in less than a minute, no sample preparation,
and no opening of vials. On the other hand, this method needs further research to be
used as a routine method for in-line monitoring of protein secondary structure during
lyophilization process.

2.3. Raman Spectroscopy

Raman spectroscopy often complements infrared analysis because it provides informa-
tion about molecular vibrations and is useful for studying different states of aggregation of
biopharmaceutical samples. Similar to infrared spectroscopy, Raman spectroscopy provides
sample signature spectra in the fingerprint range. There is also no sample preparation,
making it a relatively simple technique compared to some other spectroscopies. Unlike
infrared spectroscopy, Raman spectroscopy is based on inelastic scattering. The Raman
Effect occurs when a beam of intense radiation, typically from a laser (green, red, etc.),
passes through a sample. The protein molecules experience a change in molecular polariz-
ability as they vibrate. The change in polarizability yields information about the peptide
backbones and secondary structures of the proteins. Two major advantages of Raman
spectroscopy compared to FTIR are the weak scattering and reduced noise due to water.
Consequently, in addition to the solid state, proteins can also be studied in their native
(aqueous) state [61–63]. Typical regions in Raman spectra associated with the components
of the secondary structure are the amide I region for the α-helix structure (1600–1700 cm−1),
the amide III region (1230 to 1340 cm−1) and C–C stretching bands (890–1060 cm−1) of
the protein backbone (Table 1) [64]. The amounts of secondary structure present in the
solid protein sample, as measured by Raman spectroscopy in the amide I region, have
shown a good correlation with the storage stability of the lyophilizates. However, Raman
spectroscopy has also been shown to be a useful tool for screening excipients in formulation
design [27,65,66]. Better structure retention has been observed for protein formulations
with higher amounts of carbohydrate excipients, such as disaccharides (Figure 6). The
significant change in the 1100 cm−1 can be attributed to direct correlation of this region
with protein unfolding.
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Table 1. Characteristic amide band frequencies and their associated secondary structures [64].

Frequency of the
Band (cm−1) Amide Region Vibrations Type of 2nd

Structure

1680
1670–1680
1650–1655

1640

Amide I H-bonded C=O
stretch

β-Turn
β-Sheet and β-barrel

α-Helix
Loose β-sheet

1300–1340
Amide III N–H and C–H bend

α-Helix
1260 Disordered

1235–1250 β-Sheet

930–950 Backbone N–Cα–C stretch α-Helix
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Using Raman spectroscopy, Hedoux et al. investigated structural changes caused
by lyophilization, and they observed minor changes in terms of protein structure during
freezing and rehydration [67]. It was also shown that the spectral changes were mainly
caused by vacuum-induced dehydration. Formulations with mannitol as excipient were
studied by in-line Raman spectroscopy [68]. The aggregation processes of various proteins
were also determined by Raman spectroscopy [69–71].

Nevertheless, there are also some limitations to the analysis of the secondary structure
of proteins by Raman spectroscopy. The laser light can heat the samples locally and
damage them. Therefore, the measurements must be performed relatively quickly [66].
Fluorescence noise originating from the sample or impurities can also interfere with the
Raman signals.

2.4. Solid-State UV–Vis Spectroscopy

UV–Vis spectroscopy allows to study the tertiary structure of proteins and to follow
their changes. By using the second derivative of UV spectroscopy, the aromatic residues
and their surroundings in proteins can be studied. The main peak of proteins between 240
and 300 nm consists of several spectra that overlap in a final broad peak in the zero-order
spectra. These spectra are mainly formed by the absorption of the residues phenylalanine
(245–270 nm), tyrosine (265–285 nm), and tryptophan (265–295 nm) [72,73]. Due to the
overlap of absorption peaks, UV–Vis spectroscopy has often been limited in the charac-
terization of proteins. By using second derivative analysis as a resolution enhancement
technique (as was already done with FTIR), many individual peaks can be derived from
the raw spectra with multiple components (Figure 7) [74,75].
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The position of the peaks in the second derivative spectra correlates well with the polar-
ity of the microenvironment of the aromatic amino acids and, thus, conformational changes
within the protein [76,77]. Therefore, UV–Vis spectroscopy with second derivative processing
can be very useful for characterizing the tertiary structure of proteins. Shifts to shorter wave-
lengths usually indicate increased polarity of the aromatic amino acid microenvironment [78].
On the other hand, the intensity of the peaks can also provide useful structural information.
Derivative intensities can be used to calculate amino acid content [72,79], and the so-called
a/b ratio is used to evaluate the exposure of tyrosine to bulk solvent [76]. In recent years,
the sensitivity of UV–Vis spectroscopy has also greatly increased and now second-derivative
negative peaks can be measured with a resolution of up to 0.01 nm, providing a very sensitive
tool to study protein conformational changes [78,80,81]. Second derivative UV–Vis spectra can
also provide us with information about the perturbations of the tertiary structure of proteins
as a function of various conditions, such as pH (Figure 8), temperature, ionic strength, and
other factors [81–83]. Temperature dependence of second-derivative peak positions has been
widely used as a tool to study the thermal unfolding of proteins. Shifts to lower wavelengths
at elevated temperature usually indicate increased exposure of the aromatic side chains to
the solvent. Another example is the study of aggregation behavior as a function of pH and
temperature [84].
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2.5. Solid-State Fluorescence Spectroscopy

Despite the fact that altered secondary structure in proteins directly implies loss of
tertiary structure, preserved secondary structure does not confirm retention of tertiary
structure. Therefore, it is crucial to systematically study the tertiary structure of proteins
as well. Recent literature has shown that solid-state fluorescence spectroscopy can be a
useful tool to study the tertiary structure of proteins in solid dosage forms, and that tertiary
structure correlates with long-term stability [85–89].

In solid-state fluorescence, the molecules of proteins are excited to a wavelength corre-
sponding to their excitation maximum. Light is then emitted during the transition from the
excited state back to the ground state. Aromatic amino acids present in proteins provide
intrinsic fluorescence signals that can be measured, and they provide useful information
about tertiary structure. The most common is tryptophan fluorescence, which is often used
to check the integrity of the tertiary structure of proteins [90,91]. Solid-state fluorescence
has been used to study the unfolding of proteins in different environments such as pH,
temperature, and buffer excipients to provide direct information on the degradation of
freeze-dried proteins (Figure 9) [85,89]. In another study, a monoclonal antibody freeze-
dried with sucrose as an excipient and stored at a higher temperature showed decreased
fluorescence intensity as well as quite large aggregation [86]. Proteins can also be deriva-
tized with fluorescent probes to detect protein aggregates. In this case, the sensitivity of
solid-state fluorescence is increased at wavelengths characteristic of the probes [92].
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Figure 9. Solid-state (ss) fluorescence study of temperature stress effect on lyophilized protein
stability. Subfigure (A) presents the fluorescence spectra at various time points during incubation
at 60 ◦C. The decrease in intensity can be clearly observed. Further, the subfigure (B) presents the
absolute fluorescence intensity versus time Reproduced with permission from [85], Elsevier, 2008.

Strong background scattering of lyophilized protein powders with high optical density
may prove to limit solid-state fluorescence. This problem can usually be avoided by ana-
lyzing samples in front-face mode. Another disadvantage of solid-state fluorescence is its
sensitivity, which depends on the position of the aromatic amino acids in the protein tertiary
structure. This can be solved by co-lyophilization of proteins with chromophores [93].

2.6. Circular Dichroism (CD)

Circular dichroism (CD) measures the difference in protein absorbance for left- and
right-handed circularly polarized light. The difference in absorbance is due to the interac-
tion of protein chromophores with the chiral environment [94]. Typical applications with
CD analysis include estimating the content of protein structures (secondary and tertiary)
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and detecting conformational changes in a protein due to changes in the environment (pH,
excipients, addition of denaturants, and temperature) [83,95–97]. CD can measure in both
the near-UV CD region (310–255 nm) and far-UV CD region (below 250 nm) of the spectra.
Tryptophan, tyrosine, phenylalanine, and cystine contribute to the signals in the near-UV
CD spectra. The signals provide direct information about the tertiary structures of the
proteins. On the other hand, peptide-amide bonds contribute to the signals in the far-UV
CD spectra. These signals reflect the secondary structure of the protein, i.e., α-helixes,
β-sheets and γ-turns [98].

Liu et al. investigated the forced oxidation of proteins by hydrogen peroxide. The
data obtained clearly indicate disruptions in the tertiary structures. On the other hand,
most of the secondary structure was retained [99]. Harn et al. also studied proteins with
CD, but as a function of temperature. Increasing the temperature at rather small intervals
carried out thermal studies. The changes in the relative content of the β-sheet structure
of the protein were observed. It was shown that one antibody had better stabilization
than the other at the same protein concentration [100]. CD has also been used as a tool
to monitor the aggregation of antibodies to assess the stability of therapeutic proteins
during process development, formulation development and product characterization [101].
Similarly, Vermeer and Norde used CD in combination with other techniques, such as DSC,
to assess the thermal stability of immunoglobulin, its unfolding and aggregation [102].
Ramachander et al. also used CD as an additional method to solid-state fluorescence
spectroscopy to analyze changes in the secondary and tertiary structure of the reconstituted
protein (Figure 10) [85].
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Figure 10. Circular dichroism (CD) spectra for reconstituted lyophilized protein incubated at two
different temperatures. Changes in tertiary structure are seen in the near-UV CD spectra on the
left, while changes in secondary structure are shown in the far-UV CD spectra on the right. Red
spectra—lyophilized protein (control), green spectra—incubation at 37 ◦C, pink spectra—incubation
at 60 ◦C. Reproduced with permission from [85], Elsevier, 2008.

Circular dichroism experiments are typically measured in solution, i.e., water or buffer
with a pH from 2 to 12. In recent years, there has also been the option for measurements in
solid-state mode, which could be quite useful for studying lyophilized protein pharmaceu-
ticals [103,104]. Further, there are several interesting works dealing with solid-state CD,
such as the study by Kawamura et al. on L- and D-serine in combination with solid-state
NMR and density functional theory (DFT) [105]. Moreover, Bak et al. studied the effect of
high pressure treatment on soluble proteins [106].
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2.7. Solid-State Nuclear Magnetic Resonance Spectroscopy (ssNMR)

Solid-state nuclear magnetic resonance spectroscopy is a powerful method for struc-
tural characterization as well as for studying the dynamics of lyophilized protein pharma-
ceuticals [107,108]. With ssNMR, proteins can be analyzed with atomic-level resolution.
However, the random orientations of proteins in solid form limit the use of ssNMR to
provide high-resolution structural information. 1H (proton) and 13C (carbon) are the two
most commonly used nuclei in NMR spectroscopy. Normally, large magnetic fields are
preferred as they offer increased sensitivity.

With ssNMR, relaxation measurements can be performed on dried protein formula-
tions, with very good correlations between relaxation times and pharmaceutical stability
in solid formulations, even in the long-term range [109–114]. In addition to chemical
analysis, ssNMR determines molecular mobilities over a wide range of time scales for
β-relaxation: via spin-lattice relaxation times (T1) on a picosecond-nanosecond time scale
and spin-lattice relaxation times in a rotating frame (T1ρ) on a microsecond-millisecond
time scale. Whereas T1p is measured in a rotating frame, the T1 is measured in a laboratory
frame [115,116]. ssNMR spectroscopy can also be used to study the interactions between
proteins and excipients by measuring the differences in chemical shifts in different for-
mulations. A nice example can be found in the work of Lam et al. in which the stability
of lyophilized formulations, containing lactose and trehalose as excipients, was studied
(Figure 11) [116]. The addition of sugars reduced the relaxation rates, whereas the presence
of moisture increased them. Although changes in T1p may be random and rather small,
they usually provide information about the long-term stability of proteins in the solid state,
since relaxation times are directly related to the frequencies of molecular motion. In general,
lower values for the relaxation times represent greater long-term stability of the measured
sample. In addition, Separovic et al. found strong correlations of T1 relaxation times with
changes in protein aggregation and activity [117]. Yoshioka’s group also extensively stud-
ied the molecular dynamics of proteins using ssNMR spectroscopy. They showed a good
correlation of relaxation times with aggregation rates of freeze-dried proteins [118–120].
Furthermore, Tian et al. have shown that the stability provided by arginine in freeze-dried
antibody products is due to non-covalent interactions between the arginine side chain
and the protein [31]. The study of protein relaxation times using ssNMR can also be used
to predict storage stability in the solid state, as there is a very good correlation between
ssNMR data and long-term storage stability [89].
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2.8. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) is one of the most common techniques for
characterization of freeze-dried protein drugs [121]. It is commonly used as a comple-
mentary method to spectroscopic and chromatographic characterization of proteins in
the solid state [122]. The method consists of heating and cooling the sample together
with a reference, measuring the difference in the amount of heat required to raise the
temperature of the sample and reference. The difference is measured as a function of
temperature, maintaining similar temperatures for the sample and reference [123]. DSC is
a widely used technique for studying the unfolding of protein secondary structures and for
characterizing the conformational stability of proteins under various conditions. DSC can
be used in both solid and liquid states. Nano differential scanning calorimetry (nanoDSC)
is used to analyze liquid samples of protein formulations. Lyophilized proteins are usually
dissolved in buffers with pH around neutral, but water can also be used. From the heat
capacity curve, the melting temperature (Tm), as well as the calorimetric enthalpy (∆Hm)
and entropy (∆Sm) of the unfolding process can be accessed. For example, nanoDSC has
been used to determine the melting temperature of proteins with FTIR spectroscopy [124].
On the other hand, DSC is more commonly used to study solid samples of protein formu-
lations. While the unfolding of proteins produces endothermic peaks, their aggregation
is shown to be an exothermic event. Moreover, in the study by Pikal et al. aggregation
could be correlated with the loss of secondary structure and a decrease in the area under
the denaturation endotherm. This process was reversible with trehalose as an excipient in
the formulations [122]. By comparing the melting temperatures (Tm) of different protein
lyophilizates, insights can be gained into their different secondary structures. DSC can also
be used to optimize lyophilization parameters, ultimately resulting in a better appearance
of the lyophilized protein cake. For example, Han et al. investigated the effect of sucrose
and mannitol. It was found that the addition of sucrose to the formulations resulted in an
upward shift in melting points, thus providing protection, while the addition of mannitol
did not show the same benefit [125]. Ihnat et al. also investigated the effects of various
excipients on the thermal stability of lyophilized protein samples [126].

Interestingly, protein stability does not always correlate well with glass transition
temperature (Tg) values [127]. On the other hand, formulations stored above their Tg are
generally less stable than those stored below. While storage below the Tg is necessary, it
is not always sufficient to ensure stability. Therefore, when evaluating protein stability in
lyophilized formulations, DSC characterization should be accompanied by other analytical
methods [6,128,129]. In addition, modulated DSC (mDSC) can resolve total heat flow into
thermodynamic (reversal) heat flow and kinetic (non-reversal) heat flow. For example,
the enthalpy relaxation endotherm (kinetic) can be separated from the glass transition
event (thermodynamic) [130]. Therefore, mDSC is particularly useful for detecting Tg
present with other overlapping thermal events (glass transition) [131]. Therefore, mDSC is
particularly useful for detecting Tg present with other overlapping thermal events (glass
transition) [132], to correlate eutectic temperature (lowest possible melting temperature
over all of the mixing ratios for the involved component species) events leading to cake
collapse [133] and to study the effects of annealing on the thermal properties of frozen
sucrose solutions [134–136]. It was also used as an additional method to ssHDX-MS for the
analysis of the conformation of lyophilized IgG1 (Table 2) [137].
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Table 2. The effect of sucrose and histidine as excipients on Tg is presented in the table. The moisture
content was measured by Karl Fischer titration [137].

Formulations pH Sucrose/mAb
Ratio (w/w)

Histidine/mAb
Ratio (w/w)

Moisture
Content Tg

5H2 5 2:1 2.82 ± 1.31 94
5S1 5 1:1 2.72 ± 0.24 ND

5S1H0.5 5 1:1 0.5:1 1.67 ± 0.77 90
5S1H1 5 1:1 1:1 2.57 ± 0.01 90

6H2 6 2:1 2.79 ± 0.67 106
6S1 6 1:1 2.01 ± 0.22 93

6S1H0.5 6 1:1 0.5:1 1.60 ± 0.39 95
6S1H1 6 1:1 1:1 1.95 ± 0.38 101

H2 6.8 2:1 0.99 ± 0.34 105
S1 6.8 1:1 1.10 ± 0.03 ND

S1H0.5 6.8 1:1 0.5:1 2.55 ± 0.13 94
S1H1 6.8 1:1 1:1 2.12 ± 0.76 98

2.9. Dielectric Relaxation Spectroscopy (DRS)

Dielectric relaxation spectroscopy (DRS) is a thermoelectric technique for studying
changes in the conformational dynamics of proteins. It is a useful analytical tool that can
complement calorimetry. It is a non-invasive method that characterizes protein motions
over a frequency range from 10–5 to 1011 Hz. DRS determines the time dependence and
extent of electrical polarization processes by measuring the speed and extent of polariz-
ability of a material placed in a weak and sinusoidal oscillating electric field [138–140].
The wide frequency range allows the study of slow and hindered macromolecular os-
cillations, restricted charge transfer processes, as well as relatively fast reorientations of
small molecules or side-chain groups. Thus, the method can distinguish relatively well
between groups involved in global and local dynamics. This is very important because
protein dynamics involves many different types of motion, both local and more global,
including transitions between multiple conformational substates. More specifically, DRS
reflects the mobility of molecular dipoles and is able to directly capture the time scale of
molecular motions. High-frequency studies, for example, refer to specific dipole reorienta-
tion polarizations, and are directly linked to the microscopic structure of the solid sample.
Thus, the dipoles act as molecular probes that can provide information about the structural
properties of the sample. In addition, DRS can provide information on protein structure,
primary and secondary molecular motions (dynamics), water content, and its state (bound
or free). The dielectric analysis of water in pharmaceutical systems is typically done in the
high-frequency region. [134,141,142].

Different lyophilized protein formulations with variable amounts amount of sugar
and protein drug were analyzed by E. Mozine et al. using DRS. Significant differences in
dielectric relaxation times and activation energies were observed [134,138,139]. In addition,
DRS can also be used to study the correlation between temperature and relaxation kinetics.
Thus, the dielectric measurements of samples are performed over a range of temperatures.
Furthermore, the molecular mobility of freeze-dried protein pharmaceuticals under the
Tg was measured in relation to stability during storage. In general, a longer relaxation
time for sucrose and trehalose formulations was associated with better stability [22]. In
addition, studies of the hydration effect on protein dynamics in the lyophilizates were
performed using DRS analysis (Figure 12) [140,143]. Nevertheless, the correct assignment
of the DRS spectra of the hydrated solid-state pharmaceuticals can be challenging because
the relaxation kinetics of water and protein drug can overlap. Therefore, the moisture
present in the samples generally poses a problem and additional studies may be required
to use DRS as an analytical tool in the development of drug formulations.
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2.10. X-ray Diffraction (XRD)

Diffraction analysis based on X-ray light is a widely used analytical technique to
study the physical state of materials, which has been used in drug research and de-
velopment for many years. It is a method of choice for three-dimensional structural
analysis of proteins in the solid state. The technique provides information on powder
structure (amorphous/crystalline) and internal surface structure for better understanding
of structure–function relationship of proteins and their interaction with various factors
in their environment. Changes in the crystalline form of protein pharmaceuticals may be
reflected in changes in solubility, which has implications for bioavailability. In addition,
changes in the formulation matrix can affect the stability of lyophilized proteins [144–146].
In X-ray powder diffraction (XRD), an X-ray beam is incident on a single crystal and scat-
tered at different angles. The intensities and angles at which the X-rays are scattered allow
the electron density in the crystal to be determined, which in turn leads to the derivation
of a three-dimensional structure of the crystal. Thus, XRD is ideally suited to monitor
the evolution of crystallinity as well as changes in the crystalline forms of lyophilized
protein pharmaceuticals.

Crystallization of the components in the lyophilized proteins formulations can be in-
duced, for example, by lowering the temperature during the lyophilization cycle [147,148].
Crystallization of the formulations may result in individual components not having the
same physical form as present in the starting materials. For example, an excipient may crys-
tallize or remain amorphous. When the excipient crystallizes, there are several possibilities,
such as crystallizing a polymorphic form or a hydrate of the starting form. These forms
have already been observed in various formulations, demonstrating the need to also exam-
ine the lyophilized protein pharmaceuticals also by powder X-ray diffraction. Such changes
in the form of excipient may lead to degradation of proteins as active species in the formu-
lations. There are several studies on the behavior of excipient mannitol with XRD as the
analytical technique used. Mannitol is a very good example, as it can exist in at least three
polymorphic forms, an amorphous form and a hemihydrate form (Figure 13) [149–154].
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investigated by XRD analysis published another interesting study. It was shown that 
various amphiphilic excipients, such as polyethylene glycol (PEG), act as good stabilizers 
for lyophilized proteins when dispersed in a sugar-dominated matrix [17]. 
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to measure protein structure, interactions with excipients, and to study the conformation 
of proteins in lyophilized powders. Results are usually obtained with relatively high 
resolution and the method is characterized by a very good correlation between deuter-
ium exchange and physical stability during storage [43,165]. In practice, freeze-dried 
protein samples are exposed to D2O in the vapor phase at controlled relative humidity, 
vapor pressure, and temperature for varying lengths of time. This is often done in a des-
iccator containing deuterium oxide. Samples are then rapidly reconstituted under 
quenched conditions (usually in acidic buffer with a pH around 2.5) and subjected to 
liquid chromatography-mass spectrometry (LC/MS) analysis with or without proteolytic 
digestion. If digestion is performed prior to analysis of the samples using LC/MS, infor-
mation on deuterium uptake can be obtained with peptide-level resolution. Such an ap-
proach is often used with HDX-MS in solution [166–168]. Then, the extent of deuterium 
uptake by the protein and its peptide fragments is measured as a function of time using 
mass spectrometry [20,169]. Indeed, hydrogen atoms can be exchanged for deuterium 
upon exposure to D2O. On the other hand, they can also be exchanged again, so that only 
the hydrogen atoms on the amide backbone can be analyzed by mass spectrometry. Such 
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In a recent study by Norrman et al., the structure in insulin formulations was investi-
gated. In these formulations, protamine was co-crystallized with insulin. XRD analysis
showed that protamine acts as a charge balancer and does not specifically bind to in-
sulin [155]. Izutsu et al. in which the stabilizing effect of amphiphilic excipients and sugars
was investigated by XRD analysis published another interesting study. It was shown that
various amphiphilic excipients, such as polyethylene glycol (PEG), act as good stabilizers
for lyophilized proteins when dispersed in a sugar-dominated matrix [17].

2.11. Solid-State Hydrogen-Deuterium Exchange Mass Spectrometry (ssHDX-MS)

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) has recently emerged
as a very useful and efficient method for studying protein conformation and interactions
with excipients in the solid state, as well as for predicting physical stability. As a high-
resolution method for analysis in solution, HDX-MS has been used for many decades to
study protein structure, conformation, stability, solvent exposure and dynamics [156–160],
as well as protein folding and ligand binding [161]. It measures the kinetics of deuterium
uptake in both the intact protein and its peptic fragments [162]. HDX-MS as a technique
consists of exposure of the protein to D2O, whereupon the rate as well as extent of deu-
terium incorporation is recorded as a change in mass (m/z) [163,164]. Similarly, solid-state
hydrogen-deuterium exchange mass spectrometry (ssHXD- MS) can be used to measure
protein structure, interactions with excipients, and to study the conformation of proteins
in lyophilized powders. Results are usually obtained with relatively high resolution and
the method is characterized by a very good correlation between deuterium exchange and
physical stability during storage [43,165]. In practice, freeze-dried protein samples are
exposed to D2O in the vapor phase at controlled relative humidity, vapor pressure, and
temperature for varying lengths of time. This is often done in a desiccator containing deu-
terium oxide. Samples are then rapidly reconstituted under quenched conditions (usually
in acidic buffer with a pH around 2.5) and subjected to liquid chromatography-mass spec-
trometry (LC/MS) analysis with or without proteolytic digestion. If digestion is performed
prior to analysis of the samples using LC/MS, information on deuterium uptake can be
obtained with peptide-level resolution. Such an approach is often used with HDX-MS in
solution [166–168]. Then, the extent of deuterium uptake by the protein and its peptide
fragments is measured as a function of time using mass spectrometry [20,169]. Indeed,
hydrogen atoms can be exchanged for deuterium upon exposure to D2O. On the other
hand, they can also be exchanged again, so that only the hydrogen atoms on the amide
backbone can be analyzed by mass spectrometry. Such analysis can provide insight into
the intra- and intermolecular hydrogen bonding interactions in the formulation matrix.
These interactions can strongly influence the physical stability of the protein drug [170].
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Although HDX-MS is a relatively new analytical technique, there are already several
examples of its application to the study of protein-based pharmaceuticals in solid form.
French et al. studied spray-dried powders with HDX and FTIR, taking advantage of iso-
topic shifts in the amide bands [171]. Desai et al. used HDX with proton NMR analysis
to study the protein structure of pancreatic trypsin inhibitor in the lyophilized state [172].
ssHDX was also used to study hydration in lyophilized myoglobin. The extent of HDX in
solids is related to hydration of the exchangeable amide groups and protein conformation
and dynamics. By using pepsin digestion, mapping with resolution at the peptide level can
also be achieved [173]. In addition, the kinetics of HDX were also investigated, suggesting
that it is useful for detecting non-native species in protein formulations that cannot be de-
tected by other methods, such as FTIR [174]. Moorthy et al. used ssHDX to predict protein
aggregation of myoglobin in lyophilized formulations. They showed a better correlation
with the extent of aggregation for ssHDX compared to FTIR band intensity [43]. Similar
results were obtained by examining the conformation and aggregation of a monoclonal
antibody IgG1 (immunoglobulin G1) (Figure 14). Interestingly, protein aggregation de-
creased when histidine was added to formulations containing sucrose. However, these
results did not correlate with structural or conformational changes observed by FTIR or
HDX-MS [137]. Wilson et al. used ssHDX- MS to investigate the effects of processing
conditions and excipients on protein structure and physical stability. The results obtained
show, among other things, how this method can be used as a tool not only for predicting
stability but also for developing more robust protein formulations [175].
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Figure 14. Time dependence of deuterium exchange for lyophilized monoclonal antibody in several
different formulations (exposure to D2O vapor at 11% RH and 22 ◦C). Formulations: M3, mannitol
3:1; M1, mannitol 1:1; S6, sucrose 6:1; S3, sucrose 3:1; S2.7, sucrose 2.7:1; S1, sucrose 1:1; T3, trehalose
3:1; T1, trehalose 1:1; H3, histidine 3:1; H2, histidine 2:1; NE (no-excipient), without excipient. Ratios
represent excipient/antibody w/w ratio. Reproduced with permission from [137], ACS, 2018.

Solid-state HXD-MS as a characterization tool can be very useful for solid-state protein
stability studies, providing information at higher resolution than other conventional meth-
ods [176]. While conventional analytical tools can detect differences between processes
and formulations, there is no good correlation with the physical stability of proteins. On
the other hand, ssHDX-MS shows a greater correlation to physical stability. Usually, a
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more stable sample has a lower maximum deuterium retention (Dmax) and peak area.
Furthermore, ssHDX can also be used to study population heterogeneity within a protein
formulation. For example, spray-dried formulations have shown better heterogeneity
compared to the corresponding lyophilized samples. Although ssHDX- MS has proven to
be a useful tool for predicting the stability of solid pharmaceutical proteins, it can also be
used to develop more robust protein formulations.

3. Methods for Aggregation Studies
3.1. Size-Exclusion Chromatography (SEC)

As a loss of higher order structure, protein denaturation can occur and lead to aggrega-
tion or chemical instability. When the protein is denatured (partially or completely), more
hydrophobic parts are exposed, as well as greater flexibility of the whole molecule [177,178].
However, aggregates and denatured protein species may still have a considerable amount
of secondary structure and are therefore indistinguishable from native species using tech-
niques such as FTIR spectroscopy [95]. This could be due to the lack of sensitivity of
FTIR spectroscopy, combined with secondary structural changes in only small parts of the
protein leading to aggregation [36]. Because spectroscopic techniques provide only general
information about the overall secondary structure of the sample, aggregation could also be
caused by a change in the secondary structure of only a small population of molecules that
may not be detected [39]. Therefore, significant parts of the secondary structure are retained
upon aggregation and only changes in tertiary structure may occur. Finally, proteins in
lyophilized pharmaceuticals can aggregate without any detectable change in secondary
structure [179].

Size-exclusion chromatography (SEC) has emerged as the method of choice for
the detection and study of protein aggregation, particularly for drug discovery appli-
cations [176,180,181]. SEC can separate protein species based on their hydrodynamic
size under native conditions. SEC columns can be used in both high-performance liquid
chromatography (HPLC; formerly called high-pressure liquid chromatography) and ultra-
high-performance liquid chromatography (UHPLC). Although primarily intended for the
detection of soluble aggregates, SEC can also be used for the analysis of truncated species
(fragments) in a protein sample [182].

SEC columns are usually silica-based with high recovery and resolution. Proteins
from 10 kD up to 150 kD in size (protein pharmaceuticals) have been successfully separated
and analyzed using such columns. For hydrophobic proteins, which tend to have poor
recovery, polymer-based columns can be used, but at the expense of resolution compared
to their silica-based counterparts. Mobile phases for SEC analysis of lyophilized proteins
are typically phosphate-based buffers containing 100 to 500 mM sodium chloride, at a pH
near neutrality. Sodium chloride can be substituted with sodium sulfate or even sodium
perchlorate [183]. To prevent tailing or poor recovery for proteins that may interact too
strongly with silica columns, arginine was used to minimize adsorption [184].

Using SEC analysis, both high molecular weight (HMW) species belonging to ag-
gregates and low molecular weight (LMW) species can be detected and characterized.
The LMW species represent degradation (denaturation) products, e.g., from backbone
hydrolysis or other fragmentation [89].

A nice example of a SEC study in the context of formulation development is the work
by Wang et al. on the influence of sucrose content on the storage stability of proteins,
where the correlation between aggregation, protein structure, and molecular mobility
was investigated [185]. Another article worth mentioning is the review paper by Goyon
et al. on modern SEC, where the current possibilities for characterization of protein
pharmaceuticals are discussed. Some of the SEC chromatograms from this study are shown
in Figure 15 [186]. Furthermore, Andya et al. used SEC in combination with some other
methods such as DSC, FTIR, and CD to investigate the mechanisms of aggregation and
stabilization by carbohydrate excipients [32]. Last but not least, SEC has also been used



Pharmaceutics 2021, 13, 534 19 of 32

together with ssHDX- MS to study the effect of drying method and excipient on structure
and stability of protein solids (Figure 16) [175].
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mine) (B), β-lactoglobulin (C), or lysozyme (D). Formulations are lyophilized (Lyo) or spray-dried
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with permission from [175], Elsevier, 2019.
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3.2. Dynamic Light Scattering (DLS)

As a non-destructive complementary method to Size-exclusion chromatography (SEC),
dynamic light scattering (DLS) can be used to detect protein aggregates that cannot be
detected by SEC analyzes. A typical DLS study data results can be seen in Figure 17 [187].
DLS is one of the size-based analyzes used to determine the size distribution of particles.
Its principle is based on the fact that the intensity of light scattered from a sample is
proportional to the particle size and its concentration. DLS can be used to measure particles
in the diameter range from 1 nm to 5 µm, and the results can be reported in a volume-based
distribution [181,188]. Because it is a qualitative screening technique for characterizing
protein solutions, it can be used to distinguish a homogeneous from an aggregated sample.
Although it has good sensitivity for detecting large aggregates, it is difficult to perform
quantification analysis [181,189]. Its resolution is also limited [190]. However, DLS is
generally used as an analytical tool for comparing different samples rather than for absolute
measurements. Therefore, different lyophilized protein formulations are usually analyzed
and compared [191].
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mavirus virus-like particles (HPV VLP) vaccine at different pH values: (A) at pH 6.2, (B) at pH
4.0, (C) at pH 8.0. Data are shown as intensity size distribution. Aggregate formation by forced
degradation conditions can be observed in Figures (B,C), pH 4.0 and 8.0, respectively. Reproduced
with permission from [187], Elsevier, 2017.

DLS has been used as a standard method for determining protein size analysis and
aggregation patterns [192]. Furthermore, DLS was also used for characterization in the
PEGylated erythropoietin (EPO) study [193]. In addition, DLS was used in monitoring the
aggregation of carbonic anhydrase [194,195], and β-amyloid peptide [196,197]. Hawe and
Friess studied the correlation between pH and aggregation and showed that the percentage
of aggregated species increased with higher pH values [198]. DLS was also used to study
the effects of excipients on aggregation [199] and to study the effects of pH and buffer
concentration on the thermal stability of etanercept, a biopharmaceutical used to treat
autoimmune diseases [200]. In addition, Sukumar et al. used dynamic light scattering to
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check the opalescence of some IgG1 antibody samples for possible aggregation at high
concentrations [201].

4. Method Summary

Table 3 gives an overview of the methods described above with some of the “must
know” information.

Table 3. Overview of the methods discussed above with some.

Method Physical Principles Sensitivity Potential Damages Pros Cons

FTIR

C=O, N–H and C–N
vibrations are
measured as
absorption or

emission due to
infrared light

Low to medium (on a
global level)

Protein can be
damage if too much
pressure is applied
when analyzing in

ATR mode

Fast measurement,
easy setup,

non-expensive
equipment, no

hazardous chemicals
are used, with ATR

mode the sample can
be recovered, small
amount of sample

needed

Only secondary structure can
be evaluated, if KBr pellet
mode is used, the sample

cannot be recover, only
analysis on a global level can
be done and cannot provide

site-specific information
on specific portions of the
protein sequence and their
interactions with excipients,
often unable to detect subtle

structural differences

NIR

C=O, N–H and C–N
vibrations are

measured in the
near-infrared region

Low to medium (on a
global level) No damages

Fast analysis, small
amount of sample

needed, no inert gas
purging, easy setup
and non-expensive

equipment

Only secondary structure on a
global level can be evaluated,

water can interfere within
protein spectra in some cases,
cannot provide site-specific

information
on specific portions of the
protein sequence and their
interactions with excipients,
often unable to detect subtle

structural differences

Raman

C=O, N–H and C–N
vibrations are

measured as inelastic
scattering after light

excitation

Medium to high
(on a global level)

Samples are usually
damaged due to laser

light irradiation

Very small amount of
sample needed,

Samples cannot be recovered,
longer time needed for

measurements, more difficult
equipment setup, only global

level analysis

UV–Vis

Displacement of
absorption (of UV or
visible light) peaks is

measured

Low to medium (on a
global level) No damages

Easy and
non-expensive

equipment setup,
samples can be
recovered, fast

analysis

Only global level analysis of
tertiary structure, cannot

provide site-specific
information

on specific portions of the
protein sequence and their
interactions with excipients,
often unable to detect subtle

structural differences

Fluorescence

Emission of residual
aromatic amino acids

is measured after
absorption of light or

electromagnetic
radiation

Medium (on a local
level) No damages

Tertiary structure on
a local level, intensity

and peak maxima
position can be

measured

Higher amount of sample
needed, sample preparation
for measurement is crucial

CD

Difference in
absorbance is

measured, involving
circularly polarized

light (left- and
right-handed light)

Medium
(on a global level)

No damage (except
when temperature

dependence
experiment is

applied)

Secondary and
tertiary structure can

be analyzed, small
amount of sample

needed

Only global level analysis, if
temperature dependent

experiment is applied the
sample cannot be recovered,
nitrogen gas purging needed

ssNMR

1H, 13C, 15N chemical
shifts are measured
after magnetic field

excitation of the
nuclei sample

High
(on a global and local

level)
No damage

Conformation and
dynamics can be

measured on a global
and local level,

different nuclei can
be analyzed (proton,

carbon, nitrogen)

Expensive equipment, long
measurement time, higher

amounts of sample are needed,
only in some cases the samples

can be recovered
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Table 3. Cont.

Method Physical Principles Sensitivity Potential Damages Pros Cons

DSC

Change in heat
capacity at Tg is
measured (the

difference in the
amount of heat

required to increase
the temperature of a
sample and reference

is measured as a
function of

temperature)

High to medium
(on a global level)

Sample is damaged
and cannot be

recovered

Conformational
changes and

crystallinity of the
sample can be

evaluated

Sample cannot be recovered,
only global level analysis,

necessary to have
well-characterized drug

compounds

DRS

Rational motions of
dipole-bearing

groups are measured
(as a function of

frequency)

High to medium
(on a global and local

level)

Sample can be
damaged

Global and local
analysis

Sample usually cannot be
recovered, higher amounts of
sample are needed, difficult
sample preparation, water

may interfere with the sample
analysis

XRD

Crystal structure is
evaluated by

irradiating the
sample material with

X-rays and
measuring the
intensities and

scattering angles that
leave the material

High
(on a global level)

Samples can be
damaged due to
X-ray irradiation

Conformation and
crystallinity of
samples can be

evaluated

Only global level analysis,
sample usually cannot be

recovered, expensive
equipment

ssHDX-MS

Amide hydrogen
exchange with

deuterium in solid
(by exposure to D2O)

is measured with
LC–MS

High
(on a global and local

level)

Samples are
damaged due to

deuteration and MS
analysis

Very good correlation
with aggregates
formation and

physical stability on
storage, when

peptide digestion is
employed the

samples can be
analyzed on a local
level providing also

site-specific
information on

interactions between
the protein and

excipients

Samples cannot be recovered,
difficult setup and expensive

equipment

SEC

Chromatographic
method in which

molecules are
separated by size,
and in some cases
molecular weight

High
(on a global level)

Can be damage in
some cases by mobile

phase or column

Standard method for
aggregation studies,

small amount of
sample is needed,

fast method if
automation is

employed, also
degradation products

can be detected

Expensive equipment, some
particles may not be detected

or separated

DLS

Measures the
Brownian motion of
macromolecules in
solution that arises

due to bombardment
from solvent

molecules, and
relates this motion to
the size of particles to
determine their size

distribution

High
(on a global level)

If temperature
dependence or

zeta-potential is
measured, samples

are damaged
(aggregated)

Can analyze particles
that may not be seen
with SEC, easy setup
and non-expensive

equipment, fast
analysis

Cannot differentiate molecules
that are closely related

(monomer and dimer) since it
is a low- resolution method, it
must be used on highly dilute

solutions, restricted to
transparent samples, very

sensitive to temperature and
solvent viscosity

Abbreviations: FTIR—fourier transform infrared; NIR—near-infrared; CD—circular dichroism, ssNMR—solid-state nuclear magnetic
resonance; DSC—differential scannign calorimetry; DRS—dielectric relaxation spectroscopy; XRD—X-ray diffraction; ssHDX-MS—solid-
state hydrogen-deuterium exchange mass spectrometry; SEC—size-exclusion; DLS—dynamic light scattering; ATR—attenuated total
reflectance; Tg—glass transition temperature; LC-MS—liquid chromatography with mass sepctrometry; MS—mass spectrometry.
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Table 4 presents a comparison of different methods used to study same or similar
samples of lyophilized formulations. Powders containing one of proteins (myoglobin,
bovine serum albumin, lysozyme, β-lactoglobulin) were formulated with sucrose, trehalose,
or mannitol and dried using lyophilization or spray-drying. The samples were analyzed
by FTIR, fluorescence, XRD, DSC, and ssHDX-MS. Protein instability was determined by
loss of monomeric peak using SEC [175].

Table 4. Comparison of different methods used for analysis of the same or similar protein sample.

Method Pros Cons Information Comparison with Other Methods

FTIR

Secondary structure
determination,
samples can be

recovered, small
amount of sample

needed.

Structure
determination only on

a global level, poor
correlation with other

methods and
especially SEC.

Amide I region was analyzed for each
formulation and used to compare
protein secondary structure. Little

difference was observed with either
changes in excipient or processing
conditions, with the exception of

β-lactoglobulin, where for
spray-dried samples an increase in
the heterogeneity can be deducted.

In comparison to ssHDX-MS, the
results were relatively inconsistent
and poor correlation was observed
with results from SEC analysis. On
the other hand is the only method

in this study to characterize
proteins secondary structures in

solid. Further, is a fast and routinely
analysis.

Fluorescence

Tertiary structure
determination,
samples can be

recovered.

Poorer correlation
with stability studies

than with the
ssHXD-MS.

Measurements are not
possible with lower

concentrations.

Changes in tertiary structure
correspond to shifts in the peak.

Fluorescence spectra showed process
related differences for BSA, they may
be attributed to hydration differences,
since spray-dried samples have lower
moisture content. Lysozyme samples
showed significant differences in peak

position that is depended on
formulation and processing

conditions. Mannitol-containing
formulations displayed red shifts,

whereas sucrose samples displayed
the blue ones. No difference was
observed with trehalose samples.

In comparison to ssHDX-MS has
weak correlation with long-term

storage stability. On the other hand
is quicker and has an easy

equipment setup. Similar to FTIR is
the only method for tertiary

structure characterization, which is
relatively fast and routinely.

XRD

Only method with
DSC for sugars
crystallization

analysis.

Information only on
global level with no

sample recovery.

Formulations containing sucrose or
trehalose were all completely

amorphous, whereas mannitol
samples showed minor peaks on XRD,
indicating the presence of crystalline

mannitol.

Mannitol samples showed some
crystallization, which was observed

also with DSC. The mannitol
crystallization might be reflected in
poorer storage stability, which was

confirmed with ssHDX-MS and
SEC.

DSC

Together with XRD
analyzes and confirms
samples crystallinity,
as well as measures

samples Tg, which can
be compared.

Samples cannot be
recovered, the

information only on a
global level only.

Tg values were determined for
sucrose and trehalose formulations,

whereas Tm was determined for
mannitol formulations. Sucrose
samples had lower Tg, whereas

trehalose samples showed
process-dependent differences in Tg,
with higher values for spray-dried

samples. For samples with mannitol,
the Tm confirmed crystallinity.

The results do not correlate good
with storage stability measured by
SEC, except for mannitol samples,

which have shown to be crystalline
and therefore less stable on

long-term. Mannitol crystallization
was observed also in XRD analysis.

ssHDX-MS

Good correlation with
storage stability,

analysis on global and
local level (if peptide

digestion is
employed).

Expensive and rather
complex equipment.
Samples cannot be

recovered after
analysis. Longer times

require for the
experiments.

Mannitol formulations showed
greater deuterium uptake and, hence,
decreased storage stability (probably
due to phase separation caused by the
crystallization of the excipient), which

correlates great with highest
aggregate content measured by SEC.
Similar results were obtained with

either the deconvoluted peak area or
the maximum deuterium

incorporation.

In contrast to FTIR and fluorescence,
ssHXD-MS gives a very good and

consistent correlation with
aggregation studies with SEC. On

the other hand, the method requires
much longer times for the analyses

and it is not yet a routinely
measurement.
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Table 4. Cont.

Method Pros Cons Information Comparison with Other Methods

SEC

Very good and reliable
(standard) method for
aggregation analysis
and storage stability

studies.

Measurements are
done in

solution—conditions
only after the

reconstitution of
proteins; more

expensive equipment.

The percentage of aggregates was
greatest in mannitol formulations

containing mannitol, with the
exception of myoglobin spray-dried
with sucrose and all formulations of
lysozyme (spray-dried samples had

greater aggregate content).

Provides information on long-term
stability as measures the loss of

monomer (aggregates formation).
Despite ssHDX-MS, that can predict
aggregation to certain degree due to

good correlation with storage
stability, SEC is the only method to

really measure the extent of
aggregation that occurred within

the samples.

Abbreviations: FTIR—fourier transform infrared; XRD—X-ray diffraction; DSC—differential scannign calorimetry; ssHDX-MS—solid-state
hydrogen-deuterium exchange mass spectrometry; SEC—size-exclusion.

5. Conclusions

Since the increased use of protein-based biopharmaceuticals in the form of lyophilized
solid powders, there is a high demand for good analytical methods with high resolution
to characterize these drugs. Preservation of the native structures of the proteins is critical
for the development of a safe, efficient, and high quality drug. Although most analytical
methods evaluate the properties of proteins in solution, an increasing number of methods
for solid-state characterization of protein pharmaceuticals have been used. These methods
can characterize and monitor changes in the secondary and tertiary structures of proteins
with relatively good accuracy. FTIR and Raman spectroscopy can be routinely used to
evaluate secondary structure in biopharmaceutical products and their changes. FTIR has
the advantage of providing sample spectra quickly and is a nondestructive method that
has simple and not expensive equipment. Raman analysis, on the other hand, takes a
little more time to get a correct measurement, but is a complementary method to FTIR.
NIR spectroscopy is a non-invasive and non-destructive technique that can monitor the
secondary structure of proteins, and serves as an in-line tool for tracking structural changes
throughout the whole lyophilization process. Similar to FTIR, NIR also has equipment
that is not expensive and easy to set up. Samples can be analyzed and recovered in just a
few minutes. In addition, no inert gas purge is required. On the other hand, FTIR, NIR,
and Raman do not correlate as well with storage stability and analysis can only be done
on a global scale. Solid-state fluorescence and UV–Vis spectroscopy can be used to derive
information about the tertiary structure of proteins. These two methods are similar to FTIR
and NIR, delivering spectra in short time and preserving the sample during the analysis.
Moreover, here the results usually do not correlate well with aggregates formation. CD can
provide insight into both secondary and tertiary structural changes. The advantage of this
method is that one can measure the degree of structure both in the solid and in the solution.
The disadvantage of the method is that in some cases the changes in the spectra are rather
small and concentrated samples must be used. XRD analysis is the method of choice to
obtain information on powder structure (amorphous/crystalline). While the crystallinity
analyses are very good, the samples here are damaged by X-ray irradiation and, therefore,
cannot be recovered. In addition, the measurements are made on a global scale. Protein
dynamics is generally studied using ssNMR, DSC, and DRS. The information from protein
dynamics has shown very good correlation with their stability in the solid state. These
three methods are sensitive, but the sample cannot be recovered. This can be a particular
problem with ssNMR, as a relatively large amount of sample is required. All three methods
require a certain amount of time to produce results (the ssNMR experiment may run
overnight, for example). ssHDX-MS has emerged as a relatively new tool for studying
protein structure and dynamics, showing better correlation with physical stability than
some of the conventional characterization methods mentioned above (very good correlation
with aggregates formation). Another advantage is the ability to analyze samples on a global
and local scale. On the other hand, the method requires relatively expensive equipment
and the measurements are not as fast as other routinely used techniques. Moreover, ssHDX-
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MS can also reveal population heterogeneity within a protein formulation. Finally, for
the study of aggregation phenomena, which is of great importance for successful drug
development, SEC and DLS have been found to be the most reliable and widely used
analytical techniques. SEC is the method of choice here because it can give good and
reliable results with good resolution, whereas DLS sometimes cannot distinguish some
particle types. On the other hand, DLS can detect some particles that are not observed with
SEC. Therefore, the two methods complement each other, and it is advisable to analyze the
samples with both.
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