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Pharmacotherapy

Physiology of Factor XI in the Coagulation 
Cascade: A Bypassable Factor?
Factor XI (FXI) is a liver-produced coagulation zymogen that originated 
from the duplication of the KLKB1 gene encoding for prekallikrein (PK). It 
circulates in plasma in complex with high-molecular-weight kininogen 
(HK), similar to the major fraction of PK. As a result of its origin, FXI is 
distinctly different from other coagulation proteins, consisting of two 
identical subunits, each containing four apple domains (A1–A4) that bind 
specific enzymes, including thrombin, activated FXII (FXIIa) and FIX. In the 
coagulation system, FXI links FXIIa to the downstream intrinsic route, 
while it can independently accelerate the intrinsic cascade upon feedback 
activation by thrombin.1–3 In haemostasis, FXI plays a limited and yet 
incompletely characterised role (see next section). In thrombosis its role 
may be supportive in enhancing coagulation cascade efficiency. However, 
its role in coagulation is ancillary, rather than essential (like FXa), given 
that in its absence kallikrein can directly activate FIX, bypassing FXI and, 
in conditions of high tissue factor (TF) levels, the extrinsic pathway directly 
activates FIX and FX, also obviating the need for FXIa amplification.4

In preclinical models, inhibiting FXI(a) prevents thrombosis in the venous 
and arterial circulation, including stroke models.5–7 Interestingly, especially 
under arterial thrombosis conditions, activated platelet-released 
polyphosphates accelerate FXIIa-dependent FIX activation, bypassing 

FXI.8 Under thrombo-inflammatory conditions, NETosis may further drive 
FXII-activated coagulation, playing a prominent role in new-onset 
atherothrombosis.9,10 Whether FXI is always required to contribute to 
thrombosis under such arterial inflammatory circumstances remains to be 
determined.

FXI Levels and Phenotypes: Lessons 
from Human Disorders
According to the Online Mendelian Inheritance in Man definition, FXI 
deficiency is an autosomal bleeding disorder characterised by reduced 
levels of FXI in plasma (<15 IU/dl). Bleeding occurs mainly after trauma or 
surgery.11

Since the initial description of the inheritable mild-to-moderate bleeding 
disorder, a non-linear association between the degree and type of 
bleeding phenotype and the residual FXI plasma levels has been 
consistently reported.12 This phenotype makes FXI deficiency different 
from other congenital coagulation factor deficiencies, in which there is a 
linear correlation between coagulation factor levels and bleeding grade.13 
Genetic studies also indicate that homozygous and heterozygous FXI 
deficiencies result in variable and poorly predictable bleeding diathesis, 
often unrelated to residual plasma antigen or activity levels, or to a 
specific genotype.14 In a large cohort of 10,193 individuals tested for FXI 
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activity for routine screening, as compared with higher FXI activity levels, 
levels <50% seemed protective for venous thromboembolism (VTE; 
adjusted HR 0.26; 95% CI [0.08–0.84]) and for cardiovascular events, but 
again there was no correlation between the reduced adjusted HR and the 
residual FXI activity. Patients with <50% residual activity also had more 
gastrointestinal bleeding, but no difference in intracranial haemorrhages.15

Data regarding the association between high FXI levels and thrombosis 
are also heterogeneous. Very high levels of FXI antigen have been 
associated with cerebral venous thrombosis, but a recent systematic 
review could not identify a clear association between high FXI levels and 
VTE recurrence.16–19 Data on FXI activity and cardioembolic complications 
in non-valvular AF patients are rather limited and therefore its role in AF-
associated coagulation disorder remains unknown.20

A case-cohort analysis of 30,239 participants in the REGARDS study 
reported no association between increased FXI levels and incident stroke 
or CHD.21 Similar results have been reported in two other large cohorts in 
the Cardiovascular Health Study and the Atherosclerosis Risk in 
Communities (ARIC) study, thus questioning a pro-thrombotic role in acute 
atherothrombotic disorders.22,23

Similarly, in patients admitted with acute ischaemic stroke, although a 
subset had elevated levels of FXIa–inhibitor complexes, none of the 
measured markers for contact activation or FXIa was related to either 
severity of stroke or to functional outcome at 3 months.24 In contrast, high 
fibrinogen, FVIII, von Willebrand factor (VWF) and glycoprotein VI (GPVI) 
levels were associated either with stroke severity and/or functional 
recovery in other patients from the same Collaboration for New Treatment 
in Acute Stroke (CONTRAST) consortium, suggesting that the platelet–
endothelium interaction may be more important in acute stroke, with less 
implications for the contact system and FXI in causing organ damage.25 In 
those studies, the fraction of subjects with known AF was only 
approximately 10%.

Measuring Factor XI in Disease and Drug 
Development: Is There a Reference Assay?
To study the impact of FXI in human disease, specific laboratory assays 
have been developed and used to probe the amount of free FXIa in 
plasma or assess the amount of FXIa in complex with a natural inhibitor, 
such as C1-inhibitor (C1-inh), alpha1-antitrypsin (α1-AT) or antithrombin 
(AT).

In particular, the FXIa-C1inh and FXIa-α1AT complexes have been studied 
in models of disease and different cardiovascular disorders. When 
challenged in vivo with an inflammatory agonist (endotoxin), humans 
responded with a rapid generation of FXIa with a peak at 2 hours and then 
a rapid decline due to ongoing inactivation by one or more serine 
protease inhibitors (SERPINs) against FXIa.26 The subsequently detected 
complexes circulated for a prolonged period of time; half-lives of these 
FXIa–inhibitor complexes vary: for example, for FXIa-α1AT they vary 
between 95–104 minutes and 95–349 minutes.27

Free FXIa can be measured by enzyme capture assay, or by activated 
partial thromboplastin time (aPTT)-based assay, or thrombin generation 
assay (TGA).20,26,28 All of these assays are quite laborious and unsuitable 
for routine use. Enzyme–inhibitor complex assays were used to document 
FXIa generation in diverse conditions such as cancer-associated VTE, 
acute coronary syndromes (ACS), vasculitis, COVID-19 infection and 
sepsis, and these data have provided insight into the involvement of 

contact activation, or, more specifically, FXIa formation, in relation to 
disease severity or outcomes. For VTE, consistent data indicate a role for 
FXIa measured during acute VTE in predicting the recurrence of VTE.18 In 
patients with cancer-associated VTE, elevated FXIa–inhibitor complexes 
were linked to incident VTE and poor survival.29

FXIa–inhibitor complexes were positively associated with stroke in 
relatively young female subjects, but in middle-aged men at risk of 
cardiovascular complications, an inverse association was evident with 
FXII, but not with FXI. In patients admitted with acute stroke, acute levels 
of FXIa–inhibitor complexes were not associated with stroke severity or 
functional outcome at 3  months.24 In contrast, biomarkers indicative of 
platelet, endothelial cell and inflammation (soluble GPVI, VWF, ADAMTS-13, 
fibrinogen, FVIII) were all linked to different aspects of stroke severity, 
including stroke volume and long-term functional outcomes.25 Collectively, 
these data may imply that in acute stroke, there may be a contributing 
role for the contact system, including FXII, possibly mediated in part by 
FXI, but the early key checkpoint regulators may be based on platelet–
endothelium inflammation interactions, in which T-cells play an important 
role.30 With regard to the primary prevention of cardioembolic stroke in 
AF, there are few biomarker data supporting FXI as an important amplifier 
of thrombosis.20 Circumstantial evidence indicated a strong correlation 
between FXIIa– and FXIa–inhibitor complexes in the 2nd Northwick Park 
Heart study, but given the negative association of FXIIa–inhibitor 
complexes with incident stroke, the underlying mechanisms still need to 
be characterised.31

For the development of FXI-targeted drugs, the determination of a drug’s 
effect on clinically meaningful coagulation assays is critical. In contrast to 
direct oral anticoagulants (DOACs), FXIa-inhibiting agents generally 
prolong aPTT, given that thromboplastin is stimulated with a contact-
activating agent such as kaolin or dextran, reflecting any deficiency in the 
intrinsic coagulation route. For small interfering RNA (siRNA) therapies, 
the FXI level (antigen or mostly activity) can be measured too. For the 
small molecule inhibitor asundexian, the dose selection was based on an 
in-house validated assay for the residual, free FXIa, upon contact 
activation in plasma.32 Residual FXIa was inferred as a biomarker for the 
inhibitory effect of asundexian and used to guide dose selection in Phase 
I and II studies. In daily practice, aPTT may be a method to detect the 
anticoagulant effects of FXIa inhibitors, given that it appears sufficiently 
sensitive to such agents.

In addition, FXI inhibition can be studied with a TGA, most optimally 
when stimulated via the contact pathway. Alternatively, FXIa inhibition is 
detectable in TF-stimulated plasma only at relatively low concentrations 
of TF, given that at higher TF concentrations, the FXI path is bypassed 
by direct activation of the extrinsic pathway leading to FX activation.31 
TGA was also used to study potential differences in the FXIa inhibitory 
potential of asundexian versus milvexian, when compared with 
apixaban, in vitro.33

To document the impact on downstream coagulation proteases, enzyme–
inhibitor complex assays for FIXa, FXa or thrombin (F1+2 or thrombin–
antithrombin complex) could be used, but these assays are not routinely 
available. However, they may be valuable to assess the net anticoagulant 
effect of FXIa inhibition. The net effect on clotting could theoretically also 
be probed using a D-dimer assay or another method for documenting 
fibrin formation, including viscoelasticity assays, such as 
thromboelastography or rotation thromboelastometry, although there is 
not sufficient data to support such methods.
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Pharmacology of FXI Blockade in Phase I 
and II Studies: Evidence is Too Limited
In a Phase I study, doses of asundexian between 50 mg and 100 mg 
once daily reached a maximum plasma concentration (Cmax) at the 
steady state of 963  µg/l and 1,950  µg/l (approximately 30  µM), 
respectively, with an area under the curve (AUC) of 13,800 µg/h/l and 
29,500  µg/h/l, respectively.34 The inter-individual variability in AUC in 
healthy subjects varied from 11% to 33%. Clearance parameters did not 
change with the dose; the bioavailability was >80%, with minimal effect 
of food or changes in gastric pH, and a half-life of ~15 hours.35 The aPTT 
at steady state was slightly more prolonged at 100 mg once daily than 
50 mg once daily (aPTT ratio to baseline: 2.22 [5.96] versus 2.08 [7.24], 
given as the geometric mean and geometric coefficient of variation), but 
the lower limit of the standard deviation of data at 50  mg largely 
overlapped the upper limits of the 25 mg once daily dose. Based on an 
in-house assay developed to measure residual FXI activity, FXIa was 
below the limit of detection in all (n=9) healthy subjects on 100 mg once 
daily, and the ratio to baseline could not be calculated at Cmax or at 
24  hours.35 There was a strong inverse correlation between drug 
concentration and FXIa expressed as ratio to baseline and, expectedly, 
there was no effect on VWF.

Some in vitro data suggest that asundexian may be somehow less potent 
than milvexian (~20% based on aPTT), with a slightly weaker inhibitory 
potential of asundexian under low TF conditions.33,36 However, the efficacy 
in vitro, for example, the maximum inhibition of FXIa, is similar and the 
high bioavailability of asundexian may compensate somehow for a slightly 
lower potency. Moreover, the milvexian inhibitory effects on TGA, mirroring 
apixaban, may suggest a less specific effect on coagulation factor(s), 
mimicking the DOAC inhibition.33

A Phase II trial on total knee arthroplasty (TKA) with siRNA in 300 patients, 
suggested that reducing FXI levels could prevent postoperative VTE, and, 
based on a very small number of events, the results were interpreted as 
the FXI lowering being better than low-molecular-weight heparin, with 
minimal risk of bleeding.37 Interestingly, the Phase II, dose-finding trial on 
TKA with milvexian (25–200  mg once or twice daily) showed no clear 
dose-dependency of doses on aPTT prolongation or bleeding tendency. 
Those small, dose-finding, Phase II randomised controlled trials (RCTs) in 
orthopaedic surgery, albeit unsuitable to assess efficacy and safety, 
nevertheless raised optimism about the potential of FXI blockade as a 
bleeding-free antithrombotic strategy.

Dose-finding, Phase II studies were also conducted for asundexian and 
milvexian in ACS, AF and ischaemic stroke, with unclear and over-
interpreted clinical outcomes. Two doses of asundexian (25  mg and 
50 mg once daily) were tested in high-risk AF patients versus apixaban, 
the overall absolute number of events (10 major bleeding and 9 
thromboses) was much lower than predicted. The same doses were 
tested on top of antiplatelet drug(s) in Phase II studies on stroke and MI 
patients (in which also 10  mg was tested). Also, in those dose-finding 
studies, total bleeding and thrombotic events were lower than anticipated 
but, still, over-elaborated. This enthusiasm was further fuelled by the 
AZALEA-TIMI 71 Phase II trial, using an anti-FXI monoclonal antibody, 
which enrolled approximately 1,200 patients randomised to three different 
arms (rivaroxaban, abelacimab 90  mg and 150  mg). This trial was 
prematurely stopped (after approximately 1 year of treatment and 50% of 
planned events) due to lower major and clinically relevant non-major 
bleeding in the two abelacimab arms, but thromboembolic complications 
were too low to provide any signal regarding possible efficacy.38

Riding this enthusiastic wave of a new ‘no-thrombosis and no-bleeding’ 
anticoagulant strategy, OCEANIC-AF, a Phase III RCT of asundexian versus 
apixaban in AF, was prematurely stopped due to major safety concerns. 
The small molecule, FXI inhibitor asundexian was associated with an 
approximately fourfold higher rate of thromboembolism than apixaban 
(HR 3.79; 95% CI [2.46–5.83]), even though the major bleeding rate was 
significantly lower, throwing doubt on the ‘no-thrombosis and no bleeding’ 
hypothesis.39

Reasons for Failure
The optimistic development of targeting FXI as an anticoagulant strategy 
with antithrombotic benefits at no risk of major bleeding may have had 
some pitfalls related to the pathophysiology of the target and/or to the 
specific drug development. These aspects are summarised in this section 
and an overview is provided in Figure 1.

FXI as a Target
Extrapolating the few data on VTE prevention in TKA to thromboembolism 
prevention in AF may be over-simplistic. VTE after orthopaedic surgery 
with localised thrombo-inflammation of the proximal venous wall as nidus 
for thrombosis, cannot be extrapolated to VTE in cancer, unprovoked VTE 
or to AF, given that triggers and pathophysiology may be quite different. 
Although AF may have some similarities to VTE in its pathogenesis (mostly 
because anticoagulation is superior to antiplatelet therapy in preventing 
thrombosis), other factors, including platelet activation, blood flow and 
shear alteration in VTE, are different to those in systemic thromboembolism 
originating in the fibrillating atrium.40 Importantly, anticoagulants that block 
central, converging pathways in coagulation, such as vitamin K antagonists 
(VKAs) or DOACs, will limit any type of coagulation-dominated thrombosis, 
but FXIa inhibition will only work in situations when it has an important (and 
prevalent) contribution to the downstream thrombin generation.

Escape mechanisms could occur upon switching from one anticoagulant 
to another after randomisation in the OCEANIC-AF trial.39 While this 
window of hypercoagulability may have been a potential problem in other 
studies when switching from a VKA to a DOAC, it is unlikely that changing 
from a DOAC to asundexian (which similarly provides immediate effect) 
would provide a window of hypercoagulability unless asundexian did not 
sufficiently inhibit FXIa. Thus, other escape mechanisms may be more 
important. One mechanism could be that embolic stroke is primarily a 
result of TF expression-based clotting that, when the TF trigger is 
sufficiently strong, overrules FXI activation.32 Alternatively, when blockade 
of FXIa is nearly complete, another pathway may bypass FXI, that is, 
kallikrein-mediated FIX activation. Although the second mechanism has 
been primarily shown in the absence of FXI, the direct interaction of 
kallikrein with FIX has been clearly demonstrated.4 However, there are no 
data on the impact of this route in humans and, more importantly, in 
patients with AF. Consequently, there are two important routes by which 
coagulation can proceed, bypassing an effective blockade of FXIa. This 
bypassing effect may also explain the mild, variable and unpredictable 
bleeding tendency in congenital FXI deficiency.

Moreover, FXI may be relevant under selected conditions such as 
thrombo-inflammation following TKA, which is associated with abundant 
tissue damage and flow changes, and triggers vascular endothelium. 
Under such conditions, neutrophil–platelet interactions with contact 
factors and FXI may trigger thrombin generation most effectively.41 Also, 
recent data show a strong impact of FXIa on endothelial cell integrity, 
which can be prevented with FXIa inhibitors and it is possible that in the 
surgical model, such effects may become prevalent.42,43 In other words, 
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the local conditions that comprise Virchov’s triad of thrombogenesis 
may determine whether proteins such as FXI (or FXII, PK, HK) are 
relevant or not. Thus, post-orthopaedic surgery VTE may not be 
representative of the pathophysiological conditions of a fibrillating 
atrium, which is characterised by very different shear, pressure and 
endothelial conditions.40

In such a scenario, individual patient characteristics and underlying 
disorders, FXI level, and the thrombin- and fibrin-generating potential 
may become additional important determinants of thrombosis. Presently, 
our knowledge of these mechanisms in vivo is limited.

Interestingly, data from the AZALEA-TIMI 71 Phase II trial are in line with 
OCEANIC-AF in terms of lack of bleeding, with a similar relative reduction 
in major bleeding, approximately 60–70% in both trials.38 Thus, the 
apparent success of the AZALEA trial does not yet guarantee a successful 
outcome in efficacy, which will be tested in the ongoing Phase III RCT.

Anti-Factor XI Drug Characteristics
The asundexian dose selected for its Phase III RCT (50 mg once daily) was 
based on Phase I and II dose-finding studies and specifically on standard 
aPTT prolongation and on the specific coagulation assay of residual FXIa. 
The selected dose inhibited >90–95% of the FXI activity in healthy 
subjects and in patients.

One hypothesis for OCEANIC-AF’s failure is that the dose and, therefore, 
the degree of FXI activity inhibition could have been insufficient to block 
FXIa at a clinically meaningful level. Among antithrombotic drugs, for 
instance, low-dose aspirin inhibits its target by >97%, which translates into 
cardiovascular protection.44 For P2Y12 blockade, clopidogrel that inhibits 
ADP-induced platelet activation by approximately 40–60% has lower 
antithrombotic efficacy than prasugrel or ticagrelor, which blocks the ADP-
induced platelet function by ≥90%.45 Importantly, there are no data on the 
clinical outcomes associated with residual levels or thresholds of FXIa as 
assessed by aPTT, selected assays or TGA, not even from human diseases. 

Unfortunately, for residual FXIa, there is no ‘international normalised 
ratio-like’ reference assay, able to predict clinical outcomes and guide FXI 
therapy at the moment. For TGA, FXa activity or aPTT there are no data 
associating thresholds or ranges of the assays with a clinical outcome 
(either thrombosis or bleeding) and no data to identify the reference 
method. Although the data on TGA are intriguing, one should be cautious 
in concluding that the observed effects of asundexian on TGA in vitro 
would reflect a too low dosing in vivo in the OCEANIC-AF trial.33 Thus, 
further research is needed. Moreover, coagulation occurs on cell and 
platelet membranes and under dynamic flow conditions, thus in vitro 
assays, which occur in still blood and in a plastic tube, have major 
limitations in this respect. Similarly, platelet function testing in a plastic 
tube and recorded as an electric signal has never been able to guide 
antiplatelet drug treatment and predict thrombotic events.46

Given that some inter-individual variability (up to 33%) was detected in 
Phase I studies, a higher drug dose (100  mg once daily) may have 
compensated for a hypothetical lower responsiveness in a fraction of 
patients (10–30%) due to variability in response.

Milvexian is being tested versus apixaban in AF patients at a dose of 
100  mg twice daily. This drug has a slightly shorter half-life than 
asundexian, its Cmax and AUC are considerably influenced by food intake, 
and a 200 mg dose given once daily reaches a Cmax of 1,512 ng/ml and 
produces a reduction of clotting FXIa of ~90% at steady state versus 
baseline in healthy subjects.47,48 However, as suggested by some in vitro 
data on milvexian, too high doses could affect the selectivity of the drug, 
generating cross-inhibitions with other serine proteases.33,36 Whether a 
twice-daily regimen with a relatively shorter-acting drug such as milvexian 
would be more effective than a once-daily regimen of asundexian is a 
theoretical issue that will not be easily solved in the absence of direct 
comparative studies at this stage.49

Abelacimab is a monoclonal antibody drug, with a very long half-life of 
25–30 days that causes profound (>99%) inhibition of free FXI already at 

Human disease and FXI antigen and/or activity levels
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Figure 1: Relevant Features of Factor XI Deserving Further Investigation

In humans with congenital FXI deficiency, the degree and genetics of residual FXI levels are unrelated to the severity of bleeding; the role of very high or very low FXI levels in promoting or protecting 
from arterial thrombosis and AF is unclear. There is also a lack of validation of assays with regard to clinical outcomes and as pharmacodynamic biomarkers. Among Phase III studies targeting FXI in AF 
patients, asundexian was stopped for lower efficacy versus an anti-FXa agent; and trials with milvexian (versus an anti-Xa) and abelacimab (versus placebo) are currently ongoing. ACS = acute coronary 
syndrome; aPTT = activated partial thromboplastin time; FXI = factor XI; VTE = venous thromboembolism. 
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