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Abstract

Motivation: Three-dimensional chromosome structure has been increasingly shown to influence

various levels of cellular and genomic functions. Through Hi-C data, which maps contact frequency

on chromosomes, it has been found that structural elements termed topologically associating

domains (TADs) are involved in many regulatory mechanisms. However, we have little understand-

ing of the level of similarity or variability of chromosome structure across cell types and disease

states. In this study, we present a method to quantify resemblance and identify structurally similar

regions between any two sets of TADs.

Results: We present an analysis of 23 human Hi-C samples representing various tissue types in normal

and cancer cell lines. We quantify global and chromosome-level structural similarity, and compare the

relative similarity between cancer and non-cancer cells. We find that cancer cells show higher structural

variability around commonly mutated pan-cancer genes than normal cells at these same locations.

Availability and implementation: Software for the methods and analysis can be found at https://

github.com/Kingsford-Group/localtadsim

Contact: carlk@cs.cmu.edu

1 Introduction

Three-dimensional chromosome structure has been shown to be an

influential factor in diverse aspects of cellular functioning. Since the

introduction of chromosome conformation capture (Dekker et al.,

2002) and its many variants including a high-throughput experiment

permitting genome-wide structural measurements termed Hi-C

(Lieberman-Aiden et al., 2009), there have been many studies associ-

ating chromosome structure with numerous cellular processes.

Among these include several studies linking chromosome structure

to gene expression and regulation (Cavalli and Misteli, 2013;

Cremer and Cremer, 2001; Duggal et al., 2014; Le Dily et al., 2014;

Sauerwald et al., 2017), and more specifically changes in structure

have been associated with various human diseases and disabilities,

including several cancers (Fudenberg et al., 2011; Hnisz et al., 2016;

Meaburn et al., 2009; Misteli, 2010), as well as deformation or mal-

formation of limbs during development (Lupiá~nez et al., 2016). On

the mechanistic side, structural components have been implicated in

replication timing (Ay et al., 2014; Moindrot et al., 2012; Pope

et al., 2014; Ryba et al., 2010) and associated with DNA accessibil-

ity and nuclear organization (Ramani et al., 2016).

Although studies of chromosome structure have provided mean-

ingful biological insights such as those mentioned above, many

questions remain about the precise role and variability of the

chromosomal architecture. In particular, one key question is the ex-

tent to which chromosome structure is conserved between cell types,

or how much it differs between normal and diseased tissue, e.g. can-

cer tissue. A deeper understanding of the level of structural similarity

across cell types would reveal mechanistic insights into the role of

three-dimensional folding of the chromosomes and demonstrate the

relative cell-type specificity of the arrangement, yet very limited

work has been devoted to this question. We address this question

through quantifying structural similarity in pairwise comparisons,

and apply this method to compare chromosome structure across

many cell types, as well as between cancer and normal cells.

Chromosome structure is described in terms of several different

scales of components, from multi-megabase compartments to sub-

megabase topologically associating domains (TADs) and subTADs

(Bonev and Cavalli, 2016). Compartments divide chromosomes into

two broad categories: loosely packed, gene-rich areas termed A com-

partments and densely packed inactive areas termed B compart-

ments. They can be identified in a straightforward way from the

correlation matrix of the Hi-C map (Lieberman-Aiden et al., 2009).

TADs, visually identifiable as squares along the diagonal of the

Hi-C contact map with enriched contact density, represent smaller
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regions that interact significantly more with other loci within the

same TAD than with those outside of it (Dixon et al., 2012).

Although TADs are somewhat visible in Hi-C maps, it has proven

challenging to definitively classify them computationally.

TADs have been shown to correlate with several epigenetic

features, including histone markers and CCCTC-binding factor

(CTCF) (Ong and Corces, 2014). Histone modifications have

proved very tightly linked to Hi-C data, leading to several methods

for identifying TADs or predicting Hi-C maps based on ChIP-seq

data from a range of histone marks (Bednarz and Wilczy�nski, 2014;

Di Pierro et al., 2017; Huang et al., 2015; Sefer and Kingsford,

2015). Beyond epigenetics, TADs seem to be involved in several

other cellular functions. TAD boundaries correlate well with replica-

tion timing domains and thus are involved in cell reproduction

(Dileep et al., 2015). Lamina-associated domains (LADs), regions

near the nuclear lamina associated with gene repression, also fre-

quently coincide with TAD domains (van Steensel and Belmont,

2017). Interruption of TADs has also been shown to alter enhancer/

promoter interactions (Lupiá~nez et al., 2015), further implicating

TAD structure in gene regulatory mechanisms.

Many methods have been developed to identify TADs, first through

an HMM-based method (Dixon et al., 2012), and later through opti-

mization of various scoring functions such as InsulationScore (Crane

et al., 2015) and Armatus (Filippova et al., 2014). It is not yet clear

how to evaluate TAD finder accuracy with no settled ground truth, but

two recent benchmarking studies evaluated the performance of 7 differ-

ent TAD callers, 6 of which overlapped between the two studies, and

found no clear consensus on optimal performance (Dali and Blanchette,

2017; Forcato et al., 2017).

Though there is some preliminary evidence that TAD structure is

conserved across cell types (Rao et al., 2014) and possibly even spe-

cies (Dixon et al., 2012), these previous studies have not attempted

to identify the locations of structural similarity, nor which genomic

features or disease states may correlate with conserved structures.

Hi-C data itself is highly variable and likely full of false contacts and

missing true contacts, and it is impacted significantly by the choice

of data processing and normalization techniques, making it difficult

to compare Hi-C maps directly (Yang et al., 2017). Spurious differ-

ences like coverage variance can have a strong impact on the appar-

ent similarity of two Hi-C maps, even if the underlying structures

are similar. The variability within and between chromosomes is also

large, which could mask intrinsic similarity in a global metric.

For these reasons, we choose to compare TAD structure rather than

Hi-C measurements directly, and we seek regions of locally similar

structures rather than one global measure of similarity.

We present a method to identify statistically significantly struc-

turally similar regions of TAD structures, in two main steps. First,

we use the information theoretic variation of information (VI) met-

ric (Meil�a, 2003) to measure the similarity of all subsets of the two

TAD structures, using a dynamic programming algorithm that we

designed to efficiently compute this metric. We then select the statis-

tically significant chromosomal regions among those with a locally

optimal VI measure through a rigorous null model, and eliminate

redundancies from this set. We apply this method to evaluate the

similarity of chromosome structure across all pairwise combinations

of 23 human samples, across both cancer and non-cancer condi-

tions. The following large-scale comparison of structural concord-

ance and variability across cell types, both globally and on the

chromosomal level, identifies biologically meaningful cell type pairs

with high structural similarity, and a trend of low structural similar-

ity among cancer cells can be seen at the locations of commonly

mutated pan-cancer genes.

This study is the first large-scale study of human chromosomal

structural similarity, providing a framework method for future

work in this domain. Our comparison of cancer and normal cells

reveals insight into the three-dimensional disruptions that occur in

cancer genomics, corresponding to the known changes in genome se-

quence from mutations and structural variants.

2 Materials and methods

We introduce a method which, given two lists of TADs from differ-

ent samples on one chromosome, identifies the sub-intervals in

which the two TAD lists are significantly similar. This is done by

optimizing a distance metric, selecting the statistically significant op-

tima and removing redundant intervals with a heuristic.

2.1 Data
Hi-C data were taken from four different studies (Dixon et al.,

2012; Lieberman-Aiden et al., 2009; Rao et al., 2014; The

ENCODE Project Consortium, 2012) that were published over 7

years, representing 21 unique human cell types across healthy and

diseased states, with 23 Hi-C samples in total, as summarized in

Table 1. The samples were chosen to be publicly available and

represent a wide array of cell types and conditions. All data were

downloaded as raw read (.fastq) files, and processed through the

same Hi-C Pro (version 2.8.0) (Servant et al., 2015) pipeline into

Hi-C maps, using iterative correction and eigenvector decompos-

ition normalization (Imakaev et al., 2012). All Hi-C maps were gen-

erated at 100 kb resolution, the highest shared by all four studies,

meaning that each point in the Hi-C matrix corresponds to the num-

ber of contacts between two chromosomal intervals of 100 kb each.

We call each of these 100 kb segments a genomic bin. This reso-

lution is relatively low because only the more recent studies were

sequenced deeply enough for significantly higher resolution. This

may impact our results in that we can only capture relatively large-

scale regions of structural similarity, but these larger regions are

likely to be the most robust. The TAD sets were calculated using ver-

sion 2.1 of the Armatus software (Filippova et al., 2014), a prin-

cipled method that is extremely efficient and has performed

favorably in recent benchmarking studies (Dali and Blanchette,

2017; Forcato et al., 2017). Armatus requires one parameter, c,
which varies the resolution of TADs that are predicted, biasing the

algorithm towards choosing larger or smaller domains. There is no

direct relationship between the c value and the domain sizes, so in

order to ensure that all TAD sets have the same approximate median

TAD size, the c value was chosen individually for each Hi-C map

and chromosome. The c value which returned TADs at the expected

median size of 880 kb reported in Bonev and Cavalli (2016) was

used in each case.

2.2 Overview of the approach
To compare two samples we quantify the similarity between their

TAD boundary locations. A TAD is a genomic interval, consisting

of a range of bins. A TAD set is then a collection of these intervals

identified by a TAD caller. A TAD set can be thought of as a one-

dimensional clustering for all of the genomic bins along a chromo-

some, where the bins within each TAD form a cluster. A natural

way to compare clusterings is using a distance metric on these clus-

terings, and two highly similar clusterings, (i.e. TAD sets, in our

case) will be identifiable by a low distance. To identify structurally

similar regions, we compute the distances for all possible regions

(e.g. all sub-intervals of the chromosome) and then select the regions
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with statistically significantly low distance. More specifically, we

compute VI between the TADs in i; j½ � in one sample to the TADs in

i; j½ � in another sample, for all relevant i; j½ �.
The distances between all sub-intervals on the chromosome can

be represented in an n�n matrix, where n is the length of the

chromosome, and every entry (i, j) represents the distance of the

TAD structures in the region between genomic bins i and j. In this

full matrix, the elements that are candidates for representing the

most similar regions will appear as local minima in the sense that

they are smaller than all eight surrounding values. These are inter-

vals that are more similar than any neighboring interval. To deter-

mine which are significant we compute p-values for each of these

local minima with a strict null model (Section 2.4). Once the statis-

tically significant intervals have been identified, we further select

only those which are dominating in the sense that every sub-interval

within them has a higher distance measure. These intervals are then

called significant structurally similar regions. An overview of the

method is seen in Figure 1.

As a distance measure, we use the well-established VI metric,

which evaluates the level of agreement between two clusterings

based on information theoretic quantities (Meil�a, 2003). The VI of

two clusterings C and C0 can be computed as the normalized sum of

the two conditional entropies, where n is the number of elements

(genomic bins, in our case) in C and C0, as shown below.

VI C;C0ð Þ ¼ H CjC0ð Þ þH C0jCð Þ
log nð Þ (1)

where the conditional entropy is defined as

H CjC0ð Þ ¼
Xk

i¼1

Xk0

j¼1

P i; jð Þ log
P jð Þ

P i; jð Þ (2)

and C and C0 contain k and k0 clusters, respectively, and

P ið Þ ¼ jCi j
n ; P i; jð Þ ¼ jCi\C0j j

n . This metric was also used by Filippova

et al. (2014) to compare their TAD calls with previous methods.

In practice, rather than calculating the entire matrix of VI values

for every possible chromosomal sub-interval, we only compute

sub-intervals that begin and end at TAD boundaries. Although it

seems intuitive that the minimum VI distance would occur exclusively

at cluster boundaries, this is not strictly true, as the VI formulation

holds no such theoretical guarantees. However, in 10 randomized em-

pirical tests, we observed over 97% of local minima occur at bound-

ary points. Biologically, outside of TAD boundaries we have little

understanding of fine-scale chromosome structure, and therefore, it is

difficult to interpret the meaning of structural similarity away from

these demarcations. We therefore calculate VI values only at TAD

boundaries, and analyze this much smaller set of sub-intervals.

While some TAD callers return a partition of the chromosome

with no gaps between TADs, Armatus does not explicitly require

each bin to be within a TAD. This results in occasional gaps, or

non-TAD domains, though they are very rare; on average across all

cell types and parameter values, TADs cover 92.02% of the genome.

Our method does not distinguish between these non-TADs and

TADs; we consider all domains in the same way. The result of this is

that we are practically measuring the partition of the chromosome

induced by the TAD set, rather than the exact TADs themselves, but

this remains a measurement of structural similarity.

2.3 Dynamic programming to compute multiple VI

distances
In order to further improve efficiency, we use a dynamic program-

ming algorithm to compute VI for every pair of boundaries. The al-

gorithm is initialized by calculating the VI for every single-TAD

interval in both TAD sets. We then proceed by adding the subse-

quent TAD to each of these intervals, computing the VI of the new

interval as a function of the VI values of the smaller two intervals

composing it. After computing VI values for every interval of two

TADs in each TAD set, we continue increasing the intervals by one

TAD until all sub-intervals have been covered.

Table 1. Hi-C samples used for pairwise comparisons

Cell type Description Study Resolution

GM06990 Blood lymphocyte Lieberman-Aiden et al. (2009) 100kb

K562 Chronic myeloid leukemia Lieberman-Aiden et al. (2009) 100kb

IMR90 Lung fibroblast Dixon et al. (2012) 40kb

hESC Embryonic stem cell Dixon et al. (2012) 40kb

IMR90 Lung fibroblast Rao et al. (2014) 5kb

GM12878 Blood lymphocyte Rao et al. (2014) 1kb

HMEC Mammary epithelial Rao et al. (2014) 5kb

HUVEC Umbilical vein endothelial Rao et al. (2014) 5kb

K562 Chronic myeloid leukemia Rao et al. (2014) 5kb

KBM7 Chronic myeloid leukemia Rao et al. (2014) 5kb

NHEK Epidermal keratinocyte Rao et al. (2014) 5kb

A549 Adenocarcinomic alveolar basal epithelial ENCODE (2016) 20kb

Caki2 Clear cell renal carcinoma (epithelial) ENCODE (2016) 20kb

G401 Rhabdoid tumor kidney epithelial ENCODE (2016) 20kb

LNCaP-FGC Prostate carcinoma epithelial-like ENCODE (2016) 20kb

NCI-H460 Large cell lung cancer ENCODE (2016) 20kb

Panc1 Pancreas ductal adenocarcinoma ENCODE (2016) 20kb

RPMI-7951 Malignant melanoma ENCODE (2016) 20kb

SJCRH30 Rhabdomyosarcoma fibroblast ENCODE (2016) 20kb

SKMEL5 Malignant melanoma ENCODE (2016) 20kb

SKNDZ Neuroblastoma ENCODE (2016) 20kb

SKNMC Neuroepithelioma ENCODE (2016) 20kb

T47D Ductal carcinoma ENCODE (2016) 20kb

Note: Cell types listed in italics are non-cancer cell lines.
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After initialization, at each step we have the VI of both sub-

intervals to be combined into a larger interval. Let the sub-interval

(i, j) be covered by TAD sets or clusterings C and C0, and the sub-

interval jþ 1; kð Þ be covered by D and D0. We then define the sets

CD and C0D0 as the concatenation of C and D, and C0 and D0, re-

spectively, which cover (i, k). In order to compute VI CD;C0D0ð Þ,
there are two cases to consider, illustrated in Figure 2. In the simpler

case, there is no TAD in either TAD set that crosses the boundary at

j, and the new VI is simply a rescaled sum of the previously calcu-

lated VIs:

VI CD;C0D0ð Þ ¼ j� iþ 1

k� iþ 1
VI C;C0ð Þ þ k� j

k� iþ 1
VI D;D0ð Þ (3)

In the case of a TAD that overlaps the boundary between the

two sub-intervals, one conditional entropy term can simply be

rescaled as before, but we must adjust the entropy term condi-

tioned on the TAD set including the overlapping TAD. If there is a

TAD in C0D0 which begins at s � j and ends at e> j which we

refer to as C0D0se (made up of C0k, the last TAD in C0 and D01, the

first TAD in D0), the new conditional entropies are given below:

H C0D0jCDð Þ ¼ j� iþ 1

k� iþ 1
H C0jCð Þ þ k� j

k� iþ 1
H D0jDð Þ (4)

H CDjC0D0ð Þ ¼ j� iþ 1

k� iþ 1
H CjC0ð Þ þ k� j

k� iþ 1
H DjD0ð Þ (5)

� 1

k� iþ 1

X

a

jCa \ C0kj log
jC0kj

jCj \ C0kj

� 1

k� iþ 1

X

a

jDa \D01j log
jD01j

jDj \D01j

þ e� sþ 1

k� iþ 1
H CDjC0D0se
� �

We only compute VI at locations with a boundary in one of the

two TAD sets, so we do not encounter the case in which there is an

overlapping TAD in both TAD sets. The algorithm ensures that for

each VI calculation, at least one TAD set will have a boundary at

the point joining the two sub-intervals. In a timing test on 10 ran-

domly chosen cell type pairs and chromosomes, the dynamic pro-

gramming algorithm reduced the time to compute VI at all

boundary points by 58.24% (from 3.384 to 1.413 s). When com-

puting similar intervals and using a permutation test for signifi-

cance (Section 2.4) between all cell types using all chromosomes,

this savings is significant.

2.4 Identifying statistically significant sub-intervals
Once the VI values for all candidate sub-intervals have been calcu-

lated, we select the statistically significant regions through an

adapted permutation test. For each sub-interval, we fix each TAD

set and randomly shuffle the TADs from the other set 1000 times,

calculating the VI at each reshuffling. The p-value is then the aver-

age of the two fractions of shuffles in which a lower VI was found

than the original. The strictness of this null model comes from

looking at each interval separately rather than shuffling the TADs

across the entire chromosome at once, as well as keeping the TAD

lengths fixed in the shuffling. For each interval, we are therefore

calculating the likelihood of achieving a more closely matched

TAD set while keeping the exact same number of TADs and

their lengths. After computing this probability, we control the

false discovery rate at a level of 0.05 through the Benjamini-

Hochberg procedure (Benjamini and Hochberg, 1995), keeping

only the intervals for which we cannot reject the null hypothesis at

this level.

Fig. 1. Overview of major steps to identify structurally similar intervals
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2.5 Dominating intervals
The set of statistically significant intervals still includes many nested

intervals, so to remove redundant results we introduce the notion of

dominating intervals. An interval is defined as dominating through

three tests. First, it must have a P-value that passes the statistical sig-

nificance tests described above. Next, we keep only the intervals

that do not contain any sub-intervals with a lower VI value. Finally,

if there are still intervals among this set that begin or end at the

same point, we keep only the longest. Our method therefore outputs

statistically significant intervals that are optimal in the sense that

there is no significant sub-interval that represents a higher similarity

score. These significant, dominating intervals are the final result of

the method, representing chromosomal intervals with significantly

similar TAD structures.

2.6 Run time
The method was implemented in Go, and in a test of 10 randomly

chosen cell type pairs and chromosomes, identifying the statistically

significant dominating intervals took 1h 33min single-threaded with

a peak memory usage of 15.9 GB. The timing is heavily dependent

on the total number of TADs in both TAD sets, ranging in our test

from 9 s to 49 min for a single chromosome.

3 Results

3.1 Comparison of TAD similarity across all 253 pairs of

cell types
The method described above was run on all pairwise combinations

of the 23 Hi-C maps (253 pairs total), on all 22 autosomal chromo-

somes, resulting in an average of 5.908 significant intervals per

pairwise comparison per chromosome. The average length of a re-

gion of structural similarity across all 253 pairwise comparisons is

15.25 Mb, with the longest spanning almost the entirety of chromo-

some 2 at 219.7 Mb, between NHEK and GM12878, and the

shortest of length 1.4 Mb, on chromosome 9 between A549 and

NCI-H460. An example of the output intervals can be seen in

Figure 3. One artifact of the method is that when an interval inter-

sects a TAD, the algorithm cannot distinguish whether the TAD

truly has a boundary at the edge of the interval or not. This leads to

the identified regions often containing a TAD at the edge of an inter-

val which is much smaller than its corresponding TAD in the other

set, but appears to be a perfect match to the algorithm and therefore

is included in the optimal interval.

We can compare the relative conservation and variability of

chromosomal regions by looking at the results at the chromosome

level. We say that a genomic bin is structurally conserved in one

pairwise comparison if it is contained within one of the significant,

dominating intervals. On average, each 100 kb genomic bin is struc-

turally conserved in 115.02 out of 253 possible pairwise compari-

sons, though this varies significantly by location. Figure 4 shows, at

each genomic bin, the number of cell type pairs in which the bin was

contained in a significant structurally similar interval, across two

representative chromosomes. We expect the centromere to be con-

served in all cell types, and it does appear as a highly conserved

element though not in every pairwise comparison. The reason for

this is our significance test, which ensures that no single-TAD inter-

val will be considered significant. There must therefore be enough

structural similarity in the regions flanking the centromere to deem

any interval spanning the centromere significant. Outside of the

centromere, overall variability of this bin-level similarity measure is

fairly high. There appear to be chromosomal regions that are ex-

tremely similar across most cell types, while others share almost no

similarity between any of the pairs we studied.

3.2 Quantifying genome-wide and chromosome-level

similarity
The identified structurally similar regions can be further used to

measure the genome-wide and chromosome-level similarity. The

percent similarity between two genomes (or two chromosomes) was

defined as the percentage of the genome (or chromosome) covered

by a significant, dominating interval between each pair of cell types.

The full set of pairwise percent similarity values is presented as a

heat map in Figure 5. For further detail, the top 10 pairs in terms of

percent similarity are shown in Table 2.

The two IMR90 samples rank somewhat highly (52.41%,

ranked 35 out of 253) in terms of percent similarity, but the two

K562 samples are very dissimilar (32.14%, ranked 246 out of 253).

This could be explained by the markedly low average similarity of

C D

D
i j j+1 k

CD

C D

D
i j j+1 k

CD

s e

Case 1: Case 2:

Fig. 2. The two possible cases for dynamic programming algorithm. Case 1 shows the combination of TAD sets where both have a boundary at j, while case 2

illustrates a TAD in one set which overlaps the boundary at j

Fig. 3. A sample output of our method, from chromosome 18 of A549 (green) and KBM7 (blue), with the significant, dominating intervals marked by red brackets.

The blank space with no TADs in either set corresponds to the centromere, where no reads can be mapped in the Hi-C data

Quantifying the similarity of topological domains i479



both Lieberman-Aiden et al. (2009) cell types (K562 and GM06990)

with all other cell types; both rank in the bottom four of average

similarity. This is the oldest dataset we use, so the data may contain

more errors or stronger batch effects than the more recently

generated samples. If we instead compare the K562 data from the

Rao et al. (2014) study to KBM7, which comes from the same can-

cer type (chronic myeloid leukemia), we see a similarity of 57.26%,

which ranks them 12 out of 253 pairs. There is some biological

Chromosome 7

Chromosome 12

Fig. 4. Structural conservation by genomic location for several chromosomes. The height at each genomic bin represents the number of cell type pairs in which

the bin was contained in a significant structurally similar interval. The red lines show the approximate location of the centromere, where reads cannot be mapped

and therefore almost all Hi-C maps should be empty in this region, resulting in the appearance of a highly conserved structural element. The significance thresh-

old enforces a minimum number of TADs that must be included in a significant interval, so there are some cell type pairs which differ enough in structure around

the centromere that it does not appear as a conserved element in these comparisons

Fig. 5. Heat map of the genome-wide percent similarity between all pairs of cell types studied. Rows are ordered by highest to lowest average pairwise % similar-

ity, calculated by summing the values across each row, dividing by the number of rows and sorting by this average
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similarity and functional connection between the cell type pairs

near the top of the structural similarity measure. The fourth most

similar pair (GM12878 and K562) consists of a blood lymphocyte cell

line and a chronic myeloid leukemia cell line of lymphoblast morph-

ology, so these come from the same tissue and cell lineage. However,

many of the most similar pairs have no apparent biological justification.

Though there are no previous methods quantifying structural

similarity to which we can compare, two previous studies counted

the number of TAD boundaries (computed using different methods)

that they considered overlapping between certain pairs of cell types.

Dixon et al. (2012), using their method referred to as DomainCaller,

reported data indicating a Jaccard index (similarity score between 0

and 1) of 0.52165 between their IMR90 and hESC cell types. Our

method reports a comparable similarity score of 0.4902 (fraction

similarity across the genome, also between 0 and 1), despite using

different methods for data normalization and TAD calling. Rao

et al. (2014) similarly reported the number of shared TAD bounda-

ries between pairs of cell types including GM12878, which

was sequenced much more deeply than the others. Using their own

TAD calling method, they identified significantly more TADs in

GM12878 than any other cell type because of the higher resolution

of the data, so overall their data gave Jaccard indices ranging from

0.2129 to 0.3033 for comparisons of GM12878 to each of IMR90,

HMEC, HUVEC, K562, KBM7 and NHEK. However, because

there are more GM12878 TADs than any other cell type, this com-

parison is somewhat skewed. Simply looking at the fraction of each

cell type’s shared TAD boundaries with GM12878 to its own overall

number of TAD boundaries gives similar TAD boundary fractions

in the 0.499–0.6688 range. In our analysis, these same cell type pairs

ranged in percent genomic similarity levels from 0.5552 to 0.6603.

Again, this is using yet another TAD caller and data normalization

method, but the level of similarity measured seems to be fairly ro-

bust to all of these differences.

At the chromosomal level, these percent similarities and even the

ranking of pairwise similarity can vary significantly. Similarity levels

averaged over all pairwise comparisons per chromosome vary from

33.70% on chromosome 1 to 69.05% on chromosome 22. For an indi-

vidual pair, similarity can cover an entire chromosome as in the case of

the Caki2 and HMEC which are 100% similar on chromosome 1. In

contrast, some pairs have almost no similarity on a chromosome, such

as SKMEL5 and the IMR90 sample from Dixon et al. (2012), which

have 0.963% similarity on chromosome 1. Box plots of the distribution

of overall similarity among all normal-normal and cancer-cancer cell

type pairs are shown in Figure 6, where several chromosomes, such as

3 and 20, stand out as being particularly more structurally similar

among normal cell type pairs than cancer cell type pairs.

3.3 Comparing structural conservation between cancer

and non-cancer cell type pairs
Several studies have shown that chromosome structure can be dis-

rupted in a broad range of cancer types (Fudenberg et al., 2011;

Table 2. Top 10 cell type pairs in percent similarity

Cell type pair Cell type 1 Cell type 2 % similar

Description Description

GM12878, NHEK Blood lymphocyte Epidermal keratinocyte 66.02

G401, GM12878 Rhabdoid tumor kidney epithelial Blood lymphocyte 64.64

IMR90 (R), HMEC Lung fibroblast Mammary epithelial 63.24

GM12878, K562(R) Blood lymphocyte Chronic myeloid leukemia 62.56

K562(R), NHEK Chronic myeloid leukemia Epidermal keratinocyte 62.33

GM12878, HUVEC Blood lymphocyte Umbilical vein endothelial 62.30

IMR90 (R), HUVEC Lung fibroblast Umbilical vein endothelial 62.13

HMEC, KBM7 Mammary epithelial Chronic myeloid leukemia 60.84

GM12878, HMEC Blood lymphocyte Mammary epithelial 60.15

A549, GM12878 Adenocarcinomic alveolar basal epithelial Blood lymphocyte 59.22

Note: For the cell types which could come from two different samples, the initial of the first author of the data source is in parentheses.

Normal-normal cell type pairs Cancer-cancer cell type pairs

Fig. 6. Box plots showing the distributions of similarity measures across chromosomes, in pairs of cancer cell types and normal cell types. The distribution is

over all genomic bins of the given chromosome, and the value at each genomic bin is the fraction of (cancer–cancer or normal–normal) pairs for which the bin is

contained in a significant dominating interval
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Hnisz et al., 2016; Meaburn et al., 2009; Misteli, 2010), and the

comparison method above can give a genome-wide view of struc-

tural similarity among cell type pairs of all combinations of normal

and cancer cell types. Among the 21 unique cell types in our dataset,

14 come from cancer cell lines and the other 7 are non-cancerous

(see Table 1). Including the two duplicate cell types, this gives 28

pairs of two normal cell types, and 105 pairs of two cancer cell

types. Globally, the normal-normal pairs show slightly higher aver-

age structural conservation, but the difference is not significant:

44.17% average similarity among cancer-cancer pairs, and 49.02%

similarity among normal-normal pairs.

However, we find that there is more structural conservation at

the regions around established pan-cancer genes in normal-normal

cell type pairs than in cancer-cancer pairs, which may point to the

structural disruption that occurs in conjunction with cancer muta-

tions. Looking at the top 10 most commonly mutated pan-cancer

genes from a large-scale study of data from The Cancer Genome

Atlas (Kandoth et al., 2013), we can see that the structure around

most of these genes is more conserved among normal cell type pairs

than cancer pairs (Figs. 7 and 8). Figure 7 shows the distributions

for each chromosome of the percent similarity among cancer-cancer

pairs subtracted from normal-normal pairs. A value above zero indi-

cates higher structural similarity among normal-normal cell type

pairs. Despite 10 out of 22 chromosomes having lower than zero

average difference, 9/10 cancer genes are located on chromosomes

with a positive average value. In addition, we note that three of these

genes are located on chromosome 3, which has the highest average

difference between structural similarity in normal-normal pairs

compared to cancer-cancer pairs. The prevalence of mutations in

cancer cells on genes located on chromosome 3 and the disruption

caused by the mutations may result in variable structural changes in

cancer cells.

Looking more closely at these 10 gene locations, we note that

normal-normal pairs are more structurally similar at nine of these

10 gene locations (Fig. 8). Over all human gene loci, 57.77% show a

higher fraction of structurally similar normal-normal pairs than

cancer-cancer pairs, which gives a probability of 0.03441 (using the

hypergeometric test) of pulling at least 9/10 random genes with

higher normal-normal structural conservation, suggesting that the

pattern of Figure 8 is statistically significant. If we further restrict

the null model to the probability of finding at least 9/10 genes from

the same chromosomes as our pan-cancer genes, the p-value

increases to 0.1425, which is expected based on the distributions

shown in Figure 7. Though this value is above the traditional 0.05

p-value cutoff, the combination of results suggests a role for 3D

structure disruption around mutated genes in cancer cell types. In

order to validate and confirm this conclusion, we would need more

Hi-C samples.

4 Discussion and conclusions

We have presented the first method to quantify local chromosomal

structural similarity and have used it to perform a large-scale com-

parison of TAD structure across 23 human samples from both can-

cer and noncancerous conditions. We note the variability among

structural components both globally and by chromosome, as well as

between cancer and normal cell types. This led to the new observa-

tion that pan-cancer gene locations show more structural variability

among cancer cells than among normal cells.

Though the analysis was performed using only TADs from the

Armatus software at one individually optimized parameter setting,

our results are in line with the levels of structural similarity reported

by other studies using other TAD finders and pre-processing pipe-

lines. Further study in this area will involve testing the robustness of

these results to the choice of TAD caller, as well as the Hi-C data

resolution and normalization. Another tunable aspect of this method

is the choice of distance metric, for which we used VI. Though VI is

a well-established and general metric for calculating clustering simi-

larity, there are many other metrics which fit the same criteria.

Beyond the methodological choices, our results are somewhat

dictated by the available Hi-C samples. Hi-C is a fairly expensive

and time-consuming protocol, so the amount of data available is

much smaller than other genomic data types such as RNA-seq. We

selected samples from prominent studies in the field, but without

more data it is difficult to determine whether chromosome structure

can be tissue-specific or cancer type-specific, or any number of other

possibilities. As more data becomes available, the robustness of the

results of such a structural comparison will significantly increase.

Given the set of samples we used, it is difficult to determine the

level of batch effects or other protocol-specific differences influenc-

ing our results. The extremely low similarity values for both samples

from the Lieberman-Aiden et al. (2009) study seem to suggest some

batch effects or protocol-specific variations, but otherwise the simi-

larity clustering did not simply group cell types from the same stud-

ies. This concern could be further studied or mitigated with more

Hi-C samples.

Fig. 7. Box plot showing the chromosome-level distributions of differences

between level of structural similarity at all genes in normal cell type pairs and

cancer cell type pairs. The red stars represent the differences observed at the

10 most commonly mutated pan-cancer genes from (Kandoth et al., 2013)

Fig. 8. Relative conservation of cancer–cancer and normal–normal cell type

pairs at 10 prominent pan-cancer gene locations. For the cases in which the

gene spans multiple bins, the bin for the gene location was chosen as the bin

containing the gene’s midpoint
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Another concern with the data is specific to the cancer samples,

which are likely to be highly mutated and contain genomic

structural variants. Despite this, we still map them to the reference

(non-cancer) genome. Some of the areas where we see structural dif-

ferences across cancer cells may simply be due to an inability to map

reads with high mutation levels, rather than a variation in three-

dimensional structure. Through further advances in long-read tech-

nology and genome mapping and assembly, it may become easier to

avoid these concerns and study three-dimensional structure more

directly. Some work has begun in this area, combining structural

variant detection with Hi-C data (Chakraborty and Ay, 2017).

Our method and analysis represents a first step towards under-

standing the conservation and changes in chromosome structure

across human cell types and disease states. We provide the first

genome-wide structural comparison of cancer and non-cancer genes,

as well as a systematic pairwise analysis of similarity across 23

human cell types. As Hi-C data becomes more widely available and

reliable, the ability to compare and identify structurally similar or

variable regions may provide even more insight into the mechanisms

and influence of chromosome architecture on gene regulation and

cellular functioning.
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