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Abstract Heat shock protein 83 (HSP83) is homologous to
the chaperone HSP90. It has pleiotropic functions in
Drosophila melanogaster, including the control of longevity
and fecundity, and facilitates morphological evolution by
buffering cryptic deleterious mutations in wild populations.
In the pea aphid Acyrthosiphon pisum, HSP83 expression is
moderately induced by bacterial infection but upregulated
more strongly in response to heat stress and fungal infection.
Stress-inducible heat shock proteins are of considerable evo-
lutionary and ecological importance because they are known
to buffer environmental variation and to influence fitness un-
der non-optimal conditions. To investigate the functions of
HSPS83 in viviparous aphids, we used RNA interference to
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attenuate its expression and studied the impact on complex
parameters. The RNA interference (RNAi)-mediated deple-
tion of HSP83 expression in A. pisum reduced both longevity
and fecundity, suggesting this chaperone has an evolutionarily
conserved function in insects. Surprisingly, HSP83 depletion
reduced the number of viviparous offspring while simulta-
neously increasing the number of premature nymphs develop-
ing in the ovaries, suggesting an unexpected role in aphid
embryogenesis and eclosion. The present study indicates
that reduced HSP83 expression in A. pisum reveals both
functional similarities and differences compared with its
reported roles in holometabolous insects. Its impact on
aphid lifespan, fecundity, and embryogenesis suggests a
function that determines their fitness. This could be
achieved by targeting different client proteins, recruiting
distinct co-chaperones or transposon activation.

Keywords Acyrthosiphon pisum - HSP83 - HSP9O -
Longevity - Fecundity - Development - Viviparous
reproduction - Epigenetics

Abbreviations
dsRNA double-stranded RNA

HSP heat shock protein
RNAi RNA interference dai
Introduction

Heat shock proteins (HSPs) are evolutionarily conserved chap-
erones whose predominant function is to prevent the misfolding
and denaturation of proteins caused by environmental stressors
such as heat, toxins, or pathogens (Johnson 2012). Their func-
tions in Drosophila melanogaster are associated with the
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buffering of environmental variations, determining fitness un-
der non-optimal conditions, and are therefore of significant
evolutionary and ecological relevance (Sorensen et al. 2003).
HSPs have been assigned to five families based on homology
and molecular mass. The HSP90 family is particularly relevant
in the context of evolutionary biology because one member
(HSP90) acts as a capacitor for morphological evolution in
D. melanogaster (Rutherford and Lindquist 1998) by buffering
phenotypic variance producing altered phenotypes in response
to environmental stressors. The silencing of HSP90 generates
variation by transposon-mediated “canonical” mutagenesis
(Specchia et al. 2010).

The pleiotropic roles of HSP90 family members in
D. melanogaster are associated with spermatogenesis, oogen-
esis, and embryogenesis (Ding et al. 1993; Yue et al. 1999;
Song et al. 2007; Pisa et al. 2009) as well as the buffering of
cryptic deleterious mutations in wild populations, longevity,
and fecundity (Chen and Wagner 2012). In the beetle
Tribolium castaneum, another holometabolous model insect,
HSP83, which belongs to the HSP90 family, is expressed in
the whole body as well as in the oocytes where it is specifically
located in the follicle cells. There it is differently expressed
during different stages of oogenesis (Xu et al. 2010) and in
response to heat shock (Xu et al. 2009). The latter suggests
that HSP90 family members may regulate physiological pro-
cesses in response to, e.g., environmental signals (Erlejman
etal. 2014). In the whole body of 7. castaneum, the expression
of HSP90 reaches its highest levels during the larval and pre-
pupal phases and the attenuation of its expression negatively
affects compound eye development in larvae, suggesting that
members of the HSP90 family are essential for normal post-
embryonic development (Knorr and Vilcinskas 2011). A phy-
logenetic analysis of arthropod HSP90 genes reveals that the
sequences cluster according to their taxonomic order, with ho-
lometabolous and hemimetabolous species showing clear sep-
aration (Knorr and Vilcinskas 2011).

In response to heat shock, the hemimetabolous whitefly
Bemisia tabaci shows no differential expression of members
of the HSP90 family (Lii and Wan 2011). In the aphid species
Acyrthosiphon pisum, the first hemimetabolous insect with a
completely sequenced genome (The International Aphid
Genomic Consortium 2010), Gerardo et al. (2010) demon-
strated that HSP83 expression is induced fivefold in response
to heat stress. The latter study also showed only minor differ-
ences in expression levels between untreated controls and
aphids exposed to environmental stress or pathogens. To de-
termine whether HSP90 family members show overlapping or
diverse functions in holometabolous and hemimetabolous in-
sects, we investigated the direct impact of HSP83 expression
on reproduction in the pea aphid A. pisum, as previously
shown for HSP90 in D. melanogaster (Chen and Wagner
2012). Aphids have evolved complex life cycles including
the alternation of sexual and asexual reproduction, with an
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unusual (autosome-like) inheritance of the X chromosome
(The International Aphid Genomic Consortium 2010).

The attenuation of gene expression by RNA interference
(RNAI) is a powerful method for the functional analysis of
genes in A. pisum (Mutti et al. 2006; Jaubert-Possamai et al.
2007; Will and Vilcinskas 2013). We therefore attenuated
HSP83 expression in viviparous A. pisum by microinjecting
the aphids with the corresponding double-stranded RNA
(dsRNA). Several fitness parameters were observed in the
injected insects to determine the effect of HSP83 attenuation
on longevity, fecundity, and embryogenesis.

Material and methods
Aphid and plant rearing

The rearing of A. pisum clone LLO1 and the cultivation of the
host plant Vicia faba var. minor were carried out as previously
described (Will and Vilcinskas 2015). During the experi-
ments, aphids were kept on detached, mature V. faba leaves
under controlled environmental conditions (Mutti et al. 2006;
Will and Vilcinskas 2015).

RNAi-mediated attenuation of HSP83 expression

The RNAi-mediated suppression of HSP83 expression was
carried out as previously described (Will and Vilcinskas
2015). Briefly, the Ambion MEGAscript T7 Kit (Applied
Biosystems, Austin, TX) was used to prepare dsSRNA according
to the manufacturer’s protocol. Gene-specific primers including
the T7 polymerase promoter sequence at the 5’ end were used to
synthesize a 530-bp HSP83 (GenBank XM 001943137.3)
dsRNA template (forward primer 5'-TAA TAC GAC TCA
CTA TAG GGA GAG TGA GCC GCA TCA AGC CTA
AC-3', reverse primer 5'-TAA TAC GAC TCA CTA TAG
GGA GAT ATC AGC CTC GGC CTT CTG TC-3"). We ex-
cluded the presence of sequence overlaps >19 bp with other
A. pisum genes to avoid off-target effects. The QIAquick PCR
Purification Kit (Quiagen, Hilden, Germany) was used for tem-
plate preparation, and dsRNA was produced using the Ambion
MEGAscript RNAI kit (Applied Biosystems). Primers were
designed with Primer3 (Rozen and Skaletsky 2000) and were
purchased from Sigma-Aldrich (Taufkirchen, Germany).
Control aphids were injected with equivalent concentrations
of dsRNA encoding the insect metalloproteinase inhibitor
IMPI (GenBank gbAY330624.1) from the greater wax moth
Galleria mellonella (Clermont et al. 2004; Wedde et al.
2007). This sequence is not present in insects other than the
Lepidoptera (Mylonakis et al. 2016).

We injected 8-day-old apterous L4 nymphs with ~50 ng
dsRNA in a total volume of 6.9 nl under a stereomicroscope
using a Nanoliter 2000 injector with a Sys-Micro4 controller
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(World Precision Instruments, Berlin, Germany). Glass
microcapillaries for injection were prepared using a PN-
30 puller (Narishige International Limited, London, UK).
Prior to injection, aphids were immobilized with their
dorsal thorax on a vacuum holder (van Helden and
Tjallingii 2000). The dsRNA was applied to aphids with
an injection rate of 2 nl/s according to Mutti et al. (2006).
The experiment was carried out three times, each replicate
with 15 aphids per group.

Quantification of HSP83 expression by real-time
PCR

Total RNA was extracted from the aphids 1, 3, and 6 days after
RNAI treatment. The 3 X 5 aphids per treatment were collect-
ed and RNA was extracted using Direct-zol™ RNA MiniPrep
with TRI-Reagent® (Zymo Research, Freiburg, Germany).
Complementary DNA was synthesized using 1 g of total
RNA, oligo(dT)18 primers, and the First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific, Waltham, MA) ac-
cording to the manufacturer’s recommendations. Real-time
PCR was performed on a StepOnePlus system (Applied
Biosystems) using gene-specific TagMan Gene Expression
assays (Thermo Fisher Scientific). The assay was carried out
according to the manufacturer’s protocol using custom
TagMan gene expression assays, including the HSP83 gene
(GenBank XM _001943137.3) and the reference ribosomal
protein L32 (rpl32) gene (GenBank NM 001126210.2). To
ensure reproducibility, gene expression was tested in tripli-
cate. Data were analyzed using the AACq method in REST
(Pfaffl 2001; Pfaffl et al. 2002).

Assaying longevity, fecundity, and embryogenesis

Survival assays and reproduction assays were conducted
separately using 15 aphids per group in each test. Aphids
placed on a leaf in an agar plate were checked each day and
nymphs were removed. Plates were kept in a climate cabi-
net under the conditions described by Will and Vilcinskas
(2015). Images of whole animals were taken 5, 7, and
12 days after injection (dai) using a MZ16FA stereo micro-
scope (Leica, Wetzlar, Germany). Ovaries of four to five
living aphids from each treatment (untreated, impi dsRNA
and isp83 dsRNA) were dissected 12 days after injection in
insect Ringer’s solution (9 g NaCl, 0.25 g MgCl, x 6H,0,
0.2 g KCI, 1 g glucose in 1 1 H,O, pH 6.8). Dissected
ovaries were observed under a MZ16FA stereo microscope,
and digital images were analyzed to determine the number
of ovary follicles and their developmental stage according
to Schmidtberg and Vilcinskas (2016).

Image analysis for coloring and body plan area

The quality of images of whole animals and dissected ovaries
was improved for brightness and contrast using Photoshop CS
v5.1 (Adobe Systems Inc., San Jose, CA, USA). Images
forming part of an image set (images from one experiment)
were treated in the same manner. RGB images from adults/
embryos were transformed to an 8-bit gray scale, pixel gray
values were measured and a whole body/embryo mean was
calculated using ImageJ v1.42q (Wayne Rosband, National
Institute of Health, USA). To compensate for color changes
in adults that naturally occur during the aging of aphids, rela-
tive brightness was calculated whereas the mean gray value of
untreated control animals at each time point was set to 1. The
gray value of embryos from untreated mothers was set to 1 as
well. The relative brightness of adults/embryos of the
microinjected control group (impi dsRNA) and HSP83-
depleted aphids was calculated in relation to the gray value
of untreated adults/embryos. We analyzed images of 15 un-
treated adult aphids and 14 adult dsRNA-injected aphids (impi
dsRNA and 4sp83 dsRNA). Color determination of embryos
was based on the measurement of nine late-stage embryos
(embryo stage >18) from three different ovaries per treatment.

Statistical analysis

Survival analysis was carried out using the Kaplan-Meier log-
rank test in Sigma Plot v11. Reproduction, embryogenesis,
coloring, and body plan area data were compared by analysis
of variance (ANOVA). The level for statistical significance
was set to p = 0.05.

Results

Effect of attenuated HSP83 expression on longevity
and fecundity

Kaplan-Meier log-rank of survival data from untreated vivip-
arous A. pisum individuals was compared with those injected
with dsRNA encoding either 4sp83 or an unrelated control
gene, the insect metalloproteinase inhibitor impi, which is
specific for lepidopterans (Mylonakis et al. 2016). Aphids in
the untreated and the injected control groups survived for a
maximum of ~35 days, whereas those injected with Asp83
dsRNA survived for a maximum of ~22 days (Fig. 1).
Depleted HSP83 expression in viviparous A. pisum individ-
uals also significantly reduced the number of nymphs born per
aphid and per day compared with the untreated and impi con-
trols (Fig. 2). Aphids in the 4sp83 dsRNA group produced a
mean of 27 nymphs during the experiment, which was signif-
icantly lower (p < 0.001) than both control groups. The same
result emerged independently when we assessed the total
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and the phenomenon was only observed on day 11. In the
control group injected with impi dsRNA, 2-9 % of eclosed
nymphs were premature and the eclosions occurred
between days 6 and 10 after injection. But in the group
injected with 2sp83 dsRNA, the proportion of premature
eclosed nymphs increased from 16 to ~80 % between days
9 and 12 after treatment, the time during which the repro-
duction phase of the Asp83 dsRNA-injected aphids is com-
pleted (Fig. 2a). Remarkably, when observing embryos
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Fig.2 Influence of HSP83 attenuation on the reproduction of A. pisum. a
Reproduction of aphids treated with Asp83 dsRNA decreases more
rapidly and ends at an earlier point compared to the control groups. b
Lifetime reproduction of aphids treated with Asp83 dsRNA is
significantly reduced compared to both controls (p < 0.001). There was
no significant difference between the control groups (p > 0.05). ¢ The
body plan area of aphids treated with 4sp83 dsRNA is marginally reduced
but is not significantly affected compared with untreated (nt) aphids and
aphids treated with impi dsRNA (p > 0.05). A significant difference
between the groups is indicated in the graph by different letters
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Fig. 3 Impact of HSP83 A
attenuation on the percentage of
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through the integument of the ovary 12 dai, we observed
many more translucent eyes representing developing em-
bryos in the group treated with 4sp83 dsRNA compared to
the two control groups (Fig. 4a—c). Dissection of ovaries
from four 2sp83 dsRNA-injected adults and from five adult
aphids from each control group revealed that aphids
injected with 4sp83 dsRNA contained no embryos at or
before developmental stage 6, whereas embryos were pres-
ent in both control groups. In addition, the second deve-
lopmental phase (embryo stages 7—13) differed significant-
ly between the HSP83-depleted aphids and those from con-
trol groups. A striking characteristic of aphids treated with
hsp83 dsRNA was the presence of embryos at later deve-
lopmental stages (embryo stage >18) that are detached
from the ovarioles and lie free inside the hemocoel
(Fig. 4f). These are not present in either of the control
groups (Table 1; Fig. 4d, e). Effects were only considered
to be HSP83-dependent when significant differences were

10 12 14 16 18 20 22 24 26 28 30 32 34 36
Days after injection

W Normal nymphs Premature nymphs

Days after injection

B Normal nymphs Premature nymphs

14 16 18 20 22 24 26 28 30 32 34 36
Days after injection

M Normal nymphs Premature nymphs

observed between the HSP83-depleted aphids and both
control groups.

Effect of attenuated HSP83 expression on aphid color

The attenuated expression of HSP83 caused the injected adults
(Fig. 5a) to become significantly darker in color (Fig. 4c) during
the observation period, with a mean relative brightness of 0.95
(5 dai; p = 0.047), 0.94 (7 dai; p = 0.024), and 0.84 (12 dai;
p=0.002), compared to untreated aphids whose relative bright-
ness was set to 1 at each time point. This was also observed for
the embryos (Fig. 5b) inside HSP83-attentuated adults, with a
mean relative brightness of 0.68 (12 dai; p < 0.001). Between
the control groups of untreated and impi dsRNA-injected ani-
mals, there were no significant differences in coloring at any
time point for adults (5 dai: p = 0.31; 7 dai: p = 0.488; 12 dai:
p =0.582) or embryos (12 dai: p = 0.161).
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Fig. 4 Influence of HSP83 attenuation on aphid phenotype. Untreated (a)
and impi control (b) adult apterous female aphids are bright green, and a
small number of embryo eye spots are visible through the cuticle. Scale
bars = 2 mm. Aphids treated with 4sp83 dsRNA (c¢) are dark green, and
more eye spots (arrowheads) can be seen compared to the control groups.

Discussion

The postulated evolutionary and ecological role of HSPs
predicts that their expression is induced by exposure to
environmental stressors and influences fitness parameters
such as lifespan and fecundity (Sorensen et al. 2003).
However, exposure to mild heat shock or microbial elicitors
of immune responses only moderately induced the expres-
sion of Asp90 and its homolog Asp83 in the model insects
T castaneum (Freitak et al. 2012) and A. pisum (Gerardo
et al. 2010). The HSP90 family also plays a role in insect
spermatogenesis, oogenesis, and embryogenesis (Ding
et al. 1993; Yue et al. 1999; Song et al. 2007). The devel-
opmental roles of HSP90 have recently expanded beyond

Scale bar = 2 mm. Dissected ovaries of untreated (d) and impi control
aphids (e) contain embryos at developmental stage 6 and earlier (see
Table 1). Scale bar = 1 mm. In contrast, these developmental stages are
absent in ovaries from aphids treated with 4sp83 dsRNA, and some
late-stage embryos are not attached to ovaries (f). Scale bar = 1 mm

those known in embryogenesis to encompass functions in
post-embryonic development such as the regulation of
compound eye formation (Knorr and Vilcinskas 2011). As
in the latter study, we also used RNAi-mediated attenuation
of HSP expression to explore the functions of Asp83 in
hemimetabolous aphids, which have evolved a peculiar life
cycle combining the alternation of sexual and asexual re-
production with an unusual (autosome-like) inheritance of
the X chromosome (The International Aphid Genomic
Consortium 2010). In accordance with our expectations,
we found that the injection of 4sp83 dsRNA into A. pisum
reduced the lifespan, fecundity, and number of viviparous
offspring, even though the attenuation of HSP83 expression
was not significant. The confirmation of gene knockdown

Table 1 Comparative analysis of parthenogenetic embryo development in HSP83-attenuated aphids and control groups
nt IMPI HSP83 p value p value p value
nt vs. IMPI nt vs. HSP83 IMPI vs. HSP83

Stage <6 5.00+4.12 240+ 1.14 0 0.211 0.048 0.004
Stages 7-13 7.60 + 3.65 13.00 £5.29 2.50 £2.38 0.097 0.047 0.008
Stages 14-17 1.80 +2.49 5.80 +£2.68 0.75 £ 0.96 0.040 0.456 0.009
Stage >18 9.40 +3.21 5.80+1.30 18.25+£10.81 0.049 0.121 0.036
Free stage >18 0 0 7.25+4.99 - 0.002 0.002
Total 23.80 + 8.64 27.00 £ 6.32 21.50 £ 11.09 0.523 0.736 0.377

The number of embryos is given together with the standard deviation (mean + SD) for developmental phases for each of the treatments. Statistical
analysis was performed by ANOVA and the corresponding p values are presented
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Fig. 5 Change of coloring of A
HSP83-attenuated aphids and their
embryos. Adult apterous aphids
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in RNAi experiments is sometimes difficult, particularly if
the target gene is expressed at a low level, because it de-
pends on the selected reference genes (Holmes et al. 2010;
Baumann et al. 2015).

The negative impact of attenuated HSP83 expression on
the survival of A. pisum (Fig. la) appears to be in striking
agreement with the role of the homologous HSP90 in the
longevity of D. melanogaster (Chen and Wagner 2012) sug-
gesting that at least one function of HSP83 is evolutionarily
conserved in insects. The proposed role of HSP90 in the fe-
cundity of D. melanogaster (Chen and Wagner 2012) was also
observed in A. pisum, where attenuated HSP83 expression
significantly inhibited the formation of viviparous offspring
compared to untreated controls and controls treated with impi
dsRNA. Reduced HSP83 expression also increased dramati-
cally the number of immature eclosed nymphs (Fig. 3). This
suggests that HSP83 displays a previously unknown role in
embryogenesis. The low number of early-stage embryos in the
ovaries of aphids injected with 4sp83 dsRNA is presumably
caused by the resorption of embryos, occurring under subop-
timal environmental conditions, allowing the late-stage em-
bryos to reach maturity (Ward and Dixon 1982).

Members of the HSP90 family are known to participate in
signal transduction (Nollen and Morimoto 2002), e.g., by ac-
tivating steroid receptors (Bohen and Yamamoto 1993). We
therefore propose that HSP83 expression regulates embryo-
genesis and eclosion, which are both strongly influenced by
environmental factors (Ward and Dixon 1982; Altincicek et al.
2008). Its function may be mediated by the recently reported
interaction with the transcription factor Broad Z7 because Cai
et al. (2014) reported that HSP90 associates with the Broad
Complex/Tramtrack/Bric-a-brac domain of Broad Z7 to pre-
vent its degradation in the moth Helicoverpa armigera, and
Piulachs et al. (2010) showed that Broad plays key roles in
embryogenesis of the cockroach Blattella germanica.
Therefore, it appears plausible that the downregulation of
hsp83 expression to below a specific but unknown threshold
could disrupt the interplay between embryonic development

and eclosion, leading to the presence of embryos that are de-
tached from the ovarioles and lie free inside the hemocoel of
hsp83 dsRNA-injected aphids (Fig. 4f). Interestingly, the ob-
served impact of injected ~sp83 dsRNA on embryos suggests
the occurrence of parental RNAI because it has been reported
that injected or orally delivered dsRNA can cause trans-
generational attenuation of gene expression in aphids
(Abdellatef et al. 2015).

The diverse roles of HSP83 in aphid longevity, fecundity,
and embryogenesis may reflect either a distinct pool of client
proteins that interact with HSP83 (Erlejman et al. 2014) or the
requirement for specific co-chaperones to achieve appropriate
HSP83 targeting (Johnson 2012). Multiple isoforms and tran-
script variants of HSP90 family members such as HSP§3,
which have been identified in A. pisum and Myzus persicae
(cf. AphidBase), appear to act as chaperones for different
types of client proteins related to longevity, fecundity, and
development (Haslbeck et al. 2012).

Interestingly, the darker color of adult aphids and their em-
bryos in the 2sp83 dsRNA group concurs precisely with the
proposed epigenetic role of this chaperone in the protection of
insects against environmental stress imposed by UV-A (Sang
et al. 2012) or heat (Gilbert et al. 2007). Temperature acts on
melanin production by modulating a chromatin regulator net-
work, interacting genetically with the transcription factor
Bric-a-brac, which is also an HSP83 target (Cai et al. 2014).
HSP90 in D. melanogaster and in mammals can target paused
RNA polymerases to activate genes in response to environ-
mental stimuli (Sawarkar et al. 2012). Our data suggest that
the aphid HSP83 homolog may have a related function.

The collection of altered phenotypes observed in A. pisum
following the RNAi-mediated attenuated expression of isp83
can be explained by an alternative hypothesis based on the
occurrence buffered phenotypic variation in response to envi-
ronmental stimuli. The silencing of HSP90 in D. melanogaster
resulted in transposon-mediated mutagenesis (Specchia et al.
2010). However, further research is required to confirm wheth-
er the attenuation of HSP83 expression in A. pisum also
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induces the mobilization of transposable elements, ultimately
causing the observed phenotypic variation.

In conclusion, attenuated HSP83 expression in the hemi-
metabolous aphid A. pisum has revealed functional similar-
ities and differences compared with its reported roles in
holometabolous insects such as 7. castaneum (Knorr and
Vilcinskas 2011). The observed negative impact of reduced
HSP83 expression on aphid survival and its complex effects
on reproduction and embryogenesis suggest that the protein
has pleiotropic roles involving the mediation of environ-
mental stimuli affecting these complex parameters. The
resulting functional plasticity could be achieved by
targeting different client proteins, by recruiting distinct
co-chaperones, or by inducing transposon-mediated muta-
genesis. The entity of our results implicates that HSP83
represents another promising target for RNAi-mediated ap-
proaches aiming the engineering of aphid-proof crops (Will
and Vilcinskas 2013; Abdellatef et al. 2015).
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