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Single-cell RNA sequencing (scRNA-seq) technology is poised to replace bulk cell RNA sequencing for many biological and

medical applications as it allows users to measure gene expression levels in a cell type–specific manner. However, data pro-

duced by scRNA-seq often exhibit batch effects that can be specific to a cell type, to a sample, or to an experiment, which

prevent integration or comparisons across multiple experiments. Here, we present Dmatch, a method that leverages an ex-

ternal expression atlas of human primary cells and kernel density matching to align multiple scRNA-seq experiments for

downstream biological analysis. Dmatch facilitates alignment of scRNA-seq data sets with cell types that may overlap

only partially and thus allows integration of multiple distinct scRNA-seq experiments to extract biological insights. In sim-

ulation, Dmatch compares favorably to other alignment methods, both in terms of reducing sample-specific clustering and

in terms of avoiding overcorrection.When applied to scRNA-seq data collected from clinical samples in a healthy individual

and five autoimmune disease patients, Dmatch enabled cell type–specific differential gene expression comparisons across

biopsy sites and disease conditions and uncovered a shared population of pro-inflammatory monocytes across biopsy sites

in RA patients. We further show that Dmatch increases the number of eQTLs mapped from population scRNA-seq data.

Dmatch is fast, scalable, and improves the utility of scRNA-seq for several important applications. Dmatch is freely available

online.

[Supplemental material is available for this article.]

Single cell RNA-sequencing (scRNA-seq) technology is transform-
ing the study of cellular heterogeneity (Kumar et al. 2014; Villani
et al. 2017), differentiation (Bendall et al. 2014; Durruthy-
Durruthy et al. 2014), and cellular response to stress and stimula-
tion (Shalek et al. 2014; Keren-Shaul et al. 2017; Golumbeanu
et al. 2018). Gene expression levels in tens of thousands of single
cells are now routinelymeasured in a single scRNA-seq experiment
(Macosko et al. 2015), and more scRNA-seq data sets are becoming
available each day. However, there remain considerable challenges
in scRNA-seq data preprocessing as gene expressionmeasurements
from scRNA-seq are much noisier than compared to bulk RNA se-
quencing (Brennecke et al. 2013; Yuan et al. 2017). This makes in-
tegration and comparisons acrossmultiple scRNA-seq experiments
particularly difficult because each experiment can vary in capture
efficiency, PCR efficiency, and dropout rates, and these technical
effects can be cell type– or experiment-specific (Butler et al.
2018; Haghverdi et al. 2018).

Without the ability to integrate multiple scRNA-seq experi-
ments, scRNA-seq studies are generally limited to two general ap-
plications: (1) to characterize cell type heterogeneity in a
population of cells from one experiment (Kumar et al. 2014;
Macosko et al. 2015; Villani et al. 2017); or (2) to infer cellular tra-
jectory during development or response to stimuli from one sam-

ple. Although we have learned tremendously about cellular
heterogeneity and cellular state transitions from these studies
and a number of other applications that use data from a single
scRNA-seq experiment, there are important applications in both
basic and clinical science that require integration and comparisons
across multiple scRNA-seq experiments (Butler et al. 2018;
Haghverdi et al. 2018). Important applications that use scRNA-
seq data include the identification of differentially expressed genes
between two biological conditions and the mapping of expression
quantitative trait loci (eQTLs).

Here, we describe Dmatch, a method that enables integration
and comparisons across multiple scRNA-seq experiments. Dmatch
uses an external panel of primary cells (Mabbott et al. 2013) to
identify shared pseudo cell types across scRNA-seq samples and
then finds a set of common alignment parameters that minimize
gene expression level differences between cells that are determined
to be the same pseudo cell types (Fig. 1A). Finally, Dmatch applies
an affine transformation in dimensionality reduced space to all
gene expression measurements to remove batch or nonbiological
effects (Fig. 1A). The affine transformation used by Dmatch pre-
serves cell-to-cell relationships and overall structure among cells
and retains the cell densities of the original data sets. Thus, aligned
data produced by Dmatch is well suited for downstream analyses
and prevents reduction of cellular variation, which can lead to in-
flated differential gene expression tests, false positives, and false
negatives.
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We showcase Dmatch on two major applications, including
differential gene expression analysis of cell clusters from biopsies
from healthy and disease individuals and cell type–specific eQTL
mapping. Dmatch compares similarly or favorably to existing
methods on evaluationmetrics.Most notably, Dmatch is designed
to integrate scRNA-seqdatawithout removing biological variation,
that is, without overcorrection. This is an important feature of
Dmatch, as we found that overcorrection is often present in data
aligned using other existing methods.

Results

Identification of shared cell types across scRNA-seq experiments

as anchors

To identify shared cell types across a pair of scRNA-seq data sets,
Dmatch computes the Pearson’s correlation between gene expres-
sion levels of all cells and gene expression quantifications of pri-
mary cells from the Primary Cell Atlas (Mabbott et al. 2013).

BA

C

Figure 1. Overview of Dmatch and simulations. (A) Data processing pipeline. First, the uncorrected data are projected onto principal components (PC).
Next, an external gene expression panel is used to identify anchor cells to estimate linear batch effects in the form of a rotation and a translation in PC space.
Last, the data are corrected by rotating and translating the data points in PC space. The PC loadings are used to recover the aligned data to allow down-
stream analyses. (B) Dmatch uses a large reference transcriptomes from the Primary Cell Atlas to identify subpopulations from the observed cells based on
the projection. These subpopulations are used as anchors to guide the alignment. We show an example applied on real data, which demonstrates the iden-
tification of cell clusters corresponding to monocytes, B cells, and two different subclasses of T cells. (C) Heat map showing the ARI F1 scores (Methods)
improvements for stimulated data corrected using different alignment methods over unaligned simulated data. Simulations were based on real PBMC data
that were split into two batches (see Methods) such that: (1) all cell types were shared or partially shared (All or Partial); (2) noise was added to simulate
small, medium, and large batch effect sizes (Small, Medium, or Big); and (3) data were split into two batches such that the cells from each cell type were
distributed evenly, unevenly, or very unevenly across the two batches (ratios of 1:1, 1:2, or 1:5, for Even, Uneven, and VeryUneven, respectively). The overall
performance of Dmatch as measured by ARI F1 scores was the best overall, followed by Harmony, and fastMNN.

scRNA-seq alignment using Dmatch

Genome Research 699
www.genome.org



More specifically, the Primary Cell Atlas is a meta-analysis of pub-
licly available microarray data sets compiled from 95 human pri-
mary cells from over 100 separate studies (Mabbott et al. 2013;
Wu et al. 2016) and was previously used in reference component
analysis (Li et al. 2017). Using gene expression measurements
from the Cell Atlas, Dmatch computes, for each cell in the
scRNA-seq experiments to be aligned a 95-dimensional vector of
Pearson’s correlations—one correlation per primary cell. Because
cells with similar Pearson’s correlation vectors are more likely to
correspond to the same biological cell types, we reasoned that cells
from different scRNA-seq experiments with similar correlation
vectors likely belong to the same biological clusters. Dmatch
thus clusters cells based on their Pearson’s correlation vector and
uses these clusters as anchors to determine alignment parameters.

To improve the consistency of the cell clustering, we imple-
mented various strategies to reduce noise in cell type assignment
and to detect outlier cells in scRNA-seq data sets. For example,
based on empirical tests, we found that the consistency of cell
type assignment was generally increased when all Pearson’s corre-
lations of the 95-dimensional vectors were set to zero except for
those between the cell and the top five reference atlas cell types
with the highest Pearson’s correlation coefficient (the results
were qualitatively similar when the top five to 10 reference cell
types were used). To minimize the chance that a rare cell type
from the reference panel is chosen as a reference cell type, we re-
quired that all reference cell types considered must be ranked as
among the top five highest correlated cell types with more than
20 cells from the scRNA-seqdata sets. Altogether, this procedure re-
sults in a sparse Pearson’s correlation matrix, which is then biclus-
tered (e.g., Fig. 1B; Methods). We found that inducing sparsity in
this matrix reduced the noise in clustering, which became imme-
diately visible (see Supplemental Fig. S1 for comparison).
Dmatch also uses two criteria to rank cell clusters and select two
or more clusters as anchors. First, Dmatch favors clusters with at
least 100 cells in each scRNA-seq sample. Second, Dmatch per-
forms a Shapiro-Wilk test to rank cell clusters in terms of their like-
lihood to be drawn from a normal distribution in PC space, an
assumption that is required in our optimization (described below).
The normality assumption also helps detect cell clusters that visi-
bly consist of two ormore distinct cell subclusters or clusters with a
large proportion of outlier cells. Clusters that fail the Shapiro-Wilk
test are removed from the pool of possible anchors.

Alignment of scRNA-seq data using anchor cell types

Dmatch uses two or more shared cell types as anchors to estimate
alignment parameters to reduce cell type–specific batch effects.
Specifically, Dmatch first estimates the probability density distri-
bution of anchor cells in each sample separately using Gaussian
distributions to model each probability density. Then, Dmatch
uses gradient descent to find the best linear transformation (trans-
lation d and rotation A) to minimize the Kullback-Leibler diver-
gence (KL divergence) between cells from anchor cell types in
one “source” scRNA-seq data set and the matched cells from an-
other “target” data set (Fig. 1A; Methods). Once the parameters
that minimize the KL divergence are obtained, the linear transfor-
mation is applied to all cells, including nonanchor cell types, from
the “source” scRNA-seq data set. The transformed values from the
“source” data set, combinedwith the original values from the “tar-
get” data set, form a pairwise alignment between the two scRNA-
seq samples. This alignment process can be repeated iteratively
to align additional scRNA-seq samples to the “target” data set. Of

note, because the KL divergence is not a symmetric distance mea-
sure, the choice of which sample to use as a “source” or “target”
data set may result in a different alignment. In our work, we con-
sistently used the sample with the largest number of cells as the
“target” data set. Despite likely differences in the gene expression
values when a different “target” data set is chosen, all downstream
analyses are expected to result in findings that are highly
consistent.

Although our approach is applicable when only a single an-
chor cell type is shared across two scRNA-seq experiments, we rec-
ommend using at least two anchors to reduce the potential for
overcorrection and introducing cell type–specific batch effects.
Indeed, batch effects have been observed to depend on mRNA ex-
pression level, length, and nucleotide composition (Li et al. 2014;
Haghverdi et al. 2018). Thus, batch effects can also be cell type–
specific because the expression levels of genes and the amount
of total mRNA molecules vary across cell types. Estimating align-
ment parameters using two or more anchors drastically reduces
overcorrecting cell type–specific batch effects, which prevents arti-
ficial signals from being introduced in the aligned data. To evalu-
ate the consistency of our alignment when different cell clusters
are selected as anchors, we computed the mean squared error
(MSE) between data sets produced using different anchors
(Methods).We found that theMSE between data sets aligned using
different anchors were significantly smaller (average 0.59) than
compared to the MSE between unaligned data and aligned data
(average 9.74), suggesting that choosing different anchors results
in similar alignments.

Evaluation of alignment methods on simulated data

We evaluated the performance of Dmatch and four recently pro-
posed alignment methods, including Seurat V3 (Stuart et al.
2019), fastMNN (scran 1.9.39) (Haghverdi et al. 2018), scMerge
(Lin et al. 2019) (0.1.9.1), and Harmony (Korsunsky et al. 2019)
(0.0.0.9000). We first applied all methods on simulated scRNA-
seq data. To best reflect cellular proportions and number of cell
types observed in real data sets, we generated simulated data by
manipulating data from a real PBMC sample with 3222 cells
from nine cell types (Methods). We generated two batches from
the data set by random splitting using different ratios. We intro-
duced batch effects of different sizes by adding Gaussian noise
with different means. Furthermore, two scenarios with different
levels of difficulty were considered. In the simple case, all nine
cell types are shared. In the difficult case, batches are partially over-
lapping. Specifically, batch 1 and 2 have one and two batch-specif-
ic cell types, respectively, and share the remaining six cell types.

Visual inspection of the UMAP plots summarizing data from
these simulated batches revealed that Dmatch, Seurat V3,
Harmony, and fastMNN showed significant improvement com-
pared to data without alignment (Supplemental Figs. S2–S6). To
compare the performance of the alignment methods, we used
the Adjusted Rand Index (ARI) (Santos and Embrechts 2009) to
evaluate how well cells of the same type clustered together and
how well cells from the two batches mixed together (Methods).
Specifically, we computed anARI F1 score (Methods) to summarize
the performance of the five methods on each simulation scenario
(higher ARI F1 indicates better performance).

In the easy case (9/9 cell types shared), we found that Dmatch
achieved the highest ARI F1 score, an average of 0.747, across all
scenarios (Fig. 1C). Harmony and fastMNN achieved an average
ARI F1 of 0.608 and 0.589, respectively, whereas Seurat V3 and
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scMerge achieved lower ARI F1 scores. In the difficult case (6/9 cell
types shared), all methods had lower ARI F1. Seurat V3, fastMNN,
and Dmatch performed better than others. It is important to note
here that the ARI F1 score does not assess overcorrection, that is,
the removal of true biological variation. Indeed, although Seurat
V3 appears to performbetter than othermethods for somedifficult
cases in terms of ARI F1 scores, visual inspection of theUMAPplots
revealed that Seurat V3- and scMerge-aligned data showed evi-
dence of overcorrection. For example, CD4+ T cells largely overlap
with cytotoxic T cells in Seurat V3- and scMerge-aligned data but
show separation in data aligned using
other methods (Supplemental Figs. S4,
S5). In addition, we observed a large
reduction of heterogeneity in expression
levels for megakaryocytes in Seurat V3-
aligned data, again indicating overcorrec-
tion (Supplemental Fig. S6).

In summary, Dmatch demonstrates
the best overall performance regardless
of cell type sharing patterns, imbalance
of sample sizes, or size of batch effects.

Alignment of clinical scRNA-seq data

from patient biopsies

To evaluate the five alignment methods
on real data, we chose to focus on im-
mune cells, as they have been character-
ized extensively, and many cell types
have well-documented markers. To ob-
tain a realistic data set that uses the
same scRNA-seq technology to measure
gene expression levels at different biopsy
sites inmultiple individuals, we collected
scRNA-seq data using 10x Genomics
(Methods) from PBMC (average 4444
cells) from six individuals, including
three rheumatoid arthritis (RA) patients,
one ankylosing spondylitis (AS) patient,
one systemic lupus erythematosus (SLE)
patient, and one healthy individual
(HC). For each individual except for the
AS patient, we also collected scRNA-seq
data from bone marrow (average 1013
cells) (Supplemental Table S1). In two of
the three RA patients, we further collect-
ed scRNA-seq data from synovial fluid
(2961 and 2254 cells) at the active site of
inflammation. Although these samples
were collected and processed on the
same day, they were processed on differ-
ent experimental runs and were not mul-
tiplexed nor pooled together. Thus, our
data collection reflects a realistic collec-
tion procedure for clinical samples that
we predict will be widespread.

We first aligned the six PBMC
samples we collected to survey the gene-
ral landscape of immune cells in healthy
and disease peripheral blood. Using
UMAP to visualize the unaligned data,
we observed subtle, but clear, separation

between clusters of cells from different individual samples, indica-
tive of the presence of batch effects (Fig. 2A). All alignment meth-
ods produced a noticeable reduction in the separation of cells from
different samples. The mixing of sample cells after alignment us-
ing Harmony, and in particular scMerge, was particularly homoge-
neous (Fig. 2A).

To characterize more systematically the accuracy of the align-
ment, we sought to determine whether the same cell types from
different samples were aligned together while distinct cell types re-
mained separated. To this end, we applied a standard pipeline to

B

A

Figure2. Application of alignment tools on PBMC clinical samples. (A) UMAP dimensionality reduction
of PBMC scRNA-seq data from six clinical samples before and after alignment comparing Dmatch,
fastMNN, Harmony, scMerge, and Seurat V3. UMAP plots suggest possible overcorrection from
scMerge. (B) We observed that CD14+ monocytes express IL1B in a subset of individuals with autoim-
mune disease (RA1, RA3, AS). This signal was preserved after alignment using Dmatch and, to some ex-
tent, fastMNN, whereas it disappeared using Harmony, Seurat V3, and scMerge. Shades of purple
represent marker expression in each cell relative to other cells in the same UMAP.
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identify cell clusters using Seurat on each sample separately (Meth-
od). This resulted in 8–15 clusters for the six samples, wherein each
cluster expressed informative markers that allowed us to assign a
likely immune cell type (e.g., CD4+ T cell, or CD14+ monocyte)
(see Methods). Visualizing these markers on the UMAP revealed
that, indeed, the alignment procedures were able to align cells ex-
pressing the samemarkers together (Fig. 2A; Supplemental Fig. S7).
However, in addition to aligning similar cell types together,
scMerge also aligned distinct cell types together, resulting in three
major homogeneous cell clusters representing B cells, monocytes,
and a large cluster of T cells (Supplemental Fig. S7).

When the samples were analyzed separately using the stan-
dard Seurat pipeline (Methods), we observed that CD14+ mono-
cytes from RA1, RA3, and AS (but not RA2, SLE, or HC) expressed
the pro-inflammatory marker IL1B, indicating that monocytes in
these individuals exhibit a pro-inflammatory state. CD14+ mono-
cytes that express IL1B have been observed in RA patients (Kay and
Calabrese 2004), but the expression of IL1B inmonocytes from the
ankylosing spondylitis patient supports reports that IL1B may be
involved in the pathogenesis of a wide number of autoimmune
diseases (Dinarello 2011; Wan et al. 2016).

We also observed a cluster in SLE PBMC consisting of cells
that expressed high levels of kidney-expressed genes (e.g.,
ECHS1,MIOX, FXYD2, and ALDOB). The presence of this “kidney”
cell cluster is consistent with circulating kidney cells in the periph-
eral blood of the SLE patient, as the patient exhibits kidney inflam-
mation in the form of lupus nephritis.

Because both pro-inflammatory monocyte clusters and the
“kidney” cell cluster were identified in the patient samples when
analyzed individually, we reasoned that their presence could not
be explained by technical effects. However, investigating data
aligned using Seurat v3, Harmony, and scMerge revealed that the
clusters representing pro-inflammatory monocytes disappeared
subsequent to alignment (Fig. 2B) and the cluster corresponding
to SLE-specific circulating kidney cells disappeared after Seurat
V3, Harmony, and to some extent, scMerge alignment (Supple-
mental Fig. S8). In contrast, both clusters are visibly separated in
the UMAP representation of data aligned using Dmatch and, to
some extent, fastMNN (Fig. 2B; Supplemental Fig. S8).

Overcorrection of batch effect masks biological signal

To better understand the extent to which data aligned using differ-
ent methods vary, we performed a series of differential gene ex-
pression analyses between cell type clusters that were
determined using Seurat on each sample separately, henceforth re-
ferred to as Seurat clusters (see Methods). We thus set to identify
differences in the list of genes identified as differentially expressed
across Seurat clusters when different methods were used to align
the data. We reasoned that if the lists of differentially expressed
genes (DEGs) across Seurat clusters are the same for all methods,
then the alignments must be very similar across methods.
However, if the lists of DEGs differ, then the alignments must be
highly variable.

We began by evaluating the differences between unaligned
data and data aligned using Dmatch. For each pair of Seurat clus-
ters, we counted the number of DEGs that were identified using
limma-trend (Law et al. 2014; see Methods) using unaligned data
as input but not using data aligned from Dmatch as input, and
vice versa. We first identified DEGs across pairs of Seurat clusters
from different samples that were determined to represent the
same cell type fromourmanual annotation (Methods). In the ideal

scenario, the number of DEGs between clusters representing the
same cell type should be reduced when using aligned data com-
pared to unaligned data, because DEGs identifiedwhen comparing
the same cell type across different samples are expected to be due
to batch effects. Indeed, when we compared DEGs obtained from
unaligned and Dmatch-aligned data, we found that the number
of DEGs between same cell types in different samples was drasti-
cally reduced (generally 5–25 DEGs from unaligned data vs. 0–3
DEGs from Dmatch-aligned data) (Fig. 3A; Supplemental Fig. S9).
The reduction in the number of DEGs therefore suggests that
Dmatch was able to efficiently remove the effects of batch.

We also considered comparisons across pairs of Seurat clusters
determined to be different cell types but from the same sample
(Fig. 3A,B, red points). Ideally in this case, DEGs identified across
two clusters from the same sample after alignment should be large-
ly the same as those identified before alignment because much of
the confounding effects are shared among measurements in a sin-
gle experiment. In fact, within-sample DEGs identified from un-
aligned data that are not identified from aligned data suggest
overcorrection and a reduction of true biological variation. We
found that DEGs from within-sample comparisons were identical
between unaligned data and data aligned using Dmatch.
Altogether, these results suggest that Dmatch is able to preserve
within-sample biological variation while correcting across-sample
batch effects.

We next compared DEGs identified from unaligned data to
DEGs identified from Harmony, fastMNN, scMerge, and Seurat
V3. We found that, although all methods showed reduction of
DEGs identified across Seurat clusters determined to be the same
cell types, therewere also significant differences in theDEGs found
between Seurat clusters within a sample (Supplemental Fig. S9).
These observations raise the possibility that existing alignment
methods are prone to overcorrection.

We next compared DEG results between Dmatch and other
methods. We highlight in Figure 3B the differences between
Dmatch andHarmony,which showed the largest number of differ-
ences (for other comparisons, see Supplemental Fig. S10). For ex-
ample, many comparisons shared no DEGs, whereas hundreds of
genes were identified as differentially expressed in either
Dmatch-aligned data only or Harmony-aligned data only. Al-
though the number of DEGs in comparisons between the same
cell types was smaller usingHarmony and some of the othermeth-
ods, the large number of method-specific DEGs when comparing
clusters within samples suggests overcorrection.

To further investigate possible overcorrection, we focused on
identifying cell clusters that show biologically relevant or known
differences. We found that samples from RA1 and RA3 both har-
bored two clusters of cells that expressed classical markers of
CD4+ T cells (e.g., CD3D, IL7R, IL32), with one cluster showing
high expression levels of activation markers including FOS and
JUN (Supplemental Fig. S11). Because both clusters were found in
RA1 and RA3 patients, they likely represent real biological varia-
tion between naive and activated CD4+ T cells circulating in pa-
tient blood. To verify this, we identified DEGs between the naive
and activated CD3D+ IL7R+ cell clusters (CD4+ T cells). Within
the top 15 most significantly DEGs, we observed overexpression
of activationmakers such asCD69, JUN, FOS, andDUSP1 in activat-
ed T cells when using unaligned data, Dmatch-aligned, and
fastMNN-aligned data (Fig. 3C). However, we found that the esti-
mated fold changes were reduced or even opposite when using
Seurat V3-, scMerge-, or Harmony-aligned data (Fig. 3C). We also
observed that comparing naive CD4+ T cells from RA1 to activated
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CD4+ T cells from RA3 resulted in a highly consistent list of DEGs
to within-sample comparison, further suggesting that cross-sam-
ple comparison is likely accurate for fastMNN and Dmatch and in-
accurate for Seurat V3, scMerge, and Harmony.

We also found that the list of DEGs between theCD14+ Seurat
cluster (CD14+monocytes) fromRA1 and theCD14+ Seurat cluster

from HC were different between
Dmatch-aligned data and data aligned
using other methods. As described earli-
er, we found that the pro-inflammatory
marker IL1B was overexpressed in RA1
CD14+ monocytes compared to mono-
cytes from the healthy individual. We
also observed overexpression of addition-
al consistent markers such as CCL3,
CCL4, and NFKBIA (Fig. 3D,E). In con-
trast, starting from data aligned using
fastMNN, scMerge, Seurat V3, and Har-
mony, the differences in gene expression
levels between RA1 and HC monocytes
were drastically reduced in effect sizes
(MNN) or disappeared completely (Har-
mony, Seurat V3, and scMerge) (Fig. 3D,
E). IL1B and cytokines (e.g., CCL3 and
CCL4) have long been recognized to
be overexpressed in samples from rheu-
matoid arthritis patients (Koch 2005;
Dinarello 2011). Thus, our observations
suggest that heterogeneity between the
two monocyte clusters are not a result
of uncorrected batch effects. Instead,
the lack of DEGs detected across the
two monocyte clusters using Harmony,
scMerge, Seurat V3—and to some extent
fastMNN—indicates that the two biolog-
ically variable clusters are aligned togeth-
er erroneously.

Altogether, these results suggest
that Dmatch allows correction of batch
effects from scRNA-seq data, while avoid-
ing overcorrection. In contrast, although
Harmony, scMerge, Seurat V3, and
fastMNN are all able to correct batch ef-
fects by homogenizing scRNA-seq data
from different experiments, they do so
at the cost of removing real biological
signals.

Variation in gene expression levels

in peripheral and tissue-resident

immune cells

We next evaluated scRNA-seq alignment
across biopsy sites. To this end, we used
all methods to align scRNA-seq data
from PBMC and bone marrow (BMMC)
from all individuals (11 total samples)
and again evaluated the number of
DEGs across Seurat clusters. We then
conducted a hierarchical clustering on
all samples based on the number of
DEGs detected, using the Euclidean dis-

tance as the distancemetric. We found that, compared to the clus-
tering from unaligned data, the clustering using aligned data from
all methods resulted in more clearly defined clusters (Fig. 4A;
Supplemental Fig. S12). The samples clustered according to in-
ferred cell type, rather than sample provenance, and samples with-
in the same cell type clusters showed fewer DEGs within cluster

E

BA
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D

Figure 3. Evidence for overcorrection in aligned scRNA-seq data. (A) Scatterplot showing the number
of differentially expressed genes (DEGs) that are identified using unaligned data (positive y-axis) or using
data aligned using Dmatch (negative y-axis), versus the number of DEGs that are identified in both data
sets (x-axis). Each point represents a comparison between cell type clusters from the same or different cell
type, or from the same or different sample. Successful removal of batch effects is supported by smaller
numbers of DEGs resulting from Dmatch-aligned data in same cell type comparisons, compared to un-
aligned data. DEGs inferred fromwithin-sample cluster comparisons are identical between unaligned and
Dmatch-aligned data. (B) Scatterplot similar to A shows a large difference between Dmatch and
Harmony-aligned data. (C) Heat maps of estimated DEG fold changes between CD4+ T cells versus
CD4+ T cells expressing FOS within the same sample (RA3, left heat map), and across two samples
(RA1 vs. RA3, right heat map). Dmatch and fastMNN estimates of DEG fold changes within samples
are consistent with unaligned data, as we should expect. However, the estimates from scMerge and
Harmony are shrunken and inconsistent, respectively, suggesting overcorrection. Across-sample compar-
ison between the two cell types shows an increase in JUN, FOS, and CD69 expression in activated CD4+ T
cells, consistent with within-sample comparisons for Dmatch and fastMNN. The signal is reduced or re-
versed for scMerge and Harmony, respectively. (D) Scatterplot of DEG log fold change comparison be-
tween CD14+ monocytes from healthy individual HC and RA patient (RA1). Fold change estimates are
reduced or zero for inflammatory markers (IL1B, CCL3, CCL4) using data obtained from fastMNN,
Harmony, and scMerge. (E) Heat maps of estimated DEG fold change comparison between RA1-HC1
and RA3-HC1 are consistent and support the presence of overcorrection in data aligned using
Harmony, scMerge, and fastMNN, masking real biological signal.
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than compared to unaligned data, suggesting a reduction of batch
and technical effects.

The study of differences between peripheral immune cells
and resident immune cells in the pathological sites requires inte-
gration of peripheral samples and samples from the pathological
sites. Because cell type composition can differ across these sites,
we predicted that Dmatch would outperform other methods as,
based on our simulations, existingmethods struggled to align sam-
ples in the presence of cell types that were not shared or a high var-
iability in cell type proportions. To test our prediction, we aligned
our scRNA-seq data from synovial fluid (SF) (from RA1 and RA2) to
scRNA-seq data fromPBMC (all individuals). PC analysis on uncor-
rected data suggests that SF and PBMC scRNA-seq showed cluster-
ing within biopsy site, indicative of the presence of batch effects
(Fig. 4B). Alignment of the data using Dmatch showed clear im-
provement in mixing of cells from SF and PBMC samples (Fig.
4B). Furthermore, we observed that alignment using other tools

such as Harmony also showed improved
mixing and a clear reduction of batch ef-
fects (Fig. 4B; Supplemental Fig. S13).

To better understand the differences
in alignments produced by the five
methods, we again compared the list of
DEGs across Seurat clusters in PBMC
and the synovial fluid scRNA-seq data
set without alignment and after align-
ment using the five methods. We found
that using unaligned data generally led
to a larger number of DEGs across sam-
ples from different biopsy sites (Supple-
mental Fig. S14), consistent with the
large batch effects observed from the
PCA (Fig. 4B).

However, we found that many pairs
of cell clusters had DEGs that were only
identified in Dmatch and fastMNN, but
not Harmony, scMerge, or Seurat V3.
Among the pairs of clusters with DEGs
specific to Dmatch and fastMNN are two
clusters of monocytes from RA2 PBMC
and RA2 SF. Upon examination, we
found that, whereas monocytes from
RA2 PBMC did not express IL1B or other
pro-inflammatorymarkers, IL1B andoth-
er pro-inflammatorymarkers were highly
overexpressed in RA2 SFmonocytes. This
is in contrast to RA1 samples, in which
pro-inflammatory monocytes were
found in both PBMC and SF. Dmatch-
aligned data revealed that monocytes in
RA1 SF expressed higher levels of CCL3
compared to RA1 PBMCmonocytes, sug-
gesting a stronger or more robust activa-
tion of monocytes in SF than in PBMC.
Our finding suggests that the presence
of IL1B+CCL3+CCL4+ monocytes may
be a potent biomarker of rheumatoid ar-
thritis, even though not always detect-
able in patient PBMC.

We were able to identify IL1B
overexpression on monocytes only
using data aligned by Dmatch and

fastMNN—and the extent of the overexpression estimated using
fastMNN alignments was reduced compared to that estimated by
Dmatch. IL1B overexpression and thus this entire population of
pro-inflammatory monocytes could not be detected in scRNA-
seq data aligned using Harmony, scMerge, and Seurat V3.

Thus, we conclude that although all methods were able to in-
tegrate scRNA-seq samples frommultiple biopsy sites withmodest
differences in cell type compositions, nearly all existing methods
also removed true biological variation between cells from the dif-
ferent biopsy sites.

Alignment improves power of eQTL mapping from population-

level single-cell RNA-seq data

PCA is often used to estimate and correct batch effects to increase
mapping power in eQTL studies from bulk RNA-seq data (Li et al.
2016). However, because PCA-based methods often fail to correct

B

A

C

Figure 4. Cross-biopsy alignments between PBMC and SF immune cells. (A) Heat maps showing the
number of DEGs identified (Methods) across Seurat clusters in PBMC and BMMC samples using un-
aligned data, Dmatch-aligned data, and Harmony-aligned data (others in Supplemental Fig. S12).
Improvement of clustering by cell type using aligned data indicates removal of batch effects from un-
aligned data. (ND) Not determined. (B) PCA of scRNA-seq samples from PBMC and SF before alignment
and after alignment using Dmatch and Harmony. Although unaligned data show likely batch effects spe-
cific to biopsy site, this effect is reduced after alignment. (C) Scatterplots of estimated gene expression log
fold changes between CD14+monocytes fromRA2 PBMC and RA2 synovial fluid (SF). We found that only
Dmatch- and fastMNN-aligned data reflected overexpression of pro-inflammatory genes in RA2 SF versus
PBMC monocytes.
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batch effects across scRNA-seq samples, we hypothesized that
Dmatch andother alignmentmethods can increase eQTLmapping
power beyond standard PCA-based batch correction methods. To
test this, we re-analyzed population scRNA-seq data fromperipher-
al blood mononuclear cells collected in a previous study (van der
Wijst et al. 2018). UMAP of the unaligned data shows minimal
batch effects (Fig. 5A), as has been generally observed from high-
quality, droplet-based scRNA-seq from peripheral blood.

We mapped eQTLs in eight cell types using the same labels
identified by the original authors (van der Wijst et al. 2018). To
this end, we computed the mean count of all genes in each cell
type separately. We then performed eQTL mapping, as we have
done extensively in the past (Li et al. 2016, 2018), by appropriate
normalization and standardization of the data and false discovery
test correction (Methods). We found that alignment generally im-
proved the number of eQTLs detected but only slightly (2%–10%)
(Fig. 5B).

Owing to the pooled design employed by the authors, the
scRNA-seq data showed little to no batch effects, which can ex-
plain the subtle improvement of eQTL detection power after
alignment. To test this possibility, we next added batch effects

(Methods) to each of the batches to simulate a more practical
data collection pipeline, wherein clinical samples are collected
continuously and immediately processed for scRNA-seq. UMAP
of the unaligned data clearly shows the introduced batch effect
(Fig. 5C), which is consistent with scRNA-seq data from clinical
samples that were immediately processed after collection (Fig.
2A). When using unaligned data with simulated batch effects
to identify eQTLs, the number of eQTLs identified in each cell
type was reduced by an average of 40%–60%. These observations
demonstrate the necessity to account for potential batch effects
in eQTL mapping studies that use scRNA-seq data. Thus, we
next identified eQTLs starting from data aligned using different
methods. We found that eQTL mapping starting with data
aligned using Dmatch resulted in the most eQTLs identified
(1.3- to 1.5-fold as many as starting with unaligned data) com-
pared to data aligned using other methods (0.9- to 1.1-fold as
many) at 10% FDR (Fig. 5D). To visualize the differences in
eQTLs recovered from data aligned using the different methods,
we compared the significance of the association for the QTLs.
We found that the linear regression P-values were generally high-
ly correlated but in many cases were more significant for
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Figure 5. Evaluation of alignmentmethods on eQTLmapping. (A) UMAP of unaligned PBMC scRNA-seq data from 45 donors (van der Wijst et al. 2018).
The cells from the 45 donors were pooled into eight samples for sequencing. (B) Alignment slightly improves mapping power. (C) UMAP of unaligned
PBMC data with spiked-in batch effects (see Methods). (D) Alignment improves eQTL mapping power substantially when batch effects are simulated
to reflect a realistic and practical scRNA-seq collection strategy. (E) Replication of eQTLs identified in a bulk RNA-seq study of immune cell type eQTLs
from the DICE consortium. The eQTLs that were not tested correspond to SNPs whose genotype could not be determined or to genes filtered out due
to low expression.
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Dmatch-aligned data compared to data aligned using other meth-
ods (Supplemental Fig. S15). This suggests that data aligned using
Dmatch improves QTL mapping power. We also validated the
eQTLs mapped using data from the DICE consortium, which col-
lected population-level bulk RNA-seq data for a large number of
sorted cell types. We found that, although the rates at which
eQTLs identified from data aligned using the different methods
were largely similar, Dmatch identified more eQTLs, which gen-
erally led to a higher number of eQTLs that are replicated overall
(Fig. 5E; Supplemental Fig. S16).

Thus, we conclude that alignment of scRNA-seq data increas-
es eQTL mapping power. However, the improvement in mapping
power varies across alignment methods and is likely to be reduced
when biological variation is removed due to overcorrection.

Discussion

There has been a great interest in using scRNA-seq to discover gene
regulatory signatures that underlie various biological processes
and phenomena. One major obstacle to fully exploit the power
of scRNA-seq is the extensive batch and technical effects in
scRNA-seq experiments. These unwanted effects not only limit
the re-usability of scRNA-seq data produced by different groups
but make it difficult to compare two scRNA-seq experiments gen-
erated by the same group and individual. To overcome this obsta-
cle, a growing number of methods were proposed to “align”
scRNA-seq experiments to facilitate comparison and allow down-
stream analysis of the merged data sets. Many of these alignment
strategies have been designed to align data sets that have been
generated using different scRNA-seq platforms or even to align
scRNA-seq data from different species. However, there is a paucity
of studies that evaluate the performance of these methods on
aligning data sets that were generated using the same methods
in perhaps different contexts, for example, healthy versus disease
condition. Indeed, although most methods appear to perform
well on the task of aligning conspicuous cell clusters together
(e.g., the monocytes from one data set to monocytes of another
data set), it is unclear whether more subtle biological variation is
lost during the alignment process.

We developed Dmatch to align scRNA-seq experimental data
that are obtained using the same scRNA-seq platform to allow
downstream analyses including differential gene expression anal-
ysis. Dmatch uses an external panel of reference transcriptomes
(Primary Cell Atlas [Mabbott et al. 2013]) that was compiled
from over 100 separate studies to identify anchor cell types that
can be used for identifying batch or technical effects. Although
the cell type annotation in the Primary Cell Atlas may be relatively
coarse (95 distinct cell type annotations), we found that Dmatch
was able to find appropriate anchors to align samples consisting
of immune cell types. Although we expect this strategy to work
less well for more specialized scRNA-seq samples that contain
cell types that are not represented in the Primary Cell Atlas, we en-
visage that ongoing efforts, such as that of the Human Cell Atlas
(Regev et al. 2017), will establish better cell type references that
can be used by Dmatch to identify more appropriate anchor cell
types. In particular, we found that, in some cases, a new reference
panel must be created with finer grained data, for example, brain
cell types when analyzing scRNA-seq data from brain tissues, to
identify appropriate anchor cell types for alignment. In order for
Dmatch-type methodologies to work in these specific cases, the
user can provide a reference panel with relevant cell lines or cell
types. Specifically, if there are no significant correlations and

biclustering pattern between the scRNA-seq data and the panel,
the users must find an alternative reference panel with relevant
cell lines for Dmatch to properly remove batch effects. The lack
of significant correlation can be diagnosed from the visualization
tools implemented in Dmatch as well as inspection of the correla-
tions output by Dmatch.

In this paper, we showcased the application of Dmatch on
scRNA-seq data from immune cell types. Several of the parameters
used to identify anchor cell types were chosen empirically. For ex-
ample, we found that using a 0.1–0.4 cutoff threshold for the
Pearson’s correlation matrix and keeping the top five primary
cell lines that are highly correlated with at least 20 cells worked
well for all data sets in the study. However, to ensure successful
batch effect removal using Dmatch, users are encouraged to in-
spect the distribution of Pearson’s correlation coefficients between
cells in the data sets and primary cell lines in the reference panel
(Fig. 1A). This will allow the user to adjust the cutoff thresholds
or other parameters as needed. These parameters allow aberrant
signals due to technical artifacts to be removed in order to identify
external expression data that can be used to find appropriate an-
chors for alignment. The higher the Pearson’s correlation cutoff
threshold is set, the more confident the results of biclustering
will be and thus the more likely the identified anchors will be suit-
able for Dmatch alignment. However, setting the cutoff threshold
too highmay result in no external expression data to help identify
suitable anchors. Thus, the parameters should depend on the ref-
erence panel used and how representative the reference panel is
of the data sets under study. The cutoff should therefore be a pa-
rameter to examine case by case.

Dmatch uses kernel density matching to estimate two pa-
rameters, a translation parameter and a rotation parameter, to
align two scRNA-seq data sets. Because Dmatch transforms data
linearly and this transformation depends only on two parame-
ters, we reasoned that the resulting transformed data should be
less prone to overcorrection. The resistance to overcorrection,
however, comes at the cost of not being able to detect, and there-
fore correct for, batch or technical effects that are entirely nonlin-
ear. Indeed, we found that alignments from Dmatch resemble
uncorrected data more so than alignments from other methods,
suggesting that the corrections made by Dmatch are relatively
conservative. Nevertheless, Dmatch performed similarly or favor-
ably to all evaluated methods in terms of reduction of batch ef-
fects in simulated data and in terms of producing correctly
aligned cell type clusters across samples by visual inspection of
PCA or UMAP plots.

A major difference we observed between the evaluated align-
ment methods in this study was that Dmatch appeared to be less,
or even not, prone to overcorrection, whereas Harmony, scMerge,
Seurat V3, and to some extent, fastMNN, all showed signs of over-
correction in real data analysis. For example, we found several cell
clusters that likely represented distinct cell states (e.g., pro-inflam-
matory andnormalmonocyte) butweremade indistinguishable in
alignments obtained using Harmony, scMerge, and Seurat V3.
Even in the case of fastMNN, the differences in gene expression
that distinguished these clusters were often reduced substantially.
Thus, although all methods appear to work relatively well in terms
of correcting batch or technical variation across scRNA-seq sam-
ples, methods vary in terms of their propensity to remove true bi-
ological variation. Indeed, we found that data aligned using
scMerge showed the strongest signature of overcorrection in data
that we collected. In this study, we also found that overcorrection
can impact eQTL mapping. Indeed, although eQTL analysis is
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generally tolerant to undercorrection, as covariates can be added to
the linear regressions that test for associations, overcorrection of
true biological—in this case, inter-individual—variation will
strictly reduce eQTL mapping power.

In summary, we present Dmatch, a novel method for align-
ment of scRNA-seq data, which allows users to integrate multiple
scRNA-seq experiments for downstream analyses. Although we
found that all evaluated methods performed well in terms of their
ability to remove batch and technical effects, only Dmatch align-
ments appeared to be resistant to overcorrection. Thus, Dmatch
unlocks several important applications, such as differential gene
expression analysis and eQTL mapping using scRNA-seq data.
These applications are becoming staple tools in genomic studies
as scRNA-seq continues to increase in popularity and maturity.

In addition to aligning scRNA-seq data, Dmatch can be ex-
tended to align scATAC-seq data or perform integrative analyses
that use both scRNA-seq and scATAC-seq. There are two ways
that Dmatch can be used in this setting: (1) to use the RNA-seq ref-
erence panel to identify anchor cells by correlating gene expres-
sion to ATAC-seq counts in corresponding promoter regions; or
(2) to use a new reference panel established using bulk ATAC-seq
data from primary cell lines. Additional work is required to explore
these possibilities.

Methods

Identifying anchor cells by projecting scRNA-seq to a reference

panel

We propose to use reference transcriptomes from the Primary Cell
Atlas, ameta-analysis of a largenumber of publicly availablemicro-
array data sets compiled from human primary cells (745 samples,
from over 100 separate studies). After preprocessing using quantile
normalization and feature selection, a panel of 5209 genemeasure-
ments for 95 annotated cell types (e.g., epithelial cells, fibroblasts
and endothelial cells, etc.) were used for projection. This processed
reference panel is downloaded directly from R package RCA (Li
et al. 2017). To identify subpopulations from the observed single
cells, we projected all cells from our scRNA-seq samples to this ref-
erence panel by quantifying the Pearson’s correlation (the
Spearman’s correlation can also be used) between measurements
for each single cell and the measurements for the 95 annotated
cell types. We then enforced sparsity to the original Pearson’s cor-
relationmatrix by (1) keeping only the top five primary cell lines in
the reference panel which were highly correlated with any cell in
the experimental data sets, and (2) keeping only the primary cell
lines in the reference panelwhichwere among the top five primary
cell lines with more than 20 cells in the experimental data sets.
The correlations of cell lines that do not meet these two criteria
were set to zero. The cutoffs were selected empirically for 10x
Genomics data and could be adjusted based on the quality of sig-
nals in the data sets. Of note, the identities of the single cells
were described by a 95-dimensional projected vector on the refer-
ence panel. We further performed a biclustering which allowed
simultaneous clustering of the rows and columns on the sparsity-
enforced Pearson’s correlation matrix. We used hlcust() imple-
mented in R for the hierarchical clusteringwith Euclidean distance
as the distance metric. In our experiments, complete linkage,
Ward’s minimum variance method, and Ward’s minimum vari-
ance square linkage method achieved the best performance.
Finally, wedetermined clusteringmembership based on the biclus-
tering results. The cell clusters shared across samples were used as
anchor cell types for alignment. If two samples share more than

two cell clusters, the default is to select two clusters based on (1)
the number of cells in each cluster; a recommended cluster has at
least 5% of the total number of cells in each sample, and (2) the re-
sults from a Shapiro test on the normality.

Removal of batch effects

Weassume that the batch effects can be represented as linear trans-
formations on reduced dimensions. We used PCA for dimension
reduction in the analysis, which could be replaced by other non-
linear alternatives.We assume that the density of each selected an-
chor cell type on a pair of PCs follows a 2D Gaussian distribution.
Taking advantage of orthogonality, we can perform the correction
independently on every consecutive pair of top PCs. In the default
setting, Dmatch accounts for variation loaded on the top 30 PCs.
Overall, we seek to correct for batch effects through applying linear
transformations estimated from density matching.

To illustrate the general ideas, we describe the alignment pro-
cedure for measurements from two cell types, type A and type B
cells in individual 1 and 2, respectively. At population level, the
density for measurements in individual 1 is q and the density for
measurements in the individual 2 is p without any perturbation.
Let Y′ represent measurements of type A cells from individual 1,
X′ represent measurements of type B cells from individual 1, Y rep-
resent measurements of type A cells from individual 2,X represent
measurements of type B cells from individual 2 after some un-
known affine perturbation on the original density. Let D(q, p) rep-
resent some distance measure for two densities, for example,
Hellinger distance, total variation distance, χ2 distance, or
Kullback-Leibler divergence. We seek an affine transformation
on {Y, X}, including a translation d and a linear map A, which
can minimize

D(q̂1, p̂1)+D(q̂2, p̂2),

where q̂1 and q̂2 are the estimated density functions based on
Y′ and X′, respectively, and p̂1 and p̂2 are the estimated density
functions based on YA− d and XA− d, respectively. The solution
of this problem depends on the distance measure as well as the
density estimation method. We use Kullback-Leibler (KL) diver-
gence, which possesses good properties for our application and re-
sults in a closed-form objective. The KL divergence from p to q is
defined as

KL(p; q) =
∫
p(x)log

p(x)
q(x)

dx = −Ep[logq(x)]+ c,

where q is a reference density that we want to align to. It is a
measure of how much “evidence” each sample will, on average,
bring when we are trying to distinguish p(x) from q(x) and when
we are sampling from p(x). Accordingly, our problem can be for-
mulated as

f (Y, X) = argmin
A,d

{KL(p̂1; q̂1)+ KL(p̂2; q̂2)}

= argmax
A,d

{Ep̂1[ log q̂1]+ E p̂2[log q̂2]}.

This is equivalent to calculating maximum likelihood estima-
tors for A, d, given empirical density of q1 and q2. We use Gaussian
distributions to estimate the densities for X, Y, X′, and Y′, respec-
tively. Let µy, D1 and µx, D2 represent the estimated mean vector
and covariancematrix for Y′ and X′, respectively. The objective be-
comes the following:
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arg min
A,d

f (Y, X)

= arg min
A,d
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Further simplification leads to the followingmatrix form rep-
resentation:
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where ω1 = 1m⊗ (d + μy)
T and ω2 = 1n⊗ (d + μx)

T.
We use coordinate descent to solve the above estimation

problem. At each step, d will be updated by
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Theoretically, A is allowed to take many forms of linear trans-
formation. In the default implementation, we constrained the lin-
ear map in the affine transformation to a single rotation, reducing
the search space of parameters, that is,

A = cosu −sinu
sinu cosu

[ ]
.

As such, we replace the gradient search by an angle search in
the algorithm
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Simulation study

We created the simulated data by manipulating a real PBMC data
set (standard filtering and log-normalized), which contained a to-

tal of 3222 cells from nine cell types (Ding et al. 2020). We added
normally distributed noise to the data set to model batch effects,
through themean parameter of which we controlled the effect siz-
es. Specifically, we used a normal distribution with a mean of 0.28
to model large batch effects, a mean of 0.18 to model medium ef-
fects, and a mean of 0.08 to model small effects. All standard devi-
ations are set to 1. We split the data into two sets, and the ratios of
numbers of cells in the two sets are set to 1:1, 1:2, or 1:5 to repre-
sent scenarioswith an equal number of cells, amoderately unequal
number of cells, and a very unbalanced number of cells,
respectively.

We tested two patterns for cell type sharing. In the first case,
two splits share all the cell types; in the second case, they share six
out of nine cell types. For each pattern, we simulated batch effects
with different sizes: big, medium, and small. The evaluation of the
size of the batch effects is done by inspecting the cells in the PC
space. For each effect size, we generated 10 data replicates. In total,
we evaluated three ratios of numbers of cells divided into the two
batches, two different sharing patterns, and three batch effect siz-
es. The cellular proportions in the original real data set are listed be-
low in Table 1. For scenarios in which all cell types are shared, we
kept the ratio in two splits. For scenarios with partial overlapping,
one sample is set to have one batch-specific cell type and the other
batch to have two specific cell types. Three batch-specific cell types
are randomly sampled from the nine possible cell types. Thus, the
cellular proportions will vary for different replicates. We included
cellular proportions from one example replicate.

Performance evaluation

We use the ARI F1 score to evaluate the performance of the batch
correction methods. The ARI F1 score combines two ARI scores
that aim to capture (1) the purity of cell type, and (2) the mixing
of batches.

The ARI measures the similarity between two clusterings. To
assess cell type purity and mixing of the two batches, we first per-
formed a k-means clustering on the first 20 PCs of 80% down-sam-
pled data, which include all cell types and batches, using the
kmeans() function from the stats package in R and by setting k=
9, the number of distinct cell types in the simulation. Using this
data, the ARI (ARIcell type) was computed by comparing the cell
type labels against the k-means clustering labels using the
adjustedRandIndex() function in the R package mclust (Scrucca
et al. 2016). A highARIcell_type indicates that the k-means clusters
correspond well to the cell type clusters, reflecting separation by
cell types. To assess mixing of the batches, we similarly computed
ARI (ARIbatch) by comparing the batch labels against the k-means
clustering labels. A high ARIbatch indicates separation of cells by

Table 1. Cellular proportions in the original data set and an example
simulation with partial overlapping cell types

Cell type Original
Partial overlap

Batch 1
Partial overlap

Batch 2

B cells 0.0894 0.0802 0
CD14+ monocytes 0.1986 0 0.192
CD16+ monocytes 0.0317 0.0284 0.0305
CD4+ T cells 0.1707 0.1532 0.165
Cytotoxic T cells 0.3644 0.654 0.351
Dendritic cells 0.0171 0.015 0.099
Megakaryocytes 0.0686 0.0618 0.066
Natural killer cells 0.0515 0 0.502
Plasmacytoid

dendritic cells
0.0081 0.00724 0.0466
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batch. Thus, the ideal alignment method should result in a high
ARIcell_type and a low ARIbatch.

To produce a representative ARI score for each method, both
batch and cell type assessments were repeated 100 times with sub-
sampling. The median ARI scores were then normalized to a range
between 0 and 1, and a combined F1 score was obtained for each
method by computing the harmonic mean of the ARI scores de-
fined as

F1ARI =
2(1− ARIbatch norm)ARIcell type norm

1− ARIbatch norm + ARIcell type norm
.

From the equation above, it can be seen that a higher ARI F1
corresponds to a better alignment.

Data collection

Samples of peripheral blood (PB) and bone marrow (BM) were ob-
tained from three RA patients, one SLE patient, and one HC. In ad-
dition, a sample of PB was obtained for one AS patient. Synovial
fluid samples were obtained from the knee joints of two RA pa-
tients. RA, AS, or SLE patients fulfilled the 2010 American
College of Rheumatology/European League Against Rheumatism
(ACR/EULAR) RA classification criteria (Aletaha et al. 2010), the
SpondyloArthritis International Society classification criteria for
axial spondylarthritis (Rudwaleit et al. 2009), or the ACR Revised
Criteria for Classification of SLE (Hochberg 1997), respectively.
Donors were enrolled at the Department of Clinical
Immunology of Xijing Hospital in Xi’an, and their clinical charac-
teristics are summarized in Supplemental Table S1. Donors with
chronic disease, cancer, and chronic infections such as Hepatitis
B, C, and HIV were excluded. PB, BM, and SF were collected by
EDTA-treated Vacutainer tubes in a sterile manner (BD
Biosciences). SF was diluted with two volumes of phosphate-buff-
ered saline (PBS) and treated with bovine testicular hyaluronidase
(10 mg/mL; Sigma-Aldrich) for 30 min at 37˚C. Mononuclear cells
were isolated using Ficoll-Paque gradient separation (GE
Healthcare Bio-Sciences). This research was approved by the ethi-
cal standards committee of Xijing Hospital (KY20192006-C-1).
All donors provided written informed consent in accordance
with the Declaration of Helsinki.

Data processing

We used standard QC to filter our data such that all retained genes
are expressed in more than 5% of cells and all cells express at least
200 genes. For feature selection, we normalized gene expression
measurements for each cell by the total expression, multiplied
by a scale factor, and calculated log variance versus mean ratio
(logVMR) for each gene across all cells. Next, we selected the top
50%–75% genes (after inspecting the logVMR) as the features to
calculate the Pearson’s correlation between cells in the data sets
under study and primary cell lines in the reference panel.
Because genes must be shared between the reference panel and
the data sets under study, we retained a high percentage of total
genes based on logVMR.

Identification of cell clusters using Seurat and markers

WeusedSeurat (version2.3)withdefault recommendedsettingson
each of our scRNA-seq samples separately to identify clusters (re-
ferred to as Seurat clusters). To annotate Seurat clusters, we inspect-
ed the top 10 marker genes that were the most overexpressed in
each cluster compared to the remaining cells as identified using
the “FindAllMarkers” function from Seurat. More specifically, we
used 2–3 representative markers to annotate the following cell
types: CD4+ T cells (CD3D, IL7R); CD8+ T cells (CD3D, CD8A,

CD8B); NK cells (NKG7,GNLY); B cells (MS4A1, CD79A); CD14+

monocyte (LYZ, CD14); CD16+ monocyte (LYZ, FCGR3A); red
bloodcells (HBB,HBA1,HBA2); anddendritic cells (FCER1A,CST3).

Alignment of scRNA-seq data from patient and healthy biopsies

To align the scRNA-seq data from patient and healthy individual
biopsies (PBMC, PBMC+BMMC, and PBMC+SF), we used the de-
fault parameters for Seurat V3 (Stuart et al. 2019), fastMNN (scran
1.9.39) (Haghverdi et al. 2018), scMerge (0.1.9.1) (Lin et al. 2019),
andHarmony (0.0.0.9000) (Korsunsky et al. 2019) and used the 30
first PCs as input data (except for scMerge, for which the full data
set was used as input, as required).

Dmatch aligns scRNA-seq samples by finding the alignment
parameters that minimize the difference in the densities between
anchor cell clusters from the “target” and “source” scRNA-seq sam-
ples and by applying the transformation to all cells including cells
in the “source” data set. Thus, the alignment process can fail if
batch effects are highly inconsistent among cell clusters (and
thus anchor cell clusters). To detect such inconsistencies,
Dmatch computes an alignment vector for each anchor cell cluster
as the linear transposition in a 2D PC space from the center of an
anchor cell cluster from the “source” sample to the same anchor
cluster of the “target” sample. If the linear transpositions of two
anchor cell clusters are very different, then the batch effects are
likely to be highly inconsistent and result in the incorrect estima-
tion of alignment parameters. In other words, differences in the
linear transposition are indicative that different anchor cell clus-
ters provide conflicting information regarding how batch effects
should be corrected.

We found no inconsistent batch effects for our PBMC and
PBMC+BMMC alignments and therefore used the default param-
eters for Dmatch to align PBMC and PBMC+BMMC samples with
30 PCs as input. However, when we computed the angle between
the alignment vectors for the alignment of RA1 SF onto HC PBMC,
we found that the angleswere small (consistent) for pairs of anchor
clusters in PCs 1–6 but large (inconsistent batch effects) for many
pairs of anchor clusters in PCs 7 and onwards (cf. Table 2 and Table
3). Thus, we used the six first PCs as input for our PBMC+SF align-
ment. We found no qualitative difference when we used the first
six PCs or all 30 PCs for the other methods.

Functions for computing alignment vectors and their angles
are included in the Dmatch R package (R Core Team 2019) and
can be used to select the appropriate number of PCs to input
when the alignment vectors are inconsistent.

Differential expression analysis

To estimate differential expression across Seurat clusters, we used
limma-trend as implemented in Soneson and Robinson (2018)
and in which limma-trend was shown to perform well in nearly
all major evaluation criteria including true-positive rates andmax-
imum false-positive rates. To evaluate the differences between dif-
ferential expressed genes identified using unaligned data and data
aligned using the various methods (Fig. 3A,B), limma-trend was
applied to identify DEGs across all pairs of Seurat clusters from
all samples combined. To be considered aDEG,we required a P-val-
ue <10−10 and an absolute log2 fold change difference to be greater
than 1. Although these cutoffs were chosen arbitrarily, we found
that varying the P-value cutoff to 10−5 or 10−20, or the absolute
log2 fold change difference cutoff to 0.5 or 1.5 did not qualitatively
change our interpretations.

To identify DEGs that are shared or specific to a method (Fig.
3A,B), we simply counted the number of DEGs thatwere identified
at the aforementioned P-value and log2 fold change cutoffs for
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each of the different tools. We then plotted the number of DEGs
that were identified specifically using method A (positive y-axis),
specifically using method B (negative y-axis), and DEGs that
were identified using both methods (positive x-axis) for all pair-
wise comparisons across Seurat clusters. Comparisons across
Seurat clusters from the same scRNA-seq sample are colored in
red, and comparisons across Seurat clusters with the same cell
type assignment are marked as crosses (again, see Fig. 3A,B).

To produce the heat maps in Figure 4A, we again called DEGs
across Seurat clusters across PBMC and BMMC scRNA-seq samples.
We counted the number of DEGs for each pairwise comparison
and used the heatmap.2 command from the R package gplots (R
Core Team 2019) to produce the heatmaps using hierarchical clus-
tering with the average linkage clustering.

Population PBMC scRNA-seq data set and simulated batch effects

We analyzed processed data from van der Wijst et al. (2018) and
used their cell type annotations. These data are also available
through the single-cell eQTLGen Consortium (https://eqtlgen
.org/single-cell.html) and at the European Genome-phenome
Archive (EGA; https://ega-archive.org/) under accession number
EGAS00001002560. When performing UMAP on processed data,
we observed that samples mixed well, indicative of limited batch
effects. To add batch effects to the scRNA-seq data in order to sim-
ulate a simpler collection procedure without the need to pool sam-
ples together, we once again used the simulation model from
fastMNN (Haghverdi et al. 2018). Briefly, perturbation effects
were incorporated by generating a Gaussian random vector for
each data set and adding it to the expression profiles for all cells
in that data set. More specifically, gene expression profiles were
log-normalized, and eight perturbation parameters were generated
for each of the eight samples from van der Wijst et al. (2018)
(mean, standard deviation of the Gaussian random vector): list(c
[1,0.28],c[1.6,0.4], c[1.8,0.35], c[2.5,0.45], c[2.2,0.38], c[1.8,0.22],
c[1.95,0.4], c[2.0,0.3]). These eight Gaussian random vectors
(each with length: n cells × n genes) were then added to each of

the eight samples. The above parameters were chosen based on
the PCA and t-SNE plots.

eQTL mapping

Tomap eQTLs in scRNA-seq data, we computed, for all individuals
separately, themean expression levels of all cells in each annotated
cell types: B cells, CD4+ T cells, CD8+ T cells, dendritic cells, NK
cells, monocytes, and combined cells (pseudobulk, or bulk). We
then mapped eQTLs in each cell type separately using a standard
eQTL pipeline by quantile-normalizing expression levels across
genes within individuals and standardizing the expression across
individuals (Li et al. 2016). We then used FastQTL (Ongen et al.
2016) to identify associations between genetic variants and gene
expression levels and the Benjamini-Hochberg procedure to con-
trol false discovery rates at the 0.05, 0.10, and 0.20 levels. No
PCs were used as covariates.

Replication using DICE eQTLs

To replicate the eQTLs identified using the population scRNA-seq
data, we quantified gene expression levels from DICE RNA-seq
data for each different cell type separately using kallisto v0.46.1
(Bray et al. 2016). We then used a standard eQTL pipeline (Li
et al. 2016) and FastQTL (Ongen et al. 2016) with three genotype
PCs and a variable number of phenotypic PCs. More specifically,
PCA on genotype data was performed using the smartpca program
from EIGENSOFT (version 6.1.4), after pruning SNPs using PLINK
(v1.9) with parameters ‐‐indep-pairwise 50 2 0.2. Individual outli-
ers reported by smartpca were excluded from eQTL mapping.
Phenotypic PCs were calculated in R using the prcomp function.
We empirically chose the number of phenotypic PCs that maxi-
mized the number of significant eQTLs (5% FDR) in each cell
type (Supplemental Table S2).

To determine the replication of an eQTL from aligned scRNA-
seq data, we asked whether the linear regression between the gene
expression and the most significantly associated SNP in the
aligned scRNA-seq datawas also significant in each of the cell types
in the DICE data set (P<0.05). To determine the replication in
“any” cell type, we asked whether the linear regression was signifi-
cant, correcting for the number of cell types (P<0.05/6).

Data access

Processed scRNA-seq data generated in this study are available
as Supplemental Data File S1. The source code for Dmatch can
be found at GitHub (https://github.com/qzhan321/dmatch) and
as Supplemental Code S1. Scripts to reproduce simulations and
evaluation of the alignment methods on simulated data are avail-
able atGitHub (https://github.com/qzhan321/Dmatch-data-code-
rep) and as Supplemental Code S2.

Table 2. Angles between the alignment vectors for pairs of clusters for the SLE PBMC to HC PBMC alignment

PCs Clusters 1 and 2 1 and 3 1 and 4 1 and 5 2 and 3 2 and 4 2 and 5 3 and 4 3 and 5 4 and 5

1, 2 12.33 4.43 8.62 11.87 7.9 3.71 24.19 4.19 16.3 20.49
3, 4 9.85 24.07 25.12 28.44 14.22 15.27 18.59 1.05 4.37 3.32
5, 6 4.34 10.68 1.19 12.96 6.34 5.53 17.3 11.87 23.64 11.76
7, 8 19.98 36.25 13.6 6.42 16.27 33.58 26.41 49.85 42.68 7.17
9, 10 8.48 84.95 25.83 179.72 76.47 17.36 171.24 59.11 94.77 153.88
11, 12 25.72 54.73 1.95 60.2 29.01 23.78 34.48 52.59 5.47 58.25

Angles are relatively small, which indicates consistent batch effects correction across anchor cell clusters.

Table 3. Angles between the alignment vectors for pairs of clusters
for the RA1 SF to HC PBMC alignment

PCs
Clusters 1
and 2

1 and
3

1 and
4

2 and
3

2 and
4

3 and
4

1, 2 3.97 14.56 12.69 10.59 8.71 1.88
3, 4 58.12 33.13 41.44 24.99 16.68 8.31
5, 6 2.77 12.49 31.85 9.72 29.07 19.36
7, 8 10.82 70.35 100.82 59.53 111.64 171.18
9, 10 27.56 179.07 146.65 153.37 174.21 32.42
11, 12 48.8 146.48 163.28 97.68 114.48 16.8

Angles for PCs 7–12 are large, which indicates inconsistent batch effects
correction across many anchor cell clusters.
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