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INTRODUCTION

Cerebral blood flow (CBF) refers to the delivery rate of 
arterial blood to the capillary bed in the brain tissue, and it 
characterizes cerebral perfusion quantitatively [1,2]. CBF is 
a critical biomarker of cerebral metabolism and functional 
activity [3]. Various techniques have been developed to 
measure CBF, including positron emission tomography (PET), 
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single-photon emission computed tomography (SPECT), 
dynamic contrast-enhanced magnetic resonance imaging 
(MRI), dynamic susceptibility contrast MRI, and arterial 
spin labeling (ASL). ASL perfusion imaging, a noninvasive 
MRI method that does not require the use of exogenous 
tracer and ionizing radiation, has been reported to allow 
the direct quantification of the absolute CBF using arterial 
blood water as an endogenous tracer [1,2,4-6].

Aging is an important risk factor for cerebrovascular 
and neurodegenerative diseases [7,8]. CBF is a marker of 
brain activity, which could play a central role in unveiling 
the biological processes involved in aging [3]. To properly 
interpret CBF changes in these disease conditions, it is 
essential to understand normal age-related CBF changes 
[2,9]. Previous studies have reported the age-related CBF 
reduction in the entire brain or some brain regions [10-13] 
using PET and SPECT, especially a continuous age-related 
decrease during adulthood. Kety [14] reviewed the studies 
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on CBF obtained through the nitrous oxide technique 
and found a rapid reduction in CBF from childhood to 
adolescence, followed by a more gradual but progressive 
decline throughout adult life [14]. Recently, several studies 
have investigated the age-related CBF changes using 
various ASL techniques, including continuous ASL (CASL), 
pulsed ASL (PASL), and pseudo-continuous ASL (pCASL) [1-
3,15]. These studies have shown a significant decline across 
most parts of the brain. Notably, a relatively higher regional 
CBF has also been detected in older adults than in younger 
subjects [2,3]. 

To date, most of the studies on age-related CBF changes 
directly divided the subjects into different age groups 
to compare the differences [16-18] or performed linear 
regression to analyze the correlation between age and 
CBF [2,15,19]. Nonlinear trajectories of CBF changes have 
recently been reported during brain maturation in infants 
and young children using pCASL [20]. Aging processes 
in adults may also follow certain patterns or trajectories. 
However, to our knowledge, no studies have evaluated the 
trajectory of CBF changes during aging in adults.

In the present study, we measured the regional CBF 
values in a relatively large sample of healthy adults using 
pCASL and assessed the age-related perfusion pattern by 
determining the trajectory of age-dependent CBF changes 
in each brain region by systematically fitting mathematical 
models to the CBF data.

MATERIALS AND METHODS

Participants
The Institutional Review Board of our hospital approved 

this prospective study. All subjects provided written 
informed consent before the MRI examination. We 
performed the Mini-Mental State Examination (MMSE) and 
Mattis Dementia Rating Scale (MDRS) to select cognitively 
normal participants (MMSE scores > 24 or MDRS scores 
> 130). One hundred and three subjects with normal 
cognition, who had no history of brain tumor, trauma, brain 
injury, cerebrovascular disorder, carotid stents or dentures, 
neurologic or cardiac disease, hypertension, diabetes, renal 
disease, alcoholism, or metal implants in the body, were 
selected for this study. One subject was excluded because of 
claustrophobia. After the MRI examination, two experienced 
neuro-radiologists visually inspected the conventional MRI 
and magnetic resonance angiography (MRA) findings for any 
intracranial (3 subjects) or vascular (9 subjects) lesions. A 

total of 90 right-handed healthy adults (mean age, 49.47 
years; age range, 20–77 years; women, 47; men, 43) were 
enrolled. The age distributions of the subjects are listed 
in Table 1. All subjects refrained from alcohol, caffeine, 
nicotine, and vigorous exercise 24 hours before MRI 
examination. 

MRI Technique
All images were obtained using a 3T MRI scanner (Signa 

HDxt, General Electric) with an 8-channel head coil. Phase-
contrast MRA was performed to identify the cerebrovascular 
disease. Conventional images, including axial T2-weighted, 
axial fluid-attenuated inversion-recovery, and axial three-
dimensional T1-weighted images, were acquired and used to 
exclude subjects with intracranial lesions. The whole-brain 
perfusion data were obtained using a pCASL sequence, with 
a three-dimensional background-suppressed fast-spin-echo 
acquisition and the following parameters: repetition time 
(TR), 4912 ms; echo time (TE), 9.8 ms; number of signals 
acquired, 3; field of view (FOV), 24 x 24 cm2; reconstructed 
matrix, 64 x 64; section thickness, 4 mm; number of 
sections, 30; sampling points on 8 spirals, 512; labeling 
duration, 1525 ms; post-labeling delays (PLDs), 2025 ms; 
control/label pairs, 30; acquisition time, 4 minutes 52 
seconds.

Analysis of MRI Data 
All imaging data analyses were completed using MATLAB 

R2014a (MathWorks), statistical parametric mapping (SPM8) 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), 
ADW4.5 (GE workstation), and WFU Pickatlas (http://fmri.
wfubmc.edu/software/PickAtlas).

The raw data of the ASL images were imported to a GE 
workstation (ADW4.5) to generate CBF maps. The CBF maps 
underwent preprocessing, including motion correction, 
registration, partial volume correction, normalization, 
and smoothing. The registration of the CBF images was 

Table 1. The Age Distribution of the Subjects

Age Range (Years) N
Proportion 

(%, N/Total)
Mean (Years)

20–30 17 18.89 23.8
31–40 16 17.78 35.8
41–50 17 18.89 46.6
51–60 19 21.11 55.7
61–77 21 23.33 66.8

Total (20–77) 90 100 49.5

N = number
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performed using the segmentation transformation matrix 
generated from the T1-weighted images and spatially 
normalized to the Montreal Neurological Institute template. 
Smoothing was performed using an isotropic kernel of 6 
mm. Subsequently, 87 masks of the volume of interest (VOI) 
(global gray matter and other 86 VOIs) were generated in 
WFU Pickatlas (Supplementary Fig. 1). The frontal lobe, 
parietal lobe, temporal lobe, occipital lobe, limbic system, 
and deep gray matter were divided into 28, 12, 14, 12, 12, 
and 8 VOIs, respectively (Supplementary Table 1). Finally, 
the CBF values of the 87 VOIs were extracted from the 
preprocessed CBF maps using the corresponding masks. In 
this study, the brain region is equivalent to the VOI.

Statistical Analysis 
The statistical analysis was performed using Stata (version 

15.0; Stata Corp.). Multivariable regression was performed 
to determine the mathematical best-fitting model to 
describe the relationship between CBF and age. Seven forms 
of models can be obtained according to the number and 
combination of selecting age variables (age, age2, age3). 
Thus, 7 regression models (4 cubic models, 2 quadratic 
models, and 1 linear model) were fitted to the data using 
Stata. Gender was used as the control variable. Our study 
tested the effect of the interaction between age and gender 
and showed that the interaction of gender and age had no 
significant effect on CBF. The mathematical formulas for the 
7 models are as follows:

Model 1: CBF = β1age + β2gender + constant;
Model 2: CBF = β1age2 + β2gender + constant;
Model 3: CBF = β1age3 + β2gender + constant;
Model 4: CBF = β1age + β2age2 + β3gender + constant;
Model 5: CBF = β1age + β2age3 + β3gender + constant;
Model 6: CBF = β1age2 + β2age3 + β3gender + constant;
Model 7: CBF = β1age + β2age2 + β3age3 + β4gender + 

constant;

where β (n) is the regression coefficient. The value of 
gender was 0 for women and 1 for men. 

We compared the models using the Akaike information 
criterion (AIC) [21,22], the link test [23,24], and the F test 
to select the best-fitted model. In this study, the F test 
used Ramsey’s regression equation specification error test 
[25,26]. The link and F tests were used to check whether 
the model’s function form was correct. The link and F 
test outcomes with p values greater than 0.05 indicate 

no problem with the model’s function form. The AIC is a 
method for model selection that compares the models’ 
effectiveness while penalizing their complexities [21,22]. 
The AIC has the advantage of minimizing the potential 
overfitting caused by incorporating too many parameters 
into the models (the smaller the AIC value, the better the 
model). Therefore, the model with the smallest AIC value 
among those with p values greater than 0.05 in the link 
and F tests was selected as the best regression model. The 
flowchart for the statistical analysis is shown in Figure 1.

RESULTS

The Best-Fitting Model of Each VOI 
The CBF value for each VOI is expressed as the mean ± 

standard deviation in Supplementary Table 1. The values of 
AIC and the results of the link and F tests for the 7 models 
for each VOI are listed in Supplementary Table 2. Most of 
the 87 VOIs (68) were best fitted by the cubic models (model 
5, 8 VOIs; model 6, 50 VOIs; model 7, 10 VOIs), 9 were best 
fitted by the quadratic models (model 2, 1 VOI; model 4, 8 
VOIs), and 10 were best fitted by the linear model (model 
1, 10 VOIs). No VOI was fitted by model 3. The best-fitting 
models for all the brain regions are presented in Table 2.

The Age-Related Changes in Regional CBF by Model
The equations of the best-fit model for each VOI are listed 

in Supplementary Table 3. The derivative function of each 
equation is listed in Supplementary Table 3. A function is 
increasing if it has a derivative value of more than 0 and 
decreasing if the derivative value is less than 0. Moreover, 
the absolute value of the derivative reflects the speed of 
the functional changes.

The VOIs Best-Fitted by Model 1 (Linear Model)
In our study, some VOIs in the occipital lobe (6 VOIs), 

parietal lobe (3 VOIs), and temporal lobe (1 VOI) were 
best fitted by model 1. We found that the derivatives of 
the functions in these VOIs were constant and less than 
0. Therefore, CBF values in these brain regions decreased 
linearly with age. 

The VOIs Best Fitted by Model 2 (Quadratic Model)
One VOI in the occipital lobe was best fitted by model 

2. The derivative of the function for this VOI was less than 
0, and the derivative’s absolute value increased with age. 
Therefore, the CBF value in this brain region decreased 
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nonlinearly with age, and the rate of CBF reduction 
increased with age. 

The VOIs Best Fitted by Model 4 (Quadratic Model), 
Model 5 (Cubic Model), and Model 6 (Cubic Model)

Eight VOIs in the deep gray matter (6 VOIs) and the 
parietal (1 VOI) and frontal (1 VOI) lobes were best fitted 
by model 4. Eight VOIs in the frontal lobe (4 VOIs), parietal 
lobe (1 VOI), temporal lobe (1 VOI), limbic system (1 VOI), 
and the deep gray matter (1 VOI) were best fitted by model 
5. Forty-nine VOIs in the frontal lobe (20 VOIs), temporal 
lobe (12 VOIs), limbic system (11 VOIs), occipital lobe (3 
VOIs), parietal lobe (2 VOIs), and deep gray matter (1 VOI) 
were best fitted by model 6. In addition, the global gray 
matter was best fitted by model 6. 

The values of the derivatives of the functions in the VOIs 
that were best fitted by model 4 (quadratic model), model 
5 (cubic model), and model 6 (cubic model) were less 
than 0 before the age of approximately 60 years, and the 
derivatives’ absolute values in these VOIs decreased with 
age. Thus, the CBF for the VOIs best fitted by models 4, 5, 
and 6 decreased with age nonlinearly. For these VOIs, the 
rate of CBF reduction decreased with aging and gradually 

approached 0 after approximately 60 years. 

The VOIs Best Fitted by Model 7 (Cubic Model)
Finally, some VOIs in the frontal lobe (3 VOIs), parietal 

lobe (5 VOIs), and occipital lobe (2 VOIs) were best fitted 
by model 7. For these VOIs, the CBF increased nonlinearly 
with aging before approximately 30 years for the derivatives 
of the functions in these VOIs were more than 0 before 
the age of approximately 30 years; the CBF decreased 
nonlinearly with aging for the rest of adult life for the 
derivatives of the functions in these VOIs were less than 0 
after approximately 30 years. Figure 2 shows the fitted lines 
of the best model for 6 typical brain regions.

DISCUSSION

Our results demonstrated that most brain regions (68 
VOIs) were best fitted by cubic models. CBF in most brain 
regions decreased nonlinearly with aging in adults, and the 
rate of CBF reduction decreased with aging and gradually 
approached 0 after approximately 60 years. We also found 
that the CBF in some brain regions increased nonlinearly 
with aging before approximately 30 years and decreased 

7 models
(4 cubic models, 2 quadratic models and 1 linear model)

The best-fitting model
(with the smallest AIC value and with a p value greater 

than 0.05 in the Linktest and F test)

Derivative function of the best-fitting model

7 mathematical formula
Model 1: CBF = β1age + β2gender + constant; 
Model 2: CBF = β1age2 + β2gender + constant; 
Model 3: CBF = β1age3 + β2gender + constant; 
Model 4: CBF = β1age + β2age2 + β3gender + constant; 
Model 5: CBF = β1age + β2age3 + β3gender + constant; 
Model 6: CBF = β1age2 + β2age3 + β3gender + constant; 
Model 7: CBF = β1age + β2age2 + β3age3 + β4gender + constant

Fitted to the data

Take the derivative

AIC
F test

Linktest

Fig. 1. Flowchart of the analytical methods. AIC = Akaike information criterion
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nonlinearly with aging for the rest of life.
Studies that compared ASL and PET have demonstrated the 

utility of ASL for accurate and reproducible CBF measurements 
[27]. In the present study, the CBF values for the entire GM 
and the regional brain regions were consistent with those 
obtained in previous studies [28-30]. The mean CBF for the 
entire GM in our study was 40.76 mL/100 g/min. Previous ASL 
studies reported the average CBF for the entire GM ranging 
from 39.3 mL/100 g/min to 52.1 mL/100 g/min [30]. 

Age-related CBF decrease in the entire GM or regions of 
the brain has been observed in several previous studies 
using various imaging modalities [11,15,31,32]. Our results 
are in general agreement with those of previous reports. 
However, our study further demonstrated a nonlinear 
correlation between CBF and age rather than the linear 
age-related perfusion pattern most previous studies have 
shown [11,18,31,32]. This contradiction may be due to 
the different statistical analyses. Previous studies directly 
performed a linear regression or Pearson correlation 
analysis. We performed a multivariable regression analysis 
to explore the age-related perfusion pattern. In our study, 

both linear and nonlinear models were used to fit the 
relationship between CBF and age. Heo proposed that a 
quadratic function may better capture the relationship 
between age and CBF instead of a strictly linear function 
[33]. Our results generally agree with the findings of Kety 
[14]. Kety [14] found a rapid decrease in CBF around 
puberty, which continued until the third decade, followed 
by a more gradual but progressive reduction throughout the 
remaining age span. They favored a rapid, followed by a 
more gradual, fall with advancing years, which means that 
the CBF decreased nonlinearly with age in adults. Previous 
studies have indicated that an age-related CBF decrease is 
mainly or exclusively a consequence of reduced metabolic 
needs. The diminished metabolic demands of the brain 
could be the result of a simple loss of neurons, a progressive 
deterioration in certain essential cellular components, a 
decrease in neuronal interconnections and interaction, or a 
reduced functional demand as a result of the psychological 
and social changes that occur during the aging process or 
other fundamental causes [14,34-36]. Therefore, age-related 
perfusion patterns may reflect the pattern of physiological 

Fig. 2. The fitted lines of 6 typical brain regions. In each subplot, the variable on the horizontal axis is age. the variable on the vertical 
axis is CBF, the small circles represent the true CBF value of each observation, and the red line is the fitting line of the best model. 
A. The best-fitting model for the left lateral Angular is model 1 (CBF = -0.2233695age + 55.56486). B. The best-fitting model for the right 
lateral Occipital_Sup is model 2 (CBF = -0.0006218age2 + 43.67833). C. The best-fitting model for the right lateral Frontal_Inf_Oper is model 4 
(CBF = 0.0084219age2 - 1.135935age + 80.03286). D. The best-fitting model for the right lateral amygdala is model 5 (CBF = 0.0000237age3 - 
0.2954774age + 52.20578). E. The best-fitting model for the left lateral amygdala is model 6 (CBF = 0.0000951age3 - 0.0085284age2 + 50.8373). 
F. The best-fitting model for the left lateral Parietal_Sup is model 7 (CBF = 0.0006103age3 - 0.0923499age2 + 4.223066age-22.11918). CBF = 
cerebral blood flow
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and structural changes in the brain during aging.
In our study, we found that the CBF in some regions 

of the frontal, parietal, and occipital lobes, which were 
best fitted by model 7, increased nonlinearly with aging 
before approximately 30 years and decreased nonlinearly 
with aging for the rest of life. Previous studies have also 
found an age-related increase in CBF in some brain regions 
[2,3,37]. These brain regions are mainly distributed in the 
bilateral white matter regions of the frontal and parietal 
lobes [37] and some regions of the temporal lobe, occipital 
lobe, and deep gray matter [2,3]. In previous studies, the 
brain regions that had an age-related CBF increase showed 
a continuous age-related increase when they used linear 
regression analysis [3,37], or it was not clear whether 
there was a continuous age-related increase because they 
used group comparison to determine the CBF differences 
between the older and younger groups [2]. In our study, 
the brain regions that had an age-related CBF increase 
showed nonlinear increments in perfusion patterns before 
approximately 30 years, followed by nonlinear decrements 
with aging for the rest of life. We hypothesized that the 
different age-related increasing patterns were due to 
different statistical analysis methods. The physiological 
mechanism underlying this increasing pattern was not 
clear. Previous studies speculated that the regional increase 
in CBF may be attributed to a compensatory response to 
aging [2], such as an increase in compensatory neural 
activity during aging [3]. Brain regions with an age-related 
CBF increase are relatively preserved compared with other 
regions during normal aging [2,3]. Moreover, our results also 
found that the age-related increasing pattern in the frontal, 
parietal, and occipital lobes did not last for the entire adult 
period. These regions also showed an age-related decrease 
after approximately 30 years. This may indicate that the 
compensatory response of CBF to aging described previously 
gradually loses its effect after 30 years.

This study has several limitations. We used the same 
PLD for all subjects. However, arterial transit time may 
differ between young and older subjects because of blood 
velocity differences in the arteries. Although single-PLD was 
recommended as a clinical standard scanning protocol [38] 
and the PLD used in the present study was recommended by 
consensus [38], multi-PLD can provide a more accurate CBF 
assessment. Another limitation is that our study was cross-
sectional. Although our sample size was relatively large, 
a cohort study would be more appropriate to investigate 
the longitudinal age-related CBF change in each subject to 

reduce inter-subject variation.
In conclusion, we investigated the trajectory of age-

dependent CBF changes in different brain regions in adults 
by systematically fitting mathematical models to CBF data 
using multivariable regression. Compared with the quadratic 
and linear models, the cubic model was the best-fitting 
model for global gray matter and most brain regions. We 
demonstrated the age-related perfusion pattern in each 
brain region by analyzing the formulas of the best-fitted 
model. In the global gray matter and most brain regions, 
CBF decreases nonlinearly with aging. CBF in some regions 
of the frontal, parietal, and occipital lobes increased 
nonlinearly with aging before approximately 30 years and 
decreased nonlinearly with aging for the rest of life.
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