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Abstract

Nuclear localization signals (NLSs) are stretches of residues in proteins mediating their importing into the nucleus. NLSs are
known to have diverse patterns, of which only a limited number are covered by currently known NLS motifs. Here we
propose a sequential pattern mining algorithm SeqNLS to effectively identify potential NLS patterns without being
constrained by the limitation of current knowledge of NLSs. The extracted frequent sequential patterns are used to predict
NLS candidates which are then filtered by a linear motif-scoring scheme based on predicted sequence disorder and by the
relatively local conservation (IRLC) based masking. The experiment results on the newly curated Yeast and Hybrid datasets
show that SeqNLS is effective in detecting potential NLSs. The performance comparison between SeqNLS with and without
the linear motif scoring shows that linear motif features are highly complementary to sequence features in discerning NLSs.
For the two independent datasets, our SeqNLS not only can consistently find over 50% of NLSs with prediction precision of
at least 0.7, but also outperforms other state-of-the-art NLS prediction methods in terms of F1 score or prediction precision
with similar or higher recall rates. The web server of the SeqNLS algorithm is available at http://mleg.cse.sc.edu/seqNLS.
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Introduction

A nuclear localization signal is a protein peptide bound to

carrier proteins for trafficking nuclear proteins into the nucleus. As

the most direct evidence for nuclear localization, identification of

NLSs can help to elucidate protein functions. However, experi-

mental identification of such signals is costly and currently only a

limited number of NLSs have been identified. It is thus desirable to

develop algorithms for computational prediction of NLSs. Several

NLS prediction methods have been developed such as PSORT II

[1], PredictNLS [2], NLStradamus [3], cNLS Mapper [4], and

NucImport [5]. PSORT II predicts NLSs based on sequence

patterns implemented as three simple rules according to the

classification of NLSs [6]; the rules are mainly clusters of basic

amino acids K and R and gaps between the clusters. PredictNLS

predicts NLSs based on 194 potential NLS motifs, which are

derived from 114 experimentally verified NLSs with a silico

mutagenesis approach. Nguyen Ba et. al. [3] found that NLSs tend

to have similar residue frequency distributions which are different

from that of background residues. Their NLStradamus algorithm

detects NLSs by using a simple two-state or four-state HMMs to

accommodate the frequency variations. cNLS Mapper estimates

classical NLS (cNLS) functionality of a peptide by calculating sum

of the functional contribution of each residue in the peptide

according to the activity-based profiles, which are obtained from

the systematic amino acid-replacement analyses in budding yeast.

NucImport [5] builds a Bayesian network to predict nuclear

localization by incorporating various attributes related to the

nuclear importing. If a protein is predicted as a nuclear protein,

the location of its NLS is predicted as the segment in the protein

with the highest cNLS score in the inferred cNLS class based on

the dependencies with other attributes in the Bayesian network.

These five NLS prediction methods have achieved different

degrees of success. However, their prediction performance is still

far from being sufficient to assist biologists to discover putative

NLSs in protein sequences of interest. Each of them has their

weakness. Although a great portion of NLSs can be covered by the

rules used in PSORT II to detect NLS, quite a few patterns

covered by the rules exist in peptides which do not contain NLSs,

leading to a high false positive rate or low prediction precision.

The sensitivity of the PredictNLS algorithm depends on the

number of NLS motifs it used, which has been extended by

introducing the potential NLS motifs generated using in-silico

mutagenesis analysis. But they are still too specific and couldn’t

effectively accommodate NLS variability [3]. The performance of

the NLStradamus algorithm depends on its assumption that NLSs

have certain residue distributions. However, many NLS instances

in our testing datasets have shown very different residue

frequencies. Both cNLS mapper and NucImport algorithms are

developed based on the characteristics of cNLS. However,

approximately 43% of proteins localized to the nucleus may use

other transport mechanisms other than the classical nuclear

import pathway according to Lange et al [7].

One of the challenges of NLS prediction is that functional NLSs

are not defined [8]. Many NLSs are short peptides that occur

regularly in non-nuclear proteins. In fact, NLS is one type of linear

motifs as defined in the database of eukaryotic linear motifs [9].

Linear motifs are short stretches of residues which are highly

involved in cell signaling and regulating. To adapt to the fast fine-
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tuning cell regulatory process, certain characteristics of linear

motifs have thus evolved and might have contributed to NLS

variability: only a few residues within a linear motif are

functionally important, and mutation of a single residue can

switch on/off the functionality [10,11]. The nature of shortness,

flexibility and sensibility provides linear motifs evolutionary

plasticity to form a functional unit and fine-tune cell singling

network over short evolutionary distances, which, however,

increases the difficulties in computational identification of linear

motifs such as NLSs.

In the past decade, many computational approaches have been

proposed to discover linear motifs. There are two categories of the

methods [10]: one is supervised methods aiming to identify new

instances of known linear motifs in protein sequences

[9,12,13,14,15,16,17,18]; the other is de novo methods for

discovering new linear motifs [19,20,21,22]. The challenge of

the former is to discriminate between true and false positive

matches. Most of such prediction algorithms take advantage of the

special attributes of linear motifs [23] to remove false positive

matches that are unlikely to be functional linear motifs. The latter

de novo linear motif discovery algorithms [19,20,22] are usually

based on the enrichment analysis of candidate motifs integrated

with disorder prediction and evolutionary conservation. Since

NLS is one type of linear motifs, the framework of the first

category may apply to predicting NLSs. However, despite the

availability of a number of NLS motifs [24,25], they are either too

specific [3] or they only target a specific pathway of NLSs. To

cover more NLSs, we need a new approach to utilize linear motif

attributes.

In this paper, we propose a novel algorithm for NLS prediction

based on sequential-pattern mining and linear motif scoring. Our

strategy is first to detect potential NLS candidates using the

sequential-pattern mining method, which are then scored in terms

of their likelihood of being (part of) NLS based on their sequence

and linear motif features. The qualified candidate motifs will then

be combined into NLS predictions.

Materials and Methods

Training and Testing dataset
We used 114 experimentally determined NLSs from NLSdb [7]

as the source of the positive training dataset for sequential pattern

mining. Two NLSs without a specific form in amino acid sequence

and a reference citation were removed. 94 out of 112 were real

NLSs of which the parent proteins could be found, while the rest

18 were either synthetic NLSs or NLSs of which the parent

proteins couldn’t be found. We then removed the redundant NLSs

in order to avoid non-functional residues being enriched in the

positive training dataset: given a NLS A, the redundant NLSs to A

are defined as NLSs whose parent proteins are highly homologous

to the parent protein of NLS A and are overlapped with NLS A in

the alignment of their parent proteins. To remove redundant

NLSs, Blastclust with 90% sequence identity and 90% sequence

coverage was applied on the parent proteins of the 94 NLSs. If

multiple NLSs were overlapped in the alignment of their parent

proteins which were in the same cluster, then only one of the NLSs

was kept; 4 out of the 94 NLSs were thus removed. In the end, 108

experimentally verified NLSs were left in our positive training

dataset for sequential-pattern mining. We then collected 2238

non-nuclear proteins from the BaCello dataset [ ], from which

26772 non-overlapped peptides of length 40 were randomly

sampled for the negative training dataset for sequential-pattern

mining. The length 40 was determined because it approximated

the longest NLSs in the positive training dataset. To prepare the

training dataset for linear motif scoring (to be defined below), the

90 NLSs with known parent proteins used in the training dataset

of sequential-pattern mining were used as the positive training

dataset. For each of the 90 NLSs, a random amino acid segment of

the same length in the same parent protein which was not

overlapped with any annotated NLS was collected to produce the

negative dataset.

We prepared two independent testing datasets according to the

species of the NLS source proteins for evaluating the NLS

predictors: 1) The Yeast NLS dataset; 2) The Hybrid NLS dataset

of which the parent proteins are from different species. The Yeast

dataset was prepared based on the dataset used in NLStradamus

[3]. The Hybrid dataset was collected by searching annotated

NLSs from literature published after 2010. All NLSs in the testing

datasets redundant to NLSs in the training dataset (90 NLSs with

known parent proteins) were removed, and redundant NLSs in the

testing dataset itself were also removed. In the end, the Yeast

dataset contains 50 NLSs from 41 proteins, and the Hybrid dataset

contains 73 NLSs from 53 proteins. Both datasets are provided in

the supplementary file (Table S1 and Table S2).

Overview of the proposed algorithm
Our SeqNLS algorithm is developed based on the following

observations of NLSs: 1) most known NLSs are composed of a

sequence of well-conserved segments of amino acids with variable-

length gaps. This is because a set of NLSs binding to the same

binding pockets usually share such patterns due to the geometrical

or physical-interaction constraints at the binding interface. Such

sequential patterns are thus over-represented among these NLSs;

2) similar to other linear motifs, NLSs usually occur in the

disordered regions of the protein sequences; 3) NLSs for different

pathways may be different. Our algorithm for NLS prediction can

be divided into two steps: 1) mining NLS sequence patterns from

experimentally verified NLS instances and then predicting NLS

candidates on query sequence(s); 2) scoring candidate NLSs based

on sequence and linear motif scoring and applying local

conservation masking. Our sequential-pattern mining method is

motivated by the fact that diversity among the experimentally

verified NLSs has hampered the discovery of NLS motifs due to a

limited number of NLS instances [25,26]. SeqNLS addresses this

issue by using a more general motif model: the sequential patterns.

Sequential-pattern based prediction of NLSs
In our method, sequential pattern mining is used to extensively

collect potential NLS segments/building blocks, which are then

used to detect potential NLS segments in query sequences.

NLS sequential-pattern mining. Figure 1(a) shows the flow

chart of NLS sequential-pattern mining on a training dataset. We

first define a segment of amino acids as a word, and a set of words

in sequential order as a word-list; the NLS sequential patterns are

thus defined as word-lists over-expressed in a set of NLSs (positive

training dataset) against a set of peptides not overlapped with any

NLS (negative training dataset). The number of different word-lists

within the positive training dataset is too large while many of them

are redundant; therefore, we limit the search space of word-lists as

frequent word-sets within the positive training dataset, which can

effectively reduce the search space and maintain the diversity of

word-lists; the frequent word-set is defined as a word-set with

support count no less than 3 within the positive training dataset

and set size not larger than 4. For example, if there are 12 NLSs in

the positive training dataset containing the word-set {AT, KK},

the word-set {AT, KK} is a frequent word-set since its support

count is 12 and the set size is 2. We apply the frequent item-set

mining algorithm [27] to collect all the frequent word-sets within
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the positive training dataset in step 1; the word-lists are obtained

by permuting each of the frequent word-sets, and the correspond-

ing support counts in the positive training dataset are then

collected in step 2; in step 3, all the word-lists are scored according

to their corresponding occurrences in the positive and negative

training datasets to measure their enrichment. The enrichment

score is defined as follows:

ES~log10 NP1=NPð Þ= NB1z1ð Þ=NB½ �f g

where ES is the enrichment score, NP is the number of NLSs in the

positive training dataset while NP1 is the number of NLSs in the

positive training dataset containing the word-list, and NB is the

number of peptides of length 40 that are not overlapped with NLS

in the negative training dataset while NB1 is the number of

peptides in the negative training dataset that contain the word-list;

NP is 108 and NB is 26772 according to our training dataset. The

enrichment score ES is essentially a measure of over-representation

for the word-lists in the training NLSs relative to the non-NLS

peptides. The word-lists with ES not lower than a default threshold

1.0 are collected as the sequential patterns, which will then be used

to detect segments which are likely to be (parts of) a NLS in a

query sequence.

Detecting potential NLS segments by using the NLS

sequential patterns. The process to detect potential NLS

segments by using the collected NLS sequential patterns is

illustrated in Figure 1(b). First, the collected sequential patterns

are used to find qualified matches in the query sequence, which

are defined as the matches of the sequential patterns in the query

sequence with each gap between the words no longer than two

amino acids. The reason to limit the length of the gaps is to

maintain the statistical significance of the sequential-pattern

matches since it is much more likely to have words in a specific

order by chance when long gaps are allowed. These qualified

matches are recognized as potential NLS segments in our

algorithm, of which ES is a measure of the significance of these

potential NLS segments to be true NLS. In Figure 1(b), the dashed

line corresponds to our sequence-based predictor, and the other

branch using linear motif scoring refers to our integrated

prediction algorithm.

Incorporation of bipartite-NLS motifs
Our SeqNLS algorithm does not make any assumptions over

the type of the predicted NLSs. However, to improve the

prediction performance, a bipartite-NLS motif is incorporated in

SeqNLS to increase the sensitivity of detecting bipartite NLSs.

Bipartite NLSs are a class of classical NLS usually composed of

two clusters of basic amino acids separated by a gap of 10–12

residues [28,29] while longer gaps are also possible [30]. Bipartite

NLSs are very common as it was approximated that 25.8% of

proteins localized to the nucleus contain putative bipartite NLSs

[7]. Several consensus patterns of bipartite NLSs have been

defined such as (K/R)(K/R)X10–12(K/R)3/5 [31], KRX10–

12KRRK [32], and KRX10–12K(K/R)(K/R) or KRX10–

12K(K/R)X(K/R) [25], where (K/R)3/5 represents any 5

consecutive amino acids having at least three of either lysine or

arginine. Since bipartite NLSs have long gaps between the two

words, they may not be detected by our sequential-pattern mining

method. Therefore, we included a bipartite-NLS motif (K/R)(K/

R)X10(K/R)3/5, which is also used to predict bipartite NLS in

PSORTII, to complement the motifs mined from the training

NLSs. As shown in Figure 1(b), when detecting potential NLS

segments, our algorithm also collects the matches of the bipartite-

NLS motif in addition to the qualified matches of the sequential

patterns. The matches of the bipartite-NLS motif were found

usually more reliable than the matches of sequential patterns

according to our experiment result. Therefore the enrichment

score of the matches of the bipartite-NLS motif is set as an

arbitrarily large value which will never be lower than the

enrichment-score cutoff as defined in the next paragraph.

Predicting NLS based on sequence features only:
sequence-based predictor

Given a query sequence, the extracted sequential patterns along

with the bipartite-NLS motif are used to scan it for matches. Those

matches with ES score lower than a pre-defined cutoff will be

removed (the matches of the bipartite-NLS motif will never be

removed). The remaining matches will then be combined using a

merging procedure: every two overlapped matches are merged

into one match of which the boundaries are defined as the union of

the overlapped matches. The merging process will continue until

all the matches are not overlapped. The resulting matches will be

the output of the sequence-based NLS predictor.

Linear motif scoring
To further improve the performance of NLS prediction, we

developed a linear motif-scoring scheme to remove the false

positives of the matches as obtained above based on the linear

motif attributes. NLSs are one kind of linear motifs, which are

found to predominantly occur in disordered regions [23,33]. One

possible reason is that disordered regions can provide linear motifs

unstructured interfaces to adapt to the interacting partner with

higher flexibility. In addition, evolutionary plasticity inherent to

disordered regions increases the likelihood of evolving linear motifs

[23]. To exploit this preference of linear motifs, we used PrDOS

[34], one of the best-performing disorder predictors according to

CASP9 [35], to predict disorder scores for all residues in the query

sequence. Given a predicted amino acid segment, the median

disorder score of residues within the segment is defined as the

disorder score of the predicted peptide.

Another factor to estimate the likelihood of linear motifs is

residue accessibility, which is required for linear motifs to function;

deeply buried residues are less likely to interact with the partner

proteins [36]. In our experiments, NetSurfP [37] was used as the

residue-accessibility predictor, and the relative surface area (RSA)

was used as the measure of residue accessibility. Given a predicted

amino acid segment, the median RSA score of residues within the

segment is defined as its RSA score.

Our linear motif-scoring scheme is implemented by estimating

the probability of being NLS for a given peptide. We call this

probability as the linear motif score (SL). It is calculated by

building a Support Vector Machine (SVM) classifier based on the

aforementioned linear motif attributes, whose output is the

probability of an input amino acid segment belonging to the

NLS class. We collected 90 NLSs and 90 non-NLS peptides

(mentioned in the section ‘‘Training and Testing dataset’’) as the

positive and negative training datasets for the SVM. The linear

motif attributes including the PrDOS disorder score and the

NetSurfP RSA score were used as the features. The SVM classifier

was trained using the LIBSVM package [38] with the radial basis

function as the kernel, and the probability of being NLS for a

given input peptide was obtained by calculating the probability

estimation of LIBSVM.

SeqNLS: Nuclear Localization Signal Prediction
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Figure 1. The flow charts of predicting NLS. (a) The flow chart of mining the sequential patterns. (b) The flow chart of predicting NLS on a query

SeqNLS: Nuclear Localization Signal Prediction
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Predicting NLS based on sequence and linear motif
scoring: SeqNLS, the integrated predictor

Our SeqNLS algorithm works by sequential-pattern mining and

matching plus linear motif scoring. First, it collects the matches of

the sequential patterns and the bipartite-NLS motif in the query

sequence. Next, all the matches of the sequential patterns and the

bipartite-NLS motif will be estimated the probability of being NLS

by linear motif scoring. The respective linear motif score will then

be combined with the corresponding enrichment score to generate

the final score. The matches whose final scores lower than a

predefined cutoff will be removed.

To combine the enrichment score and the linear motif score, we

defined the normalized enrichment score which has the same scale

as the linear motif score (between 0 and 1). According to our

experiment result, we found that when the enrichment-score cutoff

is over a certain threshold EK, the prediction precision cannot be

improved by further increasing the cutoff. The normalized

enrichment score is thus defined according to the following

formula:

Normalized ESð Þ~

1 if ES§EK

ES{Minscoreð Þ= EK{Minscoreð Þ Otherwise

(

where Normalized(ES) represents the normalized enrichment

score, and Minscore represents the minimal possible score of ES,

which is 1 according to our setting since only sequential patterns

with ES greater or equal to 1 are collected. The final score will

then be calculated according to the following formula:

The final score~

a|Normalized ESð Þz 1{að Þ|SL if match is from the bipartite NLS motif

a|Normalized ESð Þzb| 1{að Þ|SL Otherwise

(

It should be noted that the SVM model of calculating SL is

trained to discriminate between NLSs and peptides not overlapped

with NLS; however, those true positive matches, which are

matches overlapped with NLS according to our definition, do not

always have accurate NLS boundaries; the more accurate the NLS

boundaries of the true positive matches are, the more reliable their

SL will be. In the formula, SL of the sequential-pattern matches is

multiplied by a weighting factor b (smaller than 1) because we

found that the true positive matches of the bipartite-NLS motif

generally have more accurate NLS-boundaries in terms of residue-

level accuracy. In our study the optimal a and b are set as 0.8 and

0.6 respectively.

IRLC-masking
Due to the short and degenerate nature of linear motifs, the

evolutionary conservation of linear motifs cannot be well

represented by simple sequence-alignment models. Davey et al

[39] proposed the relatively local conservation (RLC) score, which

measures the conservation of residues relative to their neighboring

regions. They applied RLC masking to remove residues unlikely to

be functional residues within linear motifs, based on the rationale

that functional residues should be more conserved than the

neighboring regions. While RLC masking has been used to

remove false positive matches of known linear motifs [39], it is not

an appropriate method to remove false positive NLS predictions

due to the fact that those true positive NLS predictions, unlike the

true positive matches of other linear motifs, do not always have

accurate NLS boundaries and may cover non-functional residues

while wildcard positions are not known. Therefore, we proposed

the inverse relative local conservation (IRLC) scheme to remove

false positive NLS predictions based on the following rationale:

since linear motifs are more conserved than their flanking residues,

the chance to have a flanking residue which is much more

conserved than the residues within the linear motif should be very

small.

To evaluate IRLC, we first define M as the mean conservation

score of N residues within a predicted NLS:

M~
1

N

XN

i
Ci

where Ci is the conservation score representing the degree of

conservation of a residue in position i of the predicted NLS; Ci can

be calculated by any suitable scoring metric, while in our

experiment, position specific scoring matrix (PSSM) was used to

evaluate residue conservation; the conservation score of a residue

in the position i’ of a sequence was obtained from the

corresponding column of the residue in the i’-th row of the PSSM

of the sequence. The PSSM of each query sequence was generated

by three iterations of PSI-BLAST [40] searches against NCBI

non-redundant database with the BLOSUM62 substitution matrix

and E-value threshold of 0.001. Second, we define IRLCj as the

IRLC score for a flanking residue j:

IRLCj~
Cj{M

s

where the flanking residues are defined as the residues within 5

amino acids away from the predicted NLS, and s represents the

standard deviation of the conservation scores of all the residues in

the sequence. The IRLC score for a NLS prediction can thus be

defined as:

IRLC~ max
j

IRLCj

A NLS prediction will be determined as a false positive

prediction if its IRLC score is higher than some threshold value T.

The rationale is that if there is any residue in the flanking region

that is much more conserved than the average conservation score

of the region of interest, it is less likely that the region of interest

represents a functional NLS since it contradicts the property of

relative local conservation of linear motifs.

Performance evaluation
To evaluate NLS prediction performance, a NLS prediction is

considered a hit if the prediction is overlapped with at least one

annotated NLS in the testing dataset otherwise it is labeled as a

miss. Three performance metrics are defined to evaluate NLS

prediction performance as follows:

sequence; the dashed line corresponds to the sequence-based predictor, and the other branch using linear motif scoring refers to the integrated
prediction algorithm.
doi:10.1371/journal.pone.0076864.g001
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Figure 2. The prediction performance of the sequence-based predictor. (a) The Yeast dataset; the bipartite-NLS motif is not incorporated.
(b) The Yeast dataset; the bipartite-NLS motif is incorporated. (c) The Hybrid dataset; the bipartite-NLS motif is not incorporated. (d) The Hybrid
dataset; the bipartite-NLS motif is incorporated.
doi:10.1371/journal.pone.0076864.g002

Table 1. The prediction performance of the sequence-based predictor with different enrichment-score cutoffs with and without
incorporating the bipartite-NLS motif on the Yeast dataset.

Enrichment- score
cutoff 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.3 Bi-Partite*

Precision 0.212 0.311 0.458 0.564 0.555 0.6 0.714 0.6 0.667

+BiPartite 0.204 0.303 0.427 0.547 0.558 0.613 0.643 0.63

Recall 0.8 0.66 0.6 0.42 0.26 0.12 0.1 0.06 0.32

+BiPartite 0.8 0.68 0.62 0.56 0.48 0.38 0.36 0.34

F1 score 0.335 0.423 0.519 0.482 0.351 0.2 0.175 0.109 0.432

+BiPartite 0.325 0.418 0.505 0.554 0.516 0.469 0.462 0.442

Mean aPC 0.453 0.413 0.412 0.443 0.446 0.49 0.467 0.442 0.805

+BiPartite 0.554 0.563 0.607 0.645 0.686 0.736 0.757 0.788

*Predictions with only the bipartite-NLS motif: (K/R)(K/R)X10(K/R)3/5.
Mean aPC: the mean aPC of all the true positive predictions as defined in the text.
doi:10.1371/journal.pone.0076864.t001

SeqNLS: Nuclear Localization Signal Prediction
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precision~Nhits= NhitszNmissð Þ

recall~Nhits=Nnls

F1 score~
2|precision|recall

precisionzrecallð Þ

where Nhits is the number of hits, Nmiss is the number of misses,

and Nnls is the number of NLSs in the testing dataset. In addition,

we introduced the amino acid level performance coefficient [41]

(aPC) to evaluate the amino acid-level accuracy of a predicted

peptide overlapped with NLS. The aPC is defined as follows:

aPC~aTP= aTPzaFNzaFPð Þ

where aTP represents the number of amino acids of a predicted

NLS that are overlapped with the true NLS; aFP represents the

number of amino acids of a predicted NLS that are not overlapped

with the true NLS; aFN represents the number of amino acids of

the true NLS that are not overlapped with the predicted NLS. In

our evaluation, the mean aPC of all the true positive predictions

(Mean aPC) is defined to evaluate the amino acid level accuracy of

a predictor.

Results and Discussion

Performance of the sequence-based NLS predictor
We applied the sequence-based predictor to the Yeast and

Hybrid datasets, and the result is shown in Figure 2. It shows that

when the enrichment-score cutoff is set higher, the precision of the

predictor increases. This is because the matches of the sequential

patterns with the higher enrichment score are more significant and

thus are more likely to be part of NLS. However, in Figure 2(a)

and 2(c), it can be shown that for both the Yeast dataset and the

Hybrid dataset, when the enrichment-score cutoff is higher than

1.62, no obvious precision improvement can be obtained by

further raising the cutoff. We thus set EK as 1.62 in our

experiment. In the meantime, recall decreases with the increase

of the enrichment-score cutoff. This is because fewer matches can

meet the higher enrichment-score cutoff, and thus fewer annotated

NLSs can be covered by the matches. The performance of the

predictor incorporated with the bipartite-NLS motif is shown in

Figure 2(b) and 2(d). It was found that precision can be further

improved by setting a higher enrichment-score cutoff even when

the cutoff is higher than 1.62 (EK). It implies that the bipartite-

NLS motif is a more reliable NLS pattern than the mined

sequential patterns; by setting the higher enrichment-score cutoff,

the proportion of the sequential-pattern matches will become

smaller, and the matches of the bipartite-NLS motif will dominate

prediction performance when the enrichment-score cutoff is much

higher than EK.

To evaluate the performance of the bipartite-NLS motif in NLS

prediction, we evaluated the performance of the sequence-based

predictor using only the bipartite-NLS motif in Table 1 and

Table 2 (last column). It was shown that the predictor using only

the bipartite-NLS motif has high precision on the both datasets:

0.667 on the Yeast dataset and 0.77 on the Hybrid dataset. It also

has very high residue-level accuracy: the Mean aPC is 0.805 and

0.645 on the Yeast dataset and the Hybrid dataset respectively

while the Mean aPC of most other NLS predictors is around 0.4 to

0.5. The high precision of the bipartite-NLS motif based predictor

is probably due to the high specificity of the bipartite-NLS motif

pattern. However, the recall of this method is only 0.32 and 0.233

respectively on the Yeast dataset and the Hybrid dataset.

To evaluate if the bipartite-NLS motif can help to improve the

sequence-based predictor, the prediction performance of the

sequence-based predictor with or without incorporating the

bipartite-NLS motif is shown in Table 1 and Table 2. It is shown

that recall can be improved on both the Yeast and Hybrid datasets

after incorporating the bipartite-NLS motif. Improvement on

recall depends on the enrichment-score cutoff: when the enrich-

ment-score cutoff is lower, more bipartite NLSs in the testing

datasets could be partially covered (overlapped) by the sequential-

pattern matches, and thus improvement on recall is smaller.

Alternatively, when the cutoff score is higher than 1.6, the

incorporation of the bipartite-NLS motif significantly improves

recall. Besides, the Mean aPC can be significantly improved by

incorporating the bipartite-NLS motif: when the enrichment-score

cutoff is set as 1.6, the Mean aPC can be improved from 0.443 to

0.645 on the Yeast dataset and from 0.475 to 0.56 on the Hybrid

dataset. Improvement on the Mean aPC also depends on the

enrichment-score cutoff: when the enrichment-score cutoff is

lower, more bipartite NLSs in the testing dataset are likely to be

overlapped with the matches and thus improvement on the Mean

aPC by incorporating the bipartite-NLS motif is less obvious. In

addition, improvement on both recall and the Mean aPC by

incorporating the bipartite-NLS motif also depends on the ratio of

Table 2. The prediction performance of the sequence-based predictor with different enrichment-score cutoffs with and without
incorporating the bipartite-NLS motif on the Hybrid dataset.

Enrichment- score
cutoff 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.3 Bi-Partite*

Precision 0.322 0.421 0.57 0.702 0.607 0.632 0.556 0.667 0.77

+BiPartite 0.3 0.399 0.546 0.677 0.652 0.676 0.704 0.739

Recall 0.808 0.767 0.658 0.507 0.233 0.164 0.068 0.027 0.233

+BiPartite 0.808 0.781 0.685 0.616 0.411 0.342 0.26 0.233

F1 score 0.46 0.544 0.611 0.589 0.337 0.261 0.122 0.053 0.358

+BiPartite 0.438 0.528 0.608 0.645 0.504 0.455 0.38 0.354

Mean aPC 0.367 0.416 0.46 0.475 0.552 0.504 0.447 0.494 0.646

+BiPartite 0.418 0.473 0.534 0.56 0.612 0.601 0.61 0.634

*Predictions with only the bipartite-NLS motif: (K/R)(K/R)X10(K/R)3/5.
Mean aPC: the mean aPC of all the true positive predictions as defined in the text.
doi:10.1371/journal.pone.0076864.t002
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bipartite NLSs in the testing datasets, which explains why the

improvement on the Yeast dataset is greater than that of the

Hybrid dataset.

From Table 1 and Table 2, we also found that when the

enrichment-score cutoff is set as 1.0, 80% of the NLSs can be

covered by our sequential-pattern matches for both the Yeast and

Hybrid datasets. This indicates that our sequential patterns with

the enrichment score higher than 1.0 cover 80% of NLSs, which

can be used in searching potential NLSs extensively.

Linear motif attributes of NLS
Here we evaluate the discriminative capacity of linear motif

attributes for NLS identification. Figure 3(a) shows the disorder

propensity of NLSs: the mean PrDOS disorder score of the 90

training NLSs is 0.632 while the mean PrDOS disorder score of

the 90 peptides not overlapped with NLS is 0.386. The disorder

propensity of NLSs is clearly shown by the peak at index 0, while

no such preference exists for the peptides not overlapped with

NLS.

Figure 3(b) shows the RSA propensity of NLSs: the mean

NetSurfP RSA score of the 90 training NLSs is 0.393, while the

mean NetSurfP RSA score of the 90 peptides not overlapped with

NLS is 0.299. The preference of NLSs for higher RSA is also

observed by the peak at index 0, while no such preference exists

for the peptides not overlapped with NLS. Compared to the

disorder propensity, the RSA propensity of NLSs is less significant

since the difference of the mean attribute value between NLSs and

peptides not overlapped with NLS is 0.094 for NetSurfP RSA,

while it is 0.246 for PrDOS disorder (the PrDOS disorder score

and the NetSurfP RSA score both have the same scale 0–1).

To further investigate the discriminative capacity of these

attributes, we first used each of the attributes to build a single-

feature binary classifier in which the prediction is based on the

cutoff of the attribute value. The ROC curves of the binary

classifiers are plotted in Figure 4. As shown in the figure, the AUC

values for the PrDOS disorder score and the NetSurfP RSA score

are 0.783 and 0.69 respectively. This suggests that PrDOS

disorder and NetSurf RSA are both useful features to discriminate

between NLS and non-NLS peptides. We further used each of the

attributes to build a single-feature SVM classifier. The LIBSVM

package with the radial basis function kernel was used to run a 5-

fold cross-validation on the 90 NLSs and 90 non-NLS peptides in

the training dataset. We found that when the PrDOS disorder

score of the peptide was used as the single feature, it achieved a 5-

fold cross-validation accuracy of 70.83% on discriminating NLS

and non-NLS peptides; while using the NetSurfP RSA score of the

peptide as the single feature, it achieved 64.88% accuracy; when

both the PrDOS disorder score and the NetSurfP RSA score of the

peptide were used as the features, the accuracy was 70.24%, which

was not higher than that of using the PrDOS disorder score alone.

This indicates that although the NetSurfP RSA score is also a

discriminative attribute, it is redundant if the PrDOS disorder

score is used. Therefore, in our following experiments only the

PrDOS disorder score is used in the linear motif scoring to

estimate the probability of being NLS.

Figure 3. The linear motif attributes of NLSs. (a) PrDOS disorder
scores of the 200 residues either side of the annotated NLSs and
random peptides not overlapped with NLS. (b) NetSurfP RSA values of
the 200 residues either side of the annotated NLSs and random
peptides not overlapped with NLS. The index 0 represents the residue
at the boundary of the left or right side of the NLS (or peptide).
doi:10.1371/journal.pone.0076864.g003

Figure 4. ROC curves for the PrDOS disorder feature and
NetSurfP RSA feature.
doi:10.1371/journal.pone.0076864.g004
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Performance of the integrated predictor: SeqNLS
Figure 5 shows the prediction performance of SeqNLS on the

Yeast and Hybrid datasets. The algorithm attains a precision and

recall of 0.7 and 0.5 or higher when the final-score cutoff is set as

0.85. By tuning the final-score cutoff, the algorithm can attain

different precision and recall rates with the higher final-score

cutoff leading to higher precision and lower recall. The higher

final-score cutoff also leads to the higher Mean aPC, which

indicates that matches with the higher final scores generally are

less likely to cover non-NLS amino acids. As indicated previously,

the highest precisions of the sequence-based predictor are 0.667

and 0.77 respectively on the Yeast dataset and the Hybrid dataset

by maximizing the enrichment-score cutoff. For the integrated

predictor, precision can be further improved to around 0.75 to 0.8

on both the Yeast dataset and the Hybrid dataset while a higher

recall is maintained. This implies that the proposed linear motif

scoring and IRLC-masking improve the prediction.

Figure 5 also shows that recall starts dropping dramatically

when the final-score cutoff exceeds certain value over 0.8 on the

both Yeast and Hybrid datasets. This is because matches with the

Figure 6. The effect of IRLC-masking. Peptides overlapped with
NLS are obtained by adjusting boundaries of the NLSs to upstream or
downstream proteins randomly in the parent by 1/3 length of the
corresponding NLSs.
doi:10.1371/journal.pone.0076864.g006

Figure 5. The prediction performance of the integrated
predictor (a) The Yeast dataset (b) The Hybrid dataset. IRLC
masking is applied in both (a) and (b).
doi:10.1371/journal.pone.0076864.g005

Table 3. The prediction performance of the integrated predictor with different final-score cutoffs with and without IRLC masking
on the Yeast dataset.

Final-score
cutoff 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Precision 0.438 0.462 0.483 0.492 0.537 0.651 0.8 0.875

IRLC 0.484 0.509 0.518 0.528 0.583 0.7 0.8 0.875

Recall 0.62 0.58 0.56 0.56 0.56 0.54 0.32 0.14

IRLC 0.6 0.56 0.54 0.54 0.54 0.54 0.32 0.14

F1 score 0.514 0.514 0.519 0.524 0.548 0.59 0.457 0.241

IRLC 0.536 0.533 0.529 0.534 0.561 0.61 0.457 0.241

Mean aPC 0.623 0.635 0.638 0.639 0.639 0.644 0.844 0.734

IRLC 0.621 0.634 0.637 0.638 0.638 0.644 0.844 0.734

Mean aPC: the mean aPC of all the true positive predictions as defined in the text.
doi:10.1371/journal.pone.0076864.t003
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enrichment scores higher than EK certainly have the final scores at

least 0.8 according to the formula of calculating the final score.

These matches cover 56% and 60.3% of NLSs (see Figure 2(b) and

Figure 2(d)) in the Yeast and Hybrid datasets. Therefore, recall

won’t drop dramatically when the final-score cutoff is lower than

0.8. When the final-score cutoff is set higher than 0.8, matches

with the low enrichment scores are removed since the weight of

the enrichment score is much higher than that of the linear motif

score (0.8 vs. 0.2); with the increase of the cutoff afterward,

matches with high enrichment scores but low linear motif scores

will start being removed, and eventually only matches with high

enrichment scores and high linear motif scores are left. The result

shows that for both the Yeast and Hybrid datasets, the precision of

the integrated predictor can still be improved by increasing the

final-score cutoff even when the final-score cutoff is already higher

than 0.8. This indicates that matches with low linear motif scores

are less likely to be (part of) NLS despite their high enrichment

scores. Therefore, the enrichment score and the linear motif score

are highly complementary in discerning NLS.

Effect of IRLC-masking
Figure 6 shows the ratio of three types of peptides in our

training dataset with the IRLC scores higher than a threshold

value T. It can be observed that the ratio of NLSs with the IRLC

score higher than T is smaller than that of random peptides that

are not overlapped with NLS. This result corresponds to our

IRLC hypothesis that the chance is relatively low to find a residue

in the flanking region of a NLS that is much more conserved; in

other words, NLSs indeed tend to have higher relative local

conservation. The similar trend can be observed for peptides

partially overlapped with NLSs, which mimics true positive NLS

predictions. This implies that IRLC-masking may be effective in

masking out false positive NLS predictions with a smaller chance

of masking out true positive NLS predictions. Figure 6 also shows

that when T is higher than 1.7, both the ratios of NLSs and

peptides overlapped with NLS with the IRLC score higher than T

are close to 0. To avoid masking out any true positive predictions,

the IRLC-masking cutoff is set as 1.7 throughout our experiment.

Table 3 and Table 4 describe the prediction performance of the

integrated predictor with or without IRLC-masking on the Yeast

and Hybrid datasets respectively. It shows that IRLC-masking

improves the precision of the integrated predictor on the Yeast

dataset while it is not effective on the Hybrid dataset. This is

because the effect of IRLC-masking depends on where false

positive predictions are distributed: if no false positive predictions

are located in the regions of the sequence that contradict the

property of relative local conservation (RLC), the precision cannot

be improved. This can also explain why precision is not improved

by applying IRLC-masking on the Yeast dataset when the final-

score cutoff is higher than or equal to 0.9. In addition, it shows

that for the both datasets after IRLC-masking is applied, recall

decreases slightly when the final-score cutoff is lower than 0.8

while it remains the same when the final-score cutoff is higher than

0.8. This is because the true positive predictions coming from

matches with the lower final scores generally have less accurate

boundaries, which lead to more true positive predictions being

masked out by IRLC-masking.

Table 4. The prediction performance of the integrated predictor with different final-score cutoffs with and without IRLC masking
on the Hybrid dataset.

Final-score
cutoff 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Precision 0.541 0.564 0.583 0.6 0.662 0.759 0.733 0.8

IRLC 0.542 0.565 0.578 0.595 0.662 0.759 0.733 0.8

Recall 0.685 0.685 0.658 0.644 0.63 0.562 0.151 0.055

IRLC 0.671 0.671 0.644 0.63 0.63 0.562 0.151 0.055

F1 score 0.604 0.619 0.618 0.621 0.646 0.646 0.25 0.103

IRLC 0.6 0.614 0.609 0.612 0.646 0.646 0.25 0.103

Mean aPC 0.532 0.539 0.575 0.58 0.578 0.579 0.587 0.361

IRLC 0.528 0.535 0.572 0.577 0.578 0.579 0.587 0.361

Mean aPC: the mean aPC of all the true positive predictions as defined in the text.
doi:10.1371/journal.pone.0076864.t004

Table 5. The prediction performance of different NLS predictors on the Yeast dataset.

Yeast Dataset PSORT II PredictNLS NLStradamus cNLS Mapper NucImport

1Sequence-based
predictor

2Integrated
predictor

Precision 0.455 0.462 0.864 0.8 0.526 0.569 0.7

Recall 0.66 0.12 0.36 0.46 0.4 0.56 0.54

F1 score 0.538 0.19 0.508 0.584 0.455 0.564 0.61

Mean aPC 0.696 0.411 0.473 0.437 0.414 0.641 0.644

1Sequence-based predictor with the enrichment-score cutoff set as 1.62 (EK).
2Integrated predictor with the final-score cutoff set as 0.85 with IRLC masking.
Mean aPC: the mean aPC of all the true positive predictions as defined in the text.
doi:10.1371/journal.pone.0076864.t005
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Comparison of SeqNLS with state-of-the-art NLS
prediction algorithms

Here we compare the prediction performance of SeqNLS with

those of state-of-the-art NLS prediction algorithms. Considering

that some of the compared NLS predictors may generate

overlapped NLS predictions, for all the compared NLS predictors,

if two NLS predictions are overlapped, they will be merged into

one prediction before evaluation. Table 5 and Table 6 show the

prediction performance of different NLS prediction methods on

the Yeast and Hybrid datasets respectively. We can see that

PSORTII has the highest recall on the both datasets while its

precision is the lowest among all the methods. This indicates that

many NLSs and non-NLS peptides can be covered by the NLS

patterns used in PSORTII. An interesting observation is that

PSORTII has the highest Mean aPC. We investigated the

individual patterns used in PSORTII and found that its high

Mean aPC is attributed to the predictions of the bipartite-NLS

pattern (K/R)(K/R)X10(K/R)3/5. PredictNLS only generated a

small number of predictions as shown by its low coverage in terms

of recall. It was found that both NLStradamus and cNLS mapper

have very high precision on the Yeast dataset. This is partially due

to that our Yeast dataset is included in the training data of the

NLStradamus prediction server and the activity profiles built in

cNLS mapper are optimized for yeast. For the Hybrid dataset,

both NLStradamus and cNLS mapper exhibit lower precision

since this dataset is not overlapped with the Yeast dataset and

includes many different species in addition to the yeast species, of

which the collected NLSs are from literature after 2010. The

NucImport algorithm has a very poor Mean aPC score because its

NLS predictions have uniform length of 20 amino acids. Another

limitation of NucImport is that it can predict only one NLS per

sequence while in the testing datasets some NLSs occur within the

same parent proteins.

As shown in Table 5 and Table 6, our sequence-based predictor

with the enrichment-score cutoff set as 1.62 (EK) has comparable

or better prediction performance than other NLS prediction

methods: it achieved a recall rate of 0.56 and 0.603 on the Yeast

dataset and the Hybrid dataset respectively, which is only second

to PSORTII. However, its precision is better than PSORTII on

both datasets. The integrated predictor shows better precision than

the sequence-based predictor since it incorporates linear motif

attributes. When the final-score cutoff is set as 0.85, the integrated

predictor achieved a precision of 0.7 and 0.759 on the Yeast and

the Hybrid datasets respectively while its recall is 0.54 on the Yeast

dataset and 0.562 on the Hybrid dataset. That is, over 50% of the

NLSs can be covered. The reason that the integrated predictor can

achieve high precision while maintaining high recall is that the

algorithm can extensively detect potential NLSs by using the

sequential-pattern mining method while exploiting linear motif

scoring, which is not used by other NLS prediction methods. As

for residue-level accuracy, both the sequence-based predictor and

the integrated predictor achieve the higher Mean aPC compared

to most other NLS prediction methods because of its incorporation

of the bipartite-NLS motif. It is interesting to note that another

example of achieving better prediction performance by integrating

sequence features and predicted disorder is NESsential [42], which

is a computational method designed to predict nuclear export

signals (NESs).

Conclusion

In this study, we propose SeqNLS, a novel method for nuclear

localization signal prediction based on frequent pattern mining

and linear motif scoring. Various attributes of NLS including the

sequential-pattern enrichment, predicted disorder, and local

conservation are investigated based on the two well-curated

datasets, which demonstrates their discriminative capacity for

identifying NLSs. Our experimental results indicate that sequence

features in terms of sequential patterns and linear motif features

are highly complementary for NLS prediction. Compared to other

state-of-the-art NLS prediction methods, SeqNLS achieves better

overall prediction performance. For the Yeast and Hybrid

datasets, SeqNLS attains a F1 score of 0.61 and 0.646 respectively

compared to 0.538 and 0.643 of PSORT-II.
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