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Abstract: In the past decade, many studies have been conducted to advance computer-aided systems
for Alzheimer’s disease (AD) diagnosis. Most of them have recently developed systems concentrated
on extracting and combining features from MRI, PET, and CSF. For the most part, they have
obtained very high performance. However, improving the performance of a classification problem is
complicated, specifically when the model’s accuracy or other performance measurements are higher
than 90%. In this study, a novel methodology is proposed to address this problem, specifically in
Alzheimer’s disease diagnosis classification. This methodology is the first of its kind in the literature,
based on the notion of replication on the feature space instead of the traditional sample space. Briefly,
the main steps of the proposed method include extracting, embedding, and exploring the best subset
of features. For feature extraction, we adopt VBM-SPM; for embedding features, a concatenation
strategy is used on the features to ultimately create one feature vector for each subject. Principal
component analysis is applied to extract new features, forming a low-dimensional compact space.
A novel process is applied by replicating selected components, assessing the classification model,
and repeating the replication until performance divergence or convergence. The proposed method
aims to explore most significant features and highest-preforming model at the same time, to classify
normal subjects from AD and mild cognitive impairment (MCI) patients. In each epoch, a small
subset of candidate features is assessed by support vector machine (SVM) classifier. This repeating
procedure is continued until the highest performance is achieved. Experimental results reveal the
highest performance reported in the literature for this specific classification problem. We obtained a
model with accuracies of 98.81%, 81.61%, and 81.40% for AD vs. normal control (NC), MCI vs. NC,
and AD vs. MCI classification, respectively.
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1. Introduction

Alzheimer’s disease (AD) can be described by cognitive and memory dysfunctions. This in turn
is actually the major cause of dementia in older adults. Moreover, AD has been identified as one of the
main causes of death in the United States [1]. The early diagnosis and prognosis of AD are important
because of limitations in treatment time.
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In this area, many biomedical imaging techniques for the early detection of AD are well developed
and employed by researchers, including MRI [2–4], PET [5,6], and other features like CSF [7], and the
Mini-Mental State Examination (MMSE) [8].

To develop automated procedures based on the above techniques to detect brain atrophy, in the
initial stages of AD, regions including the entorhinal cortex, the hippocampus, lateral and inferior
temporal structures, and anterior and posterior cingulate cortex [9–12] have been reported. Previous
works have dealt with the construction of computer-aided diagnosis (CAD) systems. Almost all
of these CAD systems are based on machine learning techniques and have three main steps: data
pre-processing, feature extraction, and classification. The pre-processing procedure sets different
images from different subjects, with brains of different sizes and shapes, at a comparable condition
and cleans and imputes missing data from the obtained data (if any). In the second step, a feature
extraction algorithm converts the input data into small vectors [13]. The classifier determines if the
vectors are more similar to mild cognitive impairment (MCI) patient vectors, to AD patient vectors, or
to normal control (NC) vectors.

To use these CAD systems, the metrics of entorhinal cortex have been used in AD diagnosis [14].
Automatic hippocampal volume measurement methods have almost equal results [15,16]. Hippocampal
volumes and entorhinal cortex metrics seem to be equally accurate in distinguishing between AD
patients and NC subjects [17]. Different techniques, such as principal component analysis (PCA),
artificial neural networks (ANNs), fuzzy neural networks (FNNs), partial least square (PLS), and
support vector machine (SVM), have been used in the development of these CADs.

These brain-observing techniques using machine learning can provide tools to overcome brain
dysfunction problems. These combined techniques can use different modalities including MRI, PET,
and other neurological data to diagnose AD/MCI patients from healthy people [18–21]. In [22] 50
MRI images from the OASIS dataset were used for characterization of MRIs of brains affected with
Alzheimer’s disease by fractal descriptors. Additionally, [23] used MRI images from the Alzheimer’s
Diseases Neuroimaging Initiative (ADNI) dataset for distinguishing AD from NC. They reported
complete performance (100% accuracy) in distinguishing between the two groups. [18] reported a
multiple classification using transfer learning on AD, while [24] classified AD vs. NC with a great rate
of accuracy using only MRI data. [25] classified progressive MCI vs. static MCI using combined MRI,
APOe4 genetic, and cognitive measures include and APOe4 genotyping.

In this area, the feature extraction and feature combination are often performed independently.
As investigated in the previous studies, there are inherent relations between the modalities of MRI
and PET [26]. Thus, finding the shared feature representation that combines the complementary
information from different modalities (e.g., PET, MRI, and CSF) is useful to enhance the discrimination
of AD and MCI patients from NC subjects.

There are some features among the described data that can help us to better diagnose AD. We use
PCA for dimensionality reduction and recognition of the possibly most efficient features of the data
to enhance classification potential. Feature representation using PCA reduces processing resources
usage, in addition to enhancing the classification accuracy. The steps of the proposed approach can be
summarized as follows:

(1) Feature extraction from MRI images and other data sources (from the ADNI dataset).
(2) Concatenation of all the features.
(3) Preparation of data sets and refining the data.
(4) Dimension reduction using PCA.
(5) Repeating data in vectors of step 4 until achieving the highest classification performance.

Briefly, the main contributions of this study are as follows:

• A novel method named Emphasis Learning is proposed for improving classification performance.
• The proposed method is successfully adapted for the diagnosis and prognosis of AD patients and

distinguishing them from normal subjects.
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This methodology is the first of its kind in the literature, and works based on the notion of
replication on the feature space instead of the traditional sample space. PCA was employed only asan
expert feature engineer to extract high-variance features. The proposed method achieved about 99%
accuracy in classifying normal subjects from AD patients. This result outperformed all of the current
literature results in terms of accuracy in classifying AD patients from normal subjects.

In the following sections, the data extraction and data source are presented. Then, pre-processing,
feature reduction and increment, and classification methods are explained. In the following section,
the experimental results are provided. A discussion of the results and conclusions are presented in the
final sections.

2. Materials and Methods

In this method, we emphasized the strongest and most influential features. The main idea of
this article is rooted in the fact that when a person’s good and outstanding features are emphasized,
those features along with the person himself improve, and his performance improves as well. In other
words, these features improve themselves; and the better and more precise these features, the more
effective they can be. To put this another way, learning can result either when good features in small
quantities repeat several times, or when such positive features repeat few times. For instance, which of
the two following ways would result in higher learning rates? When a teacher solves a problem with
two solutions and repeats these many times? Or, when she uses many solutions while repeating each
just a few times? The answer is “both”. However, for some problems the former works better, and for
some, the latter. The same is true in computer applications, and deeper and broader learning takes
place when there is the possibility of repeating both approaches.

It is obvious that trying to increase the accuracy of a classifier that is fine-tuned is a challenge.
For example, usually, increasing the accuracy from 80% to 85% is less complex and needs lower costs
and computational burden than increasing it from 95% to 96% (if possible). In this study, a method is
put forward in order to make this possible and to reduce the costs and computational burden to a great
extent. However, when the computed performance using the main data is low, or when utilizing the
extracted features from the dimension reduction does not cause a change in the model’s performance
(i.e., if no outstanding feature is achieved), repeating these features may not be that influential in the
tuning precision.

2.1. Characteristics of Subjects

We only used baseline MRI and PET image data, as well as CSF data acquired from 156 AD
patients, 338 MCI patients, and 211 NC subjects from the ADNI dataset. Table 1 shows patients’
demographic information. All the data were acquired in May 2017. Mini-Mental State Examination
(MMSE) scores were added to the extracted data from the ADNI database. MMSE scores have three
ranges that are defined as follows: (1) scores between 24 and 30 which represent healthy people; (2)
scores between 20 and 24 that represent MCI subjects; (3) scores between 13 and 20 that represent
moderate dementia subjects.

Table 1. Summary of demographic data of patients and subjects. AD: Alzheimer’s disease; MCI: mild
cognitive impairment; MMSE: Mini-Mental State Examination; NC: normal control.

Count Male Female Married Widowed Divorced Never
Married

Average
Age

Average
MMSE

AD 156 76 80 127 18 8 3 74.89 23.32
NC 211 110 101 142 38 17 14 75.91 29.13

MCI 338 215 123 269 39 24 6 74.51 27.05

Total 705 401 304 538 95 49 23 75.01 26.85
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2.2. MRI and PET Images and CSF Data

The MRI images were in Neuroimaging Informatics Technology Initiative (NIfTI) format. These
MRI images were pre-processed for spatial distortion correction. Collection of CSF data was done in
the morning after an overnight use of 20- or 24-gauge spinal needle. The FluoroDeoxyGlucose-Positron
Emission Tomography (FDG-PET) images were average values obtained from 30–60 min post
injection; their voxel size was converted to standard and smoothed to 8 mm full width at half
of maximum resolution.

2.2.1. MRI Acquisition Parameters

In the multiple ADNI sites, multiple machines (e.g., Siemens, Philips, and GE Medical scanners)
are used. Standard protocol was developed to evaluate 3D T1-weighted sequences for morphometric
analyses [27]. Structural brain MRI scans were acquired using 1.5 T and 3 T MRI scanners. Most of the
1.5 T MRIs were obtained from GE Medical scanners, and most of the 3 T MRIs were acquired from
Siemens machines.

In the 1.5 T protocol, each subject experienced 2 × 1.5 T T1-weighted MRI by 3D sagittal volumetric
magnetization-prepared rapid gradient echo (MP-RAGE) sequence. The repetition time of typical 1.5 T
acquisition was 2400 ms, and the inversion time was 1000 ms. Flipping and field of view were 8◦ and
24 cm, respectively. Dimensionality of MRIs was 256 × 256 × 170, and the voxel size was 1.25 × 1.25 ×
1.2 mm3.

For 3 T scans, repetition time and inversion time were 2300 and 900 ms, respectively. Flipping
angle and field of view were 8◦ and 26 cm. Dimensionality of MRIs was 256 × 256 × 170, with voxel
size of 1.0 × 1.0 × 1.2 mm3.

For modern systems, the scan time at 1.5 T is 7.7 min, and for 3 T systems it is 9.3 min. This usually
happens because of the difference between vulnerability artifacts, spin relaxation, and chemical shift
properties in 1.5 T and 3 T systems.

Figure 1 shows a sample MRI imaging of an NC subject and an AD patient. The figure demonstrates
decreased gray matter (GM) volume in the AD patient compared to the normal control.
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Figure 1. MRI imaging sample: (a) NC subject; (b) AD patient.

2.2.2. Pre-Processing of MRI Images

Spatial parametric mapping (SPM) software was used for pre-processing [28]. SPM was used for
realignment, smoothing, spatial normalization, and feature extraction from MRI regions of interest
(ROIs). The pre-processing steps using VBM8 tools were as below:

1. Check that image format is in a suitable condition using SPM tools.
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2. Segment the images to identify gray matter and white matter (WM) and wrap GM to the
segmented image to Montreal Neurological Institute (MNI) space using the SPM tools.

3. Estimate deformations to best align the images to each other and create templates by registering
the imported images with their average, iteratively using DARTEL tools of SPM.

4. Generate spatially normalized and smoothed GM images normalized to MNI space. Using the
estimated deformations by the DARTEL tools of SPM, generate smoothed/modulated wrapped
GM and WM images.

Note that using CAT12 for MRI segmentation and feature extraction can also obtain promising
results, as reported by Farokhian et al. [29]. This study demonstrated better performance using CAT12
over VBM8 tools.

Data cleansing and selection were done in the pre-processing step. In the second step (feature
extraction), the input data were converted into small vectors [13]. The classification algorithm
determined whether the vectors are more similar to an MCI/AD patient or to a normal control
(NC) subject.

2.3. Feature Extraction

To extract the features of all the images, we adopted standard procedures of anterior commissure
(AC)–posterior commissure (PC) correction, skull-stripping, and cerebellum removal for pre-processing
and preparing. MIPAV software was used for AC–PC correction. We segmented structural MRI images
into WM, GM, and CSF images (in the literature, GM matter has been widely used in AD diagnosis, and
most of the brain structural MRI studies in AD focused on only gray matter abnormalities [30]). Then,
to extract ROI features of all the images, we used Voxel Based Morphometry tools of Spatial Parametric
Mapping (VBM-SPM) to extract GM features as well. After that, volumetric changes in specific regions
such as entorhinal cortex, hippocampus, and temporal and parietal lobes were used. For each ROI, a
mask was made using WFU Pick Atlas tools (https://www.nitrc.org/projects/wfu_pickatlas/).

The PET images were aligned to the corresponding MR images strictly in ADNI. The recognized
areas including MRI gray matter tissue volume, average voxel values, and average of PET voxel values
(that were downloaded from the ADNI database) were used as features. In the literature, these features
have been used for AD/MCI diagnosis [31–34]. Three CSF biomarkers (i.e., Ab42, t-tau, and p-tau)
were also used in making the feature set. Therefore, 144 features were used to form the final feature set
consisting of 132 Voxel values and Volume of MRIs, 1 MMSE score, 4 pieces of personal information, 3
CSF biomarkers, and 4 PET voxel values (since we could not access PET images in the ADNI database,
we used only four PET voxel values that were extracted and uploaded to the ADNI database). Finally,
the vectors of the extracted features were normalized by applying natural logarithm. K-fold cross
validation method was used for testing and evaluation.

To parcellate the brain, Automatic Anatomical Labeling (AAL) atlas (http://www.gin.cnrs.fr/en/

tools/aal/) (Figure 2) was used, as proposed by [35]. In this atlas, the brain is parcellated into 90 cerebral
regions and 26 cerebellar regions. The sixteen most effective regions of the brain for this work are
respectively the left amygdala, inferior temporal gyrus, left middle frontal gyrus, left inferior temporal
gyrus, right amygdala, left middle temporal gyrus, left middle temporal gyrus, left supramarginal
gyrus, left middle frontal gyrus, left inferior frontal gyrus, left hippocampus, left angular gyrus, left
superior frontal gyrus, right supramarginal gyrus, right hippocampus, and right parahippocampal
gyrus. We used both voxel values and volumes of these regions in this study.

https://www.nitrc.org/projects/wfu_pickatlas/
http://www.gin.cnrs.fr/en/tools/aal/
http://www.gin.cnrs.fr/en/tools/aal/
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Figure 2. Automatic Anatomical Labeling (AAL) atlas. Different regions of brain are in different colors.

3. Classification Methods

For diagnosis and prognosis of AD and MCI, some classification algorithms are common and
some algorithms play supportive roles. Among them, SVM and PCA are the most used.

3.1. Feature Reduction Method

One of the most common linear techniques for data dimension reduction is PCA. PCA was
introduced by Karl Pearson in [36]. It maps the data to a lower dimension while maintaining the data’s
variance. To use this method, the covariance matrix of the data and the eigenvectors on this matrix
must be computed. The eigenvectors from the largest eigenvalues (i.e., the principal components)
reconstruct the highest variance of the primary data. The first few eigenvectors often have the most
information of the primary data. Hence, the process yields a smaller number of eigenvectors, and there
may be some associated data loss. However, the most important variances should be retained by the
remaining eigenvectors. Figure 3 shows the eigenvectors of a dataset.
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PCA has the advantages of reducing the required storage space and computation time eliminating
redundant features. Some associated disadvantages include a reduction in some of the original data’s
information, its failure when mean and covariance are not sufficient to define the data, and uncertainty
in the number of principal components required to retain the data’s information.

3.2. Increasing Dimensions of Data to Achieve Better Classification Results

The main idea of this paper is to repeat the most efficient features in classification. Theoretically,
increasing the dimensions of data can sometimes yield better and sometimes worse classification results;
but what if we find and repeat good data features to make a classification model? Our experiment
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shows that this theory worked excellently! For the diagnosis of Alzheimer’s Disease, we tested this
method after extracting the best features of the data set using PCA, conducted a dimension reduction,
and repeated these new features. We repeated these features as input data for the classification
algorithm (here SVM) until this action had no further positive effect on classification performance or did
not reduce it. Figure 4 shows the proposed method diagram. The performance of the proposed model
increased in some cases after applying PCA, but in many other cases it might lead to performance loss.
Because using more PCs can lead to performance loss, we experimentally found that using only 25
gave the best results.Sensors 2020, 20, x FOR PEER REVIEW 7 of 20 
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3.3. SVM

One binary classification method that is successfully used in many domains is SVM [3,37–39].
The classification efficiency of SVM in training very-high-dimensional data has been proven [40,41].
Moreover, SVM has been applied to voice activity detection, pattern recognition, classification, and
regression analysis [42,43]. It is used to separate a set of training data with a hyperplane that is
maximally distant from the two classes. SVM is the most common and efficient classifier in binary
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classification. Here, SVM was used to distinguish between AD and MCI patients and NC subjects,
pairwise. We employed only the training samples to adjust the hyperparameters of the SVM, based on
which the best model was selected. Using the proposed method, we could automatically select the best
model among other trained models due to the achieved performance rates.

3.4. Data Normalization vs. Data Standardization

Normalization maps values into a range of [0,1] and it is effective in the applications that
require positive values. In this study, we used a normalization method. Equation (1) shows the
normalization formula:

Xnorm =
X−Xmin

Xmax −Xmin
, (1)

where Xnorm is the normalized input data. The problem with normalization is outlier elimination.
On the other hand, standardization maps original data to have a mean of 0, and is recommended

in some cases. Equation (2) demonstrates standardization:

Xstd =
X−Xmean

Xdev
, (2)

where Xstd implies standardized data, Xmean is the mean of the original data, and Xdev is the standard
deviation of the data.

3.5. Evaluation Criteria

Accuracy is a well-known evaluation measure for classification methods. Using accuracy, we
computed the correctly classified samples and all samples’ ratio. Two other common evaluation
metrics are sensitivity and specificity. The receiver operating characteristic (ROC) and the area
under the curve (AUC) are other performance parameters for diagnosis procedures. The positive
predictive value (PPV) and negative predictive value (NPV) are widely used measures to describe
the performance of a classifier. The accuracy, sensitivity, specificity, PPV, and NPV are defined in the
following equations, respectively:

Acc =
TP + TN

TP + TN + FP + FN
(3)

Sen =
TP

TP + FN
(4)

Spec =
TN

TN + FP
(5)

PPV =
TP

TP + FP
(6)

NPV =
TN

TN + FN
(7)

where TP is the number of true positives (number correctly classified as patients); TN is the number
of true negatives (number correctly classified as non-patients); FP is the number of false positives
(number of non-patients wrongly classified as patients); FN is the number of false negatives (number
of patients wrongly classified as non-patients).

We used the sensitivity and specificity to evaluate the rate of true positives or negatives (i.e., the
ratio of correctly classified AD or MCI patients or NC subjects and total subjects). These measures
show the method’s detection power between AD, MCI, and NC. Here, these metrics were measured
using K-fold cross validation (with k = 10). Using this method, 10 selected sets of AD, MCI, and NC
were sampled randomly—one set for testing and nine for training the classifier. This was be done for
all 10 sets, and the average of the evaluation parameters was be used to show the performance of the
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classification method. In this article, we repeated the K-fold method 100 times and the average of
averages was used to represent the method’s performance.

The steps of the algorithm are as follows (Algorithm 1):

Algorithm 1. The steps of the algorithm of the method.

1. Feature extraction

a. MF <- MRI ROI features
b. PF <- PET ROI features
c. CD <- CSF data
d. PI <- Personal information
e. MS <- MMSE Score

2. Concatenated Features <- [MF, PF, CD, PI, MS]
3. Imputaded data <- Imputation (Concatenated Features)
4. data <- ln(Imputaded data) ‘data normalization using Natural Logarithm’
5. Normalized data <- (data–min(data)/(max(data)–min(data))) ‘data normalization (Xnorm)’
6. Reduced data <- PCA (Normalized data)
7. Data <- [Reduced data]
8. Diagnosis <- SVM(Data) ‘classificaion using SVM’
9. Data <- [Data, Reduced data]
10. Go to (8) until no further performance improvements are obtained
11. Select the best performance and Finish

The third step was concerned with missing values, because there are many missing values in PET
and CSF data. The missing values were replaced by the average (mean) of the existing items for all
subjects as suggested by [44]. This method was successfully applied to fill the missing values and
we saw the performance gain after using that. Note that PET and CSF examinations have difficult
processes. For this reason, some of the ADNI subjects were avoid from these experiments. It should be
said that none of MMSE, MRI, or demographic data had missing values so all of them were used in
our experimentations.

4. Experimental Results

Here, we evaluate our proposed method’s efficiency. This was done for three binary classification
problems: AD vs. NC, MCI vs. NC, and AD vs. MCI, and a 10-fold cross validation method was used
for evaluation purposes. In the 10-fold cross validation, the dataset was randomly partitioned into 10
subsets, each including one-tenth of the total dataset. Nine subsets were used for training goals and
the remaining one for testing. We did this for all subsets.

Classification Results

In order to represent the performance of the proposed method, we present the classification
results obtained from the SVM classification algorithm by 10-fold cross validation. Table 2 shows the
mean accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and area
under the curve for different numbers of the repeated features tested on the proposed method on three
binary classes. As can be seen, by repeating features five times, the proposed method showed the best
accuracy rates of 98.81%, 81.61%, and 81.40% in classifying NC vs. AD, MCI vs. AD, and NC vs. MCI
data, respectively.

Here, experimental results are presented. An SVM classification algorithm with a linear kernel
was used for Alzheimer’s disease diagnosis. The evaluations were done using only one set of reduced
data, and then using different numbers of repetitions of the reduced data. Toward this aim, 144
selected features were used (including 132 MRI voxel and volume values, 1 MMSE, 4 types personal
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information, 3 cerebro-spinal fluid biomarkers, and 4 PET image voxel sizes). Table 2 shows the
accuracy of discriminating AD, MCI, and NC from each other using each group of data, alone.

As deduced from Table 2 and Figures 5–7, the AUC values increased after repeating reduced
features each time until the fifth repetition. As can be seen in Figure 5, using repeated features in width
(emphasized features) compressed box-plots further, demonstrating higher stability in the classification.
The bold numbers in Table 2 show the highest values for accuracy and other performance measures for
the proposed method.
Sensors 2020, 20, x FOR PEER REVIEW 11 of 20 

 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5. Boxplots for the recognition of AD, MCI, and NC subjects: (a) accuracy, (b) sensitivity, and 

(c) specificity of all features and 25 PCA elements for 1–9× repeated feature reduction. 
Figure 5. Boxplots for the recognition of AD, MCI, and NC subjects: (a) accuracy, (b) sensitivity, and (c)
specificity of all features and 25 PCA elements for 1–9× repeated feature reduction.



Sensors 2020, 20, 941 11 of 21
Sensors 2020, 20, x FOR PEER REVIEW 12 of 20 

 

 

Figure 6. Comparison of changes in average accuracy, sensitivity and specificity for 15, 20, 25, and 30 

PCA elements in 1–9× repeated feature reduction, and all the features (black line). 

5.1. Feature Representation 

Across classification tasks, different numbers of input features can affect AD diagnosis in 

supervised learning. In the literature, the effects of considering different input sizes for different 

classification problems have been extensively discussed. The original features are informative for 

brain disease diagnosis, but this increase in the feature vector size will result in a better and more 

calculable diagnosis.  

In comparison with the original features, the proposed method greatly improved the diagnostic 

accuracy for all the considered classification problems. The proposed method outperformed the other 

methods in three binary classification problems. Using this method, notwithstanding the limited 

number of samples, helped reduce errors for classification problems and hence enhanced the 

classification accuracy. Previous methods can only use limited number of features in learning, but 

this limitation is overcome here. 

There will not be an interpretation of the trained model or the feature representations. Each 

added unit in the input represents a linear combination of the high-level input features. That is, by 

repeating each high-level feature (e.g., mean intensity from FDG-PET or GM volume from MRI), the 

model can cover different relations for low-level features. Using this method, and from a neuro-

scientific perspective, the relations from MRI features and from FDG-PET features could be 

enhanced. This way, new and increased inputs of the high-level features represent their helpfulness 

in classifying patients and healthy normal controls. Using this method cannot help us to interpret or 

visualize the model’s outputs, and this remains one of the unsolved pattern recognition and machine 

learning problems. In contrast, it is clear that this combined information will be useful in AD/MCI 

diagnosis. 

 

Figure 6. Comparison of changes in average accuracy, sensitivity and specificity for 15, 20, 25, and 30
PCA elements in 1–9× repeated feature reduction, and all the features (black line).

Table 2. Comparing performance metrics. Classification accuracy (ACC), sensitivity (SEN), specificity
(SPE), positive predictive value (PPV), negative predictive value (NPV), and area under the curve
(AUC) for all features and 25 principal component analysis (PCA) elements.

Data Classes ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) AUC

All Data
AD–NC 95.54 93.74 98.32 98.84 91.09 0.9577
AD–MCI 81.41 89.02 68.09 82.99 78.00 0.7835
MCI–NC 79.41 67.48 92.37 90.56 72.34 0.7993

Reduced Data
Using PCA

AD–NC 97.20 95.46 99.86 99.90 93.53 0.9768
AD–MCI 81.61 88.45 69.02 84.03 76.39 0.7846
MCI–NC 79.45 67.20 92.96 91.33 71.97 0.8011

2 × Reduced
Data

AD–NC 98.03 97.18 99.26 99.47 96.09 0.9831
AD–MCI 80.37 88.57 66.38 81.80 77.28 0.7766
MCI–NC 79.94 68.49 91.64 89.31 74.03 0.7991

3 × Reduced
Data

AD–NC 98.61 98.15 99.27 99.47 97.46 0.9863
AD–MCI 80.47 88.90 66.26 81.62 77.98 0.7767
MCI–NC 79.93 68.70 90.80 87.85 74.98 0.7980

4 × Reduced
Data

AD–NC 98.67 98.24 99.27 99.47 97.59 0.9876
AD–MCI 80.61 88.92 66.59 81.81 78.02 0.7784
MCI–NC 80.55 69.84 90.62 87.47 76.20 0.7998

5 × Reduced
Data

AD–NC 98.81 98.52 99.21 99.42 97.98 0.9875
AD–MCI 80.69 89.46 66.37 81.29 79.39 0.7803
MCI–NC 80.92 70.64 90.17 86.60 77.36 0.8016

6 × Reduced
Data

AD–NC 98.59 98.51 98.69 99.03 97.98 0.9866
AD–MCI 80.81 89.47 66.65 81.46 79.43 0.7793
MCI–NC 80.67 70.26 90.05 86.43 77.05 0.8045

7 × Reduced
Data

AD–NC 98.50 98.61 98.37 98.80 98.11 0.9852
AD–MCI 80.71 89.07 66.66 81.82 78.32 0.7778
MCI–NC 81.44 71.28 90.54 87.09 77.89 0.8056

8 × Reduced
Data

AD–NC 98.34 98.56 98.04 98.56 98.04 0.9835
AD–MCI 80.84 89.55 66.57 81.45 79.52 0.7789
MCI–NC 81.42 71.51 90.30 86.84 77.98 0.8075

9 × Reduced
Data

AD–NC 98.31 98.41 98.18 98.65 97.85 0.9822
AD–MCI 80.51 88.91 66.43 81.62 78.13 0.7767
MCI–NC 81.40 71.22 90.54 87.09 77.82 0.808
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In addition, we have added more explanatory experiments as Supplementary Material. There,
we compare Homogeneous and Heterogeneous Emphasis Learning methods. The Homogeneous
Emphasis Learning repeats all the selected features equally and homogeneously, and the Heterogeneous
Emphasis Learning repeats selected features unequally and heterogeneously.

5. Discussion

As mentioned in the main idea of this paper and as is clear in Table 3, this method had lower
effects on models with low rates of accuracy and fairly weak models. In other words, this method
emphasizes very strong features. As can be seen in Table 2, regarding the models in which there was a
reduction in performance after dimension reduction, or where there was not much positive change,
repetition in dimensions could not cause a considerable increase in the model performance. This is also
predictable considering the main idea of the method. Because the model emphasizes valuable features,
when the extracted features do not have any considerable effect on model performance, repeating them
cannot be very helpful in increasing the model performance. Issues regarding the main idea and the
results of incorporating it are discussed in the following.
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Table 3. Comparison of the proposed method with other methods; including dataset and indicators. EL: Emphasis Learning. ADNI: Alzheimer’s Diseases
Neuroimaging Initiative.

Method Data type(s) (n, Dataset) AD vs. NC AD vs. MCI MCI vs. NC

Acc% Sen% Spec% AUC Acc% Sen% Spec% AUC Acc% Sen% Spec% AUC

Zhang et al., 2011 [45]
MRI, PET, CSF, MMSE,

ADAS-Cog
(202, ADNI)

93.20 93.00 93.30 0.98 - - - - 76.40 81.80 66.00 0.81

Dai et al., 2013 [46] MRI
(83, OASIS) 90.81 92.59 90.33 0.94 85.92 82.46 87.59 0.87 81.92 78.51 88.34 0.81

J. Liu et al., 2016 [47] MRI, PET
(710, ADNI) 94.65 95.03 91.76 0.95 88.63 91.55 86.25 0.91 84.79 88.91 80.34 0.83

Beheshti et al., 2017
[24]

MRI
(186, ADNI) 93.01 89.13 96.80 0.935 - - - - - - - -

Mishra et al., 2018
[48]

MRI
(417, ADNI) 89.15 85.06 92.53 0.93 - - - - - - - -

Khedher et al., 2015
[49]

MRI
(818, ADNI) 88.96 92.35 86.24 0.93 84.59 88.75 83.07 0.89 82.41 84.12 80.48 0.81

Lian et al., 2019 [50] MRI
(1457, ADNI) 90.00 82.00 97.00 0.95 - - - - - - - -

Ben Ahmed et al.,
2014 [51]

MRI
(218, ADNI) 87.00 75.50 100 0.85 72.23 75.00 70.00 0.76 78.22 70.73 83.34 0.77

Zhou et al., 2018 [52] MRI
(507, ADNI) 93.75 87.5 100 - - - - - - - - -

Suk et al., 2014 [53]
MRI, PET, CSF, MMSE,

ADAS-Cog
(202, ADNI)

93.05 90.86 94.57 0.95 88.98 82.11 90.65 0.90 83.67 96.79 57.28 0.82

Maqsood et al., [18] MRI
(392, OASIS) 89.66 100 82 - - - - - - - - -

Proposed Method
(EL)

MRI, PET, CSF, MMSE
(705, ADNI) 98.81 98.52 99.21 0.987 81.61 88.45 69.02 0.785 81.40 71.22 90.54 0.81
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5.1. Feature Representation

Across classification tasks, different numbers of input features can affect AD diagnosis in supervised
learning. In the literature, the effects of considering different input sizes for different classification
problems have been extensively discussed. The original features are informative for brain disease
diagnosis, but this increase in the feature vector size will result in a better and more calculable diagnosis.

In comparison with the original features, the proposed method greatly improved the diagnostic
accuracy for all the considered classification problems. The proposed method outperformed the
other methods in three binary classification problems. Using this method, notwithstanding the
limited number of samples, helped reduce errors for classification problems and hence enhanced the
classification accuracy. Previous methods can only use limited number of features in learning, but this
limitation is overcome here.

There will not be an interpretation of the trained model or the feature representations. Each added
unit in the input represents a linear combination of the high-level input features. That is, by repeating
each high-level feature (e.g., mean intensity from FDG-PET or GM volume from MRI), the model
can cover different relations for low-level features. Using this method, and from a neuro-scientific
perspective, the relations from MRI features and from FDG-PET features could be enhanced. This way,
new and increased inputs of the high-level features represent their helpfulness in classifying patients
and healthy normal controls. Using this method cannot help us to interpret or visualize the model’s
outputs, and this remains one of the unsolved pattern recognition and machine learning problems.
In contrast, it is clear that this combined information will be useful in AD/MCI diagnosis.

5.2. Feature Reduction and Increasing—Feasibility of the Proposed Method

Here, we compare the results of the proposed method with PCA and the before-PCA results.
In the feature set, we considered the clinical labels and clinical scores of MMSE. We observed that the
method using increased specific numbers of feature packets outperformed others (Table 3). Here, we
selected 15 to 30 PCA components explaining approximately 94.5% to 100% of the variance to test the
proposed method.

The reason for the high performance of the proposed method can be explained as follows.
Consider learning perfect objects; when repeating them in the training process, the model can

learn the object’s features better and better. This is because the richer information of the object can be
learned by the model. Similarly, when we repeat perfect features (features obtained after applying PCA
that gave us rich object features), the model can learn richer information about the objects. Similar to
repeating objects after a specific number of repetitions, the model can be over-trained, and specifying
the number of the repetitions is a precise action. Therefore, the method can make features that can
accurately model the target values (i.e., labels and clinical scores and imaginary symptoms). This is the
definition of repeating features in width (feature repetition or emphasized features) instead of length
(sample repetition) in the algorithm. We can say the repeated features for the labels could discriminate
AD and MCI patients from NC subjects.

As we said, the main idea of this paper is to repeat the most efficient features in classification.
Our experiment showed that the theory of finding and repeating the good features of the data for
classification problems will work excellently (Tables 2 and 3).

5.3. Classification Algorithm

SVM is a widely used algorithm in the area of Alzheimer ’s disease. We selected this algorithm
with a linear kernel. Non-linear SVMs usually achieve better performance, but here in our tests,
performance differences between the two types of kernel were not significant, and linear SVMs were
faster to train, as shown in Table 4.
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Table 4. Time complexity of SVM with linear kernel vs. Radial Basis Function (RBF) kernel.

Data Classes
SVM Training
Time—Linear

Kernel (s)

SVM Training
Time—RBF
Kernel (s)

Linear—RBF (S)

All Data
AD–NC 5.5170 5.7599 −0.2429

AD–MCI 6.7963 9.6903 −2.8941
MCI–NC 6.8982 9.0480 −2.1498

Reduced Data
Using PCA

AD–NC 4.5012 5.2301 −0.7289
AD–MCI 5.7727 6.6944 −0.9217
MCI–NC 7.3574 9.5005 −2.1432

3 × Reduced Data
AD–NC 5.0067 7.8505 −2.8437

AD–MCI 6.3709 9.9687 −3.5978
MCI–NC 8.1439 12.9038 −4.7599

5 × Reduced Data
AD–NC 5.9490 9.6567 −3.7077

AD–MCI 7.3554 12.8005 −5.4451
MCI–NC 11.9281 18.2044 −6.2763

9 × Reduced Data
AD–NC 8.7938 12.0661 −3.2722

AD–MCI 10.0609 16.9106 −6.8497
MCI–NC 14.0926 23.2651 −9.1726

As can be seen in Table 5, using all the data for the AD vs. NC task took 5.5170 seconds and after
PCA it took 4.5012 s, increasing accuracy (from Table 2: accuracy increased from 95.54% to 97.20%)
while reducing time. For this task, with five-fold repetition, the time was 5.9490 s while the accuracy
was 98.81% (i.e., slight increase in the time complexity and a fair increase in the performance).

Table 5. Accuracy of AD, MCI, and NC classification, using each group of data, alone.

CLASSES AD–NC ACC% AD–MCI ACC% MCI–NC ACC%

Personal Information 0.609 0.595 0.553
MMSE Data 0.919 0.785 0.703

MRI Data 0.868 0.684 0.697
CSF Data 0.594 0.524 0.643
PET Data 0.625 0.667 0.574

5.4. Comparison with the State-of-the-Art Methods

To validate the performance of the proposed method, we present the significance of the results in
Table 2. The performance of our proposed method is compared to other state-of-the-art methods in
Table 3. For comparison, we used all 705 ADNI samples. The accuracy rates of our proposed
method were 98.81%, 81.61%, and 81.40% for AD vs. NC, AD vs. MCI, and MCI vs. NC
classification, respectively.

Most of the listed methods in Table 3 used the ADNI database, and we used all the images and
data in ADNI, consisting of 705 participants. This is in contrast to some of the reported methods that
used a portion of the ADNI samples. When the proportion of the used sample was sufficient compared
to the entire sample, we compared our proposed method to theirs. As can be seen in Table 3, the
proposed method obtained the highest accuracy (98.81%) in AD vs. NC diagnosis, and due to the
balanced dataset, the accuracy is a suitable performance measure.

Additionally, the sensitivity (recall rate) of the proposed method (98.52%) was the highest, as can
be seen in Table 3. The proposed method stood in second place with a specificity of 99.21% against the
perfect detection rate of Ben Ahmed et al. [51]. However, Ben Ahmed et al.’s method had a high false
alarm rate while the proposed method succeeded in achieving a trade-off between the two. Note that
lower specificity of our method can be cover by higher sensitivity, e.g., 94.83% of our method vs. 87%
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in the case of Ben Ahmed et al.’s method. Nevertheless, combined methods can be used to achieve
better performance.

In [23], 70 MRI images from the ADNI dataset were used for AD vs. NC classification—35
images of AD patients and 35 images of NC subjects. They achieved 100% accuracy in distinguishing
between the two groups. Because the number of subjects used in our study was 10 times greater
than this last study, it is not fair to compare this study with our proposed method. [18] achieved
89.66% accuracy in binary AD classification (recognizing AD from subjects) but they achieved 92.85%
accuracy in multiple classification using transfer learning. Using only MRI data [24] could classify AD
vs. NC with an accuracy rate of 93.01%. They achieved this performance using only 186 MR images.
Using 785 MRI data [25] classified progressive MCI vs. static MCI with an accuracy of 86%, using
combined MRI, APOe4 genetic data, and available clinical practice variables and cognitive measures
including neuropsychological cognitive assessment tests like the Dementia Rating Scale (CDRSB), the
Alzheimer’s Disease Assessment Scale (ADAS11, ADAS13), episodic memory evaluations in the Rey
Auditory Verbal Learning Test (RAVLT).

We could redress some imperfections of the proposed method using another method that has
better performance. According to Table 3, in most of the performance measures the proposed method
was in the first or second place, and we can see that the proposed method was dominant, and had the
highest accuracy compared to other methods.

5.5. Limitations of the Work

The proposed method has some limitations. In PET imaging, the partial volume effect induced
by a combination of image sampling and the restricted resolution of PET in the reconstructed images
can bring under- or over valuation for regional radioactivity condensation. Therefore, more errors
in statistical parametric images may occur [54]. Here, we must say that we could not download
relevant PET images from ADNI and we only downloaded the extracted values of PETs from the
ADNI database.

Combination of multiple tissue values would likely affect the differences between voxels of gray
and white matters. Since our method is ROI-based feature selection, this partial voxel quality reduction
would have an inconsiderable effect on the performance of the method.

We can say the proposed structure used to form the feature sets in this experiment could be
non-optimal for other datasets. We need studies such as those learning optimal and strong feature
sets for repetition and practical use of the proposed method. The NC group in the dataset could
include both healthy controls and subjective cognitive complaints because there is no supplementary
information about this group. The features concatenation from MRI, FDG-PET, MMSE scores, and CSF
modalities into a single vector and repetition of the features after the feature reduction could efficiently
distinguish between AD and MCI patients and NC subjects.

6. Conclusions

In this study, we proposed a simple but practical and effective method for classification, and
tested it for Alzheimer’s disease diagnosis. Our proposed method found the best features and repeated
them until no further improvements to classification performance were obtained. We examined our
method on the ADNI database of AD. The experiments showed that we could achieve much better
performance using the combined features of MRI, MMSE, and personal information, especially when
we repeated the reduced features on all three binary classification problems (i.e., AD vs. NC, AD vs.
MCI, and MCI vs. NC). Experiments indicated the performance and effectiveness of the proposed
method: accuracy rates of 98.81%, 81.61%, and 81.40% for AD vs. NC, AD vs. MCI, and MCI vs. NC
classification problems, respectively. As can be seen, using this method increased the performance of
the three binary problems incredibly. The results showed that the classification accuracy was improved
with the optimized feature selection, which indicates that the information gain method can be used to
select the more sensitive anatomical regions in AD and MCI diagnosis. Using other feature reduction
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or selection methods and repeating reduced data could be the subject of a future work. Combining the
results of other feature reduction and selection methods and establishing a classification framework,
while using them, could be another future work. This study employed VBM8 tools, which yielded
promising results. However, there are robust segmentation tools to explore (e.g., CAT12) that could be
used to improve the diagnosis results. As another future work, applying this method to clustering
can be recommended. Finally, features recommended by experts could be put through the proposed
model in order to achieve better performance as a future work.
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