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Abstract

Background: Constraint-based modeling of genome-scale metabolic network reconstructions has become a widely
used approach in computational biology. Flux coupling analysis is a constraint-based method that analyses the
impact of single reaction knockouts on other reactions in the network.

Results: We present an extension of flux coupling analysis for double and multiple gene or reaction knockouts, and
develop corresponding algorithms for an in silico simulation. To evaluate our method, we perform a full single and
double knockout analysis on a selection of genome-scale metabolic network reconstructions and compare the results.

Software: A prototype implementation of double knockout simulation is available at http://hoverboard.io/L4FC.
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Background
Constraint-based modeling has become a widely used
approach for the analysis of genome-scale reconstructions
of metabolic networks [1]. Given a set of metabolites M
and a set of reactions R, the metabolic network is rep-
resented by its stoichiometric matrix S ∈ RM×R, and a
subset of irreversible reactions Irr ⊆ R. The flux cone
C = {v ∈ RR | Sv = 0, vr ≥ 0, r ∈ Irr} contains
all steady-state flux vectors satisfying the stoichiometric
and thermodynamic irreversibility constraints. Based on
this flux cone, many analysis methods have been proposed
over the years (see e.g. [2] for an overview). Flux Bal-
ance Analysis (FBA) [3,4] solves a linear program (LP)
max{z(v) | Sv = 0, l ≤ v ≤ u} over the (truncated) flux
cone in order to predict how efficiently an organism can
realize a certain biological objective, represented by the
linear objective function z(v). For example, one may com-
pute the maximal biomass production rate under some
specific growth conditions. Flux Coupling Analysis (FCA)
[5,6] studies dependencies between reactions. Here the
question is whether or not for all steady-state flux vectors
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v ∈ C, zero flux vr = 0 through some reaction r implies
zero flux vs = 0, for some other reaction s.
Knockout analysis has become an important technique

for the study of metabolic networks and in metabolic
engineering. Starting from flux balance analysis (FBA),
various in silico screening methods for genetic modifi-
cations have been developed, see [7,8] for an overview.
On the one hand, complete methods have been proposed,
which systematically explore all possible knockout sets up
to a given size, e.g. [9,10]. On the other hand, there exist
heuristic algorithms such as [11-14], which may be con-
siderably faster, but in general are not complete. Klamt
et al. [15-17] developed the related concept of minimal
cut sets, which are (inclusion-wise) minimal sets of reac-
tions whose knockout will block certain undesired flux
distributions while maintaining others.
Recent progress in the development of algorithms for

flux coupling analysis (FCA) [6,18] may lead to a dif-
ferent approach. FCA [5] describes the impact of each
possible single reaction knockout in a metabolic network.
It analyzes which other reactions become blocked after
removing one reaction (“directional coupling”), and which
reactions are always active together (“partial coupling”).
As we will see, using flux coupling information inside a
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double or multiple knockout simulation may significantly
reduce the search space, without loosing any information.
In this paper, we present an algorithmic framework

for double and multiple knockouts in qualitative mod-
els of metabolic networks. We will use a lattice-theoretic
approach [18], which includes classical constraint-based
models at steady-state as a special case, but which is much
more general. We illustrate and evaluate our method by
computing full double knockout simulations on a selec-
tion of genome-scale metabolic network reconstructions.
In particular, we compare the impact of single vs. double
reaction knockouts on the other reactions in the net-
work. We also show how our method can be extended
to gene (in contrast to reaction) knockouts, and provide
computational results for both cases.
Our algorithms are based on an efficient search for the

maximal element in suitably defined lattices [18]. To simu-
late all double or multiple reaction knockouts, we describe
a method to select a subset of the reactions as represen-
tatives for the whole system. More precisely, we partition
the reaction set in equivalence classes of partially coupled
reactions. This enables us to obtain the information about
all possible double or multiple reaction knockouts much
faster and to store the results in a compact format.
The approach developed in this paper is a qualita-

tive method. We do not measure the quantitative impact
of knockout sets on the cellular growth rate (or other
metabolic fluxes) as this would be done in an FBA
approach. Instead, we count how many reactions become
blocked by a knockout, similar to the flux balance impact
degree introduced in [19]. However, even though we do

not apply FBA to evaluate the impact of a knockout, the
idea of working with representatives for reaction classes
via partial coupling could also be applied in an FBA
context. Thus, studies like [20] and even MILP-based
approaches like [21] might benefit from this method.

Methods
Reaction coupling in the context of knockout analysis
We start from a metabolic network N = (M,R, S, Irr)
given by a set of metabolites M, a set of reactions R, a
stoichiometric matrix S ∈ RM×R, and a set of irreversible
reactions Irr ⊆ R, see Figure 1 for an example. The set
C = {v ∈ RR | Sv = 0, vr ≥ 0, r ∈ Irr} of all flux
vectors v ∈ RR satisfying the steady-state (mass balance)
constraints Sv = 0 and the thermodynamic irreversibility
constraints vr ≥ 0, for all r ∈ Irr, is called the steady-state
flux cone. A reaction s ∈ R is called blocked if vs = 0,
for all v ∈ C, otherwise s is unblocked. Two unblocked
reactions r, s are called directionally coupled [5], written
r =0→ s, if for all v ∈ C, vr = 0 implies vs = 0. A possible
biological interpretation is that the reactions directionally
coupled to r are those reactions that will become blocked
by knocking out the reaction r.
To determine which reactions are coupled, a simple

approach would be to solve for each pair of reactions
(r, s) two linear programs (LPs) and to check whether
max {vs | v ∈ C, vr = 0} = min {vs | v ∈ C, vr = 0} = 0.
During the last years, efficient flux coupling algorithms
have been developed [6,18] that drastically reduce the
number of LPs to be solved, so that that genome-wide
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Figure 1 Example network with corresponding lattice and coupling relations. The network contains the set of metabolitesM = {A, B, C,D}
and the set of reactionsR = {1, 2, 3, 4, 5, 6}. We assume that all coefficients smr of the stoichiometric matrix S belong to {0,+1,−1}. Thus, reaction 2
has the stoichiometry sA2 = −1, sB2 = sC2 = 1 and sD2 = 0. The set of irreversible reactions is Irr = R \ {1}. A possible flux vector satisfying the
steady-state condition Sv = 0 is v = (0, 1, 1, 2, 1, 1) with supp v = {2, 3, 4, 5, 6}. The corresponding lattice contains the trivial element ∅ representing
the vector v = 0 and the minimal (non-trivial) elements {1, 2, 3, 4}, {1, 4, 5, 6} and {2, 3, 4, 5, 6}. The maximal element is {1, 2, 3, 4, 5, 6}, i.e., there is no
blocked reaction. a) There are two pairs of partially coupled reactions, namely 2 ↔ 3 and 5 ↔ 6. Therefore, no knockout sets containing reaction 3
or 5 need to be analysed. The impact of a double knockout of {3, r} will be the same as for {2, r}. b) Reaction 1 is coupled to reaction 4. Thus, a
double knockout of {1, 4} will have the same effect as the simple knockout of 4. In both cases, all reactions {1, 2, 3, 4, 5, 6} get blocked.
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metabolic network reconstructions can now be analyzed
in a few minutes on a desktop computer (compared to a
couple of days of running time before).
Whether reactions are blocked or coupled does not

depend on the specific flux values. It only matters whether
or not vr = 0 resp. vs = 0. In this sense, flux coupling is a
qualitative property that can be analysed by studying the
set LC = {supp v | v ∈ C} of all supports of flux vectors
v ∈ C, where supp v = {r ∈ R | vr 	= 0}. Each element
a ∈ LC is the set of active reactions of some flux vector
v ∈ C. Therefore, we can interpret LC as the set of all pos-
sible reaction sets or pathways in the flux cone C. Since LC
does not contain any information about specific flux val-
ues, we also speak of a qualitative model of the metabolic
networkN .
In [18,22], we have shown that flux coupling analysis

can be extended to muchmore general qualitative models,
where the space of possible pathways L ⊆ 2R can be any
non-empty subset of the power set 2R, e.g. L = {supp v |
v ∈ C, v satisfies thermodynamic loop law constraints}.
The definition of flux coupling needs only be slightlymod-
ified in order to be applicable to these qualitative models.
A reaction t ∈ R is called blocked in L if and only if for
all a ∈ L, we have t /∈ a. For reactions r, s ∈ R that are
unblocked in L, we define r =0→ s in L, if for all a ∈ L,
r /∈ a implies s /∈ a. To distinguish between the original
flux coupling and its qualitative extension, we will call the
latter reaction coupling from now on.
The goal of this paper is to study more general depen-

dencies between reactions, where the flux through some
reaction has to be zero, if the flux through two or more
other reactions is zero.

Definition 1 (Joint reaction coupling). Given a qualita-
tive model L ⊆ 2R of a metabolic networkN , let r, s, t ∈ R
be unblocked reactions in L such that neither r =0→ t in L
nor s =0→ t in L holds. We say t is jointly coupled to the pair
{r, s} in L, written {r, s} =0→ t in L, if for all a ∈ L, r /∈ a and
s /∈ a implies t /∈ a.
More generally, given a setK ⊆ R of unblocked reactions

in L, we say that t is jointly coupled toK in L, writtenK =0→
t in L, if for all a ∈ L, a∩K = ∅ implies t /∈ a, andK′ =0→ t
in L does not hold for any ∅ 	= K′ � K.

Note that in the definition of the joint coupling {r, s} =0→
t in L, we require that the simple couplings r =0→ t in L and
s =0→ t in L both do not hold. Thus, joint coupling is about
the synergistic effect of a pair of reactions r, s on some
other reaction t, which cannot be obtained by either r or s
alone. Similarly, K =0→ t in L can only hold if K′ =0→ t in L
does not hold, for any smaller knockout set ∅ 	= K′ � K.

Lattices andmaximal elements
In [18], we presented a generic algorithm for flux coupling
analysis in qualitative models. This algorithm determines
the pairs of coupled reactions by computing the maximal
element in suitably defined lattices.
A family of reaction sets L ⊆ 2R is a (finite) lattice if

∅ ∈ L and for all a1, a2 ∈ L, we have a1 ∪ a2 ∈ L. The
biological interpretation of this property is that the com-
bination of two metabolic pathways is again a pathway. In
[18] we showed that LC is a lattice. Any finite lattice L has a
uniquemaximal element 1L (w.r.t. set inclusion), which is
simply the union of all lattice elements, i.e., 1L =

⋃
a∈L

a. For

any subset of reactions K ⊆ R, we may define the family

L⊥K = {a ∈ L | a ∩ K = ∅}
called L without K of those reaction sets a ∈ L that do not
contain any reaction in K. If L is a lattice, then L⊥K is a
lattice again, and thus it has a maximal element

1L⊥K =
⋃

a∈L,a∩K=∅
a.

Given any lattice L ⊆ 2R, we have shown in [18] that
a reaction r ∈ R is unblocked in L if and only if r ∈ 1L.
For two unblocked reactions r, s ∈ 1L, the coupling rela-
tion r =0→ s in L holds if and only if s /∈ 1L⊥{r} . In [18],
we also presented an efficient algorithm to compute 1L
and 1L⊥{r} . Once these maximal elements have been found,
one can immediately determine the blocked and coupled
reactions.
In this paper, we generalize these results to joint cou-

plings. We present a method to compute the effects of
double (resp. multiple) reaction knockouts based on the
maximal element 1L⊥{r,s} (resp. 1L⊥K ).

Proposition 1. If L ⊆ 2R is a lattice, then for any
unblocked reactions r, s, t ∈ 1L we have

{r, s} =0→ t in L if and only if t ∈ (
1L⊥{r} ∩ 1L⊥{s}

)\1L⊥{r,s} .

More generally, for a set of unblocked reactions K ⊆ 1L,
we have

K =0→ t in L if and only if t ∈
( ⋂

k∈K
1L⊥K\{k}

)
\ 1L⊥K .

Proof. We prove only the first part. The second part
follows by induction.
Assume {r, s} =0→ t in L. By definition, we know t /∈ a for

all a ∈ L⊥{r,s} , and therefore t /∈ 1L⊥{r,s} . If {r, s} =0→ t in L,
we also know that neither r =0→ t in L nor s =0→ t in L and
that all three reactions are unblocked, i.e., r, s, t ∈ 1L. As
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discussed in [18], we have r =0→ t in L if and only if t ∈ 1L \
1L⊥{r} . Since t ∈ 1L, we conclude t ∈ 1L⊥{r} , and by the same
argument t ∈ 1L⊥{s} . Hence, t ∈ (

1L⊥{r} ∩ 1L⊥{s}
) \ 1L⊥{r,s} .

If t ∈ (
1L⊥{r} ∩ 1L⊥{s}

) \ 1L⊥{r,s} holds, then t /∈ 1L⊥{r,s} ,
which implies t /∈ a for all a ∈ L⊥{r,s}. Since t ∈ 1L⊥{r} ∩
1L⊥{s} , we can again apply [18] to see that r =0→ t in L

and s =0→ t in L do not hold. Finally, since r, s, t ∈ 1L are
unblocked, we get {r, s} =0→ t in L.

In [22], we considered even more general qualitative
models ∅ 	= P ⊆ 2R, where P needs not be a lattice.
We showed there that qualitative flux coupling analysis
can be done in the lattice LP = 〈P〉 that is generated
by P. The results we will present in this paper would be
applicable to those qualitative models P as well, but for
simplicity we will continue to work with models L that are
lattices.

Classes of partially coupled reactions

To determine joint coupling relations K =0→ t in L, we
will use as much as possible the information that can be
obtained from standard couplings r =0→ s in L, i.e., with
normal FCA. If r =0→ s in L, any pathway a ∈ L that does
not use reaction r will also not use reaction s. Thus, knock-
ing out s in addition to r will not affect the system, i.e.,
{a ∈ L | r, s /∈ a} = {a ∈ L | r /∈ a}.
Additional improvements can be obtained by looking

at partially coupled reactions. Two unblocked reactions
r, s ∈ 1L are called partially coupled in the lattice L, writ-
ten r ↔ s, if both r =0→ s in L and s =0→ r in L. The relation
↔ is reflexive, transitive and symmetric, and thus an
equivalence relation. Any equivalence relation defines a
partition of its ground set into equivalence classes. In our
case, 1L = ⋃

r∈1L [r]↔ , where [r]↔ = {s ∈ 1L | r ↔ s}.
An equivalence class can be represented by any of its ele-
ments, i.e., [r]↔ =[r̃]↔ if r ↔ r̃. By selecting one element
from each equivalence class, we get a set of representa-
tives Rep ⊆ 1L that covers all unblocked reactions, i.e.,
1L = ⋃

r∈Rep[r]↔. We will call [r]↔ the coupling class or
reaction class of reaction r. Biologically, coupling classes
can be interpreted as subsets of reactions that are always
active together, similarly to the notion of enzyme subsets
in [23].
For r, r̃ ∈ [r]↔ and a ∈ L, we have r ∈ a if and only

if r̃ ∈ a. Thus, a knockout of r has the same impact as
a knockout of r̃. Furthermore, r can only be blocked by
another knockout k /∈[ r]↔ if the same holds for r̃, i.e.,
k =0→ r in L if and only if k =0→ r̃ in L. It follows that to
analyse the effect of a knockout pair {r̃, s̃}, one can instead
knockout the corresponding representatives {r, s}with r̃ ∈

[ r]↔ in L and s̃ ∈[ s]↔. To simulate all double knockouts,
one does not have to check all pairs {{r̃, s̃} | r̃, s̃ ∈ 1L}, but
it is enough to iterate over a fixed set of representatives:
{{r, s}|r, s ∈ Rep}, see Figure 1a) for illustration. As we
will see, for many genome-scale network reconstructions,
there are only about half as many different equivalence
classes as there are unblocked reactions (Table 1). Thus,
only about 1/4 of all original pairs need to be checked. As
mentioned before, although we apply this compression to
reaction coupling analysis, it could also be combined with
FBA-based methods.

Algorithms
In [18], we introduced an algorithm that performs flux
coupling analysis by computing maximal elements of suit-
ably defined finite lattices L̃ (see also the section above
on lattices and maximal elements). The basic ingredient
of this algorithm is a method that checks if a given reac-
tion r ∈ R is blocked in L̃, and if not returns a pathway
a ∈ L̃ with r ∈ a. The maximal element 1L̃ of L̃ is com-
puted by improving lower and upper bounds lb,ub ∈ L̃
with lb ⊆ 1L̃ ⊆ ub. In each step of the algorithm, either lb
is increased or ub is decreased, until finally lb = ub = 1L̃.
The following Algorithm 1 is an extension of this method.
It allows finding all the reactions in R that are unblocked
after a multiple knockout K ⊆ 1L.

Table 1 Knockout impact on different networks

Model Single KOs Double KOs

ub classes Impact Impact ratio

E. coli iJO1366 1718 1078 4.51 (16.6) 4.41 (10.1) 1.0%

E. coli iAF1260 1543 975 4.12 (13.7) 4.04 (9.24) 0.8%

S. cerevisiae iND750 631 371 5.42 (14.6) 5.52 (10.3) 2.7%

M. tuberculosis iNJ661 744 370 4.74 (35.6) 1.99 (5.78) 5.1%

S. aureus iSB619 465 207 11.7 (44.9) 7.31 (17.2) 9.2%

H. pylori iIT341 436 150 6.65 (58.6) 4.71 (15.5) 9.7%

E. coli textbook 87 55 1.96 (3.58) 15.7 (24.5) 12%

ub: Number of unblocked reactions in the original network.
classes: Number of different reaction classes, i.e., equivalence classes w.r.t.
partial coupling ↔ .
Single KOs impact: Average impact of single reaction knockouts, i.e., average
number of reactions classes that become blocked by a single knockout. In
brackets: Average number of reactions that become blocked (belonging to
different reaction classes).
Double KOs impact: Average additional impact of double reaction knockouts,
i.e., average number of reactions classes that become blocked by a double
knockout {r, s}, but are not blocked by a single knockout of either r or s. In
brackets: Average number of additional reactions that become blocked.
Double KOs ratio: Percentage of pairs of (uncoupled) reaction classes that have
joint coupling effects. The average numbers are determined by
1

|K |
∑

κ∈K impact (κ)with K = Rep for the single, and K = {{r, s} | r, s ∈ Repwith

neither r
=0→ s in L nor s

=0→ r for the double knockouts.
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Algorithm 1.Multiple Knockout Analysis
Input: A set of knockout reactions K ⊆ 1L, |K| ≥ 2.

From FCA we reuse:

• A set of representatives Rep
• Maximum elements 1L⊥{k} , for k ∈ K
• A set of previously computed pathwaysW ⊆ L
(witnesses)

Ouput: The set of reactions 1L⊥K that are unblocked in the
subnetworkR \ K.

functionMKO (K)
lb = ⋃

a∈W⊥K
a, withW⊥K = {a ∈ W | a ∩ K = ∅}

ub = ⋂
k∈K

1L⊥{k}

for r ∈ Rep do
if r ∈ ub \ lb then

a = FINDPATH (r,K)
if r ∈ a then

lb = a ∪ lb
else

ub = ub ∩ 1L⊥{r}
return 1L⊥K = ub

function FINDPATH (r,K)

return
{
a there exists a ∈ L : r ∈ a, a ∩ K = ∅,
∅ otherwise.

As discussed in [18], the flexibility of the lattice-based
approach comes from hiding the search for specific path-
ways in a separate function FindPath. For traditional
steady-state based models, FindPath can be realized
by solving the linear programs max{±vt|Sv = 0, vIrr ≥
0, vk = 0, k ∈ K}. But, one can also use other model-
ing hypotheses and corresponding algorithmic methods
(see [22] for the example of thermodynamic loop law con-
straints). The skeleton of Algorithm 1 will remain the
same, only the auxiliary function FindPath has to be
changed.
In Algorithm 1, we perform a multiple knockout analy-

sis with a fixed knockout set K. For a full d-dimensional
knockout analysis, we would have to iterate over all K ⊆
1L with |K| = d, i.e., we would have to run the algorithm
O

((|R|
d

))
times. In each iteration, we have to solveO(|R|)

linear programs. Since linear programming can be done
in polynomial time, full d-dimensional knockout analy-
sis is still polynomial (for fixed d), but computationally
very expensive as soon as d > 2. However, we can still
use the partition of 1L into equivalence classes of partially
coupled reactions. Thus, our next Algorithm 2 calculates
representatives of all jointly coupled reactions in the case
of double knockouts.

Algorithm 2. Full Double Knockout Analysis
Input: From FCA we reuse:

• A set of representatives Rep
• Maximum elements 1L⊥{r} , for r ∈ Rep
• A set of previously calculated pathwaysW ⊆ L
(witnesses)

Output: The set dkos containing all joint couplings
{r, s} =0→ t in L, with r, s, t ∈ Rep.

dkos = ∅
for r, s ∈ Rep with r < s do

if r ∈ 1L⊥{s} and s ∈ 1L⊥{r} then
lb = ⋃

a∈W⊥{r,s}
a, withW⊥{r,s} = {a ∈ W| r, s /∈ a}

ub = known = 1L⊥{r} ∩ 1L⊥{s}
for t ∈ Rep do

if t ∈ ub \ lb then
a = FINDPATH (t, {r, s})
if t ∈ a then

lb = a ∪ lb
else

ub = ub ∩ 1L⊥{t}
dkos = dkos ∪

{
{r, s} =0→ t in L | t ∈ known \ ub

}
return dkos

In Algorithm 2, we iterate over a subset of all possible
double knockouts without loosing any information. For
this, we filter redundant knockout pairs such as r =0→ s in
L (by checking s ∈ 1L⊥{r} ). It is unnecessary to test such a
pair, because a knockout of {r, s} is equivalent to the single
knockout of r, see Figure 1b) for illustration. For higher-
dimensional knockout sets one can proceed in a similar
fashion:
Let K = {k1, . . . , kd} ⊆ Rep be a d-dimensional knock-

out set. Then we do not need to test K, if any of the
following conditions is fulfilled:

• ki
=0→ kj in L for two reactions ki, kj ∈ K,

• {
ki1 , ki2

} =0→ kj in L for three reactions ki1 , ki2 , kj ∈ K,
• {

ki1 , ki2 , ki3
} =0→ kj in L for four reactions

ki1 , ki2 , ki3 , kj ∈ K,
• etc.

Standard FCA finds all pairs of reactions that are direc-
tionally coupled. This allows us to iterate in Algorithm 2
over all {r, s} ∈ K2,1 with

K2,1 =
{
{k1, k2} ⊆ Rep | notk1 =0→ k2 in L and not k2

=0→ k1 in L
}
.

K2,1 contains all 2-tuples of coupling class representa-
tives that are not coupled with respect to knockouts up to
cardinality 1.
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If one is interested to perform a full triple knock-
out analysis and joint coupling information is available,
one can adapt the filtering technique and iterate over all
{r1, r2, r3} ∈ K3,1 (or K3,2) with

K3,1 =
{
{k1, k2, k3} ⊆ Rep |not ki =0→ kj in L,

for all i 	= j ∈ {1, 2, 3}} ,
K3,2 =

{
{k1, k2, k3} ⊆ Rep |not ki1 =0→ kj in L

and not
{
ki1 , ki2

} =0→ kj in L, for all pairwise

different i1, i2, j ∈ {1, 2, 3}
}
.

K3,1 contains all 3-tuples of coupling class representatives
that are not directionally coupled, and K3,2 all triples that
do not contain reactions that are coupled with respect to
knockouts up to cardinality 2. Similarly one could define
Kd,m.
While these techniques are applied here only to reaction

coupling analysis, they could also be combined with FBA-
based methods. Thus, if one is interested to measure the
impact of all possible triple knockouts on FBA, it would be
sufficient to solve max {vbiomass|Sv = 0, vIrr ≥ 0, vK = 0}
for all K ∈ K3,1 (if only FCA data is available) or all
K ∈ K3,2 (if FCA and joint coupling data is available).

The case of gene knockouts
Often metabolic networks contain regulatory rules for the
gene products that catalyze the reactions, e.g. reaction r1
is catalyzed by the product of a gene g1 and reaction r2
is catalyzed by the gene product of g1 or g2. Here r1 is
only possible if g1 is active, and r2 can only be blocked
by a simultaneous knockout of the two genes g1 and g2.
Typically, there is no 1-1 relationship between the set of
genes G and the set of reactions R. On the one hand,
there are reactions that only get blocked by a combina-
tion of two or more gene knockouts, as indicated above in
r2 ≡ g1 ∨ g2. On the other hand, the knockout of a single
gene g ∈ G may block more than one reaction. For exam-
ple, reactions r1 and r3 may both depend on the gene g1.
Then one immediately gets that a knockout of g1 implies
v1 = v3 = 0. Let us further assume that FCA and double
reaction knockout analysis have been performed, leading
to 3 =0→ 4 in L and {1, 3} =0→ 6 in L. Based on this infor-
mation, we can extend the reactions that are blocked by
the knockout of gene g1 to v1 = v3 = v4 = v6 = 0.
Thus, in this example we have 2 reactions (r1, r3) that
are associated to the gene g1 based on information that
is directly available in the network reconstruction, but in
total 4 reactions (r1, r3, r4, r6) that are coupled to the gene
g1. We formalize these notions in the following definition.

Definition 2 (Gene coupling). Consider a qualitative
model L ⊆ 2R of a metabolic networkN with reaction set
R and gene set G. Let α : 2G → 2R,� �→ K� be a function
defining a set of reactionsK� associated to the knockout of
all genes in the set �. For an unblocked reaction r ∈ 1L and
� ⊆ G we define:

�
=0→ r in L if and only if r /∈ 1L⊥K�

.

We say that the reaction r is coupled to the gene knockout
�. If � = {g} is a single gene, we simply write g =0→ r in L.

Given the function α : 2G → 2R, we can deter-
mine the reactions coupled to the gene set � by apply-
ing Algorithm 1 to the set of associated reactions K� .
Note that the definition of gene coupling slightly differs
from the one of joint reaction coupling. Here, we do not
exclude reactions that are already knocked out by single
(or smaller set of ) gene knockouts. This is to account for
the possibility that, for example, a reaction r may be asso-
ciated to a single gene knockout g1, but not to the double
knockout {g1, g2} (assume r ≡ g1 ∨ ¬g2).
To simulate the impact of all single gene knockouts, one

can perform an iteration over all genes g ∈ G. Similarly,
one can determine all double gene knockout effects by an
iteration over all pairs of genes {g1, g2} ⊆ G. However, in
contrast to Algorithm 2, we cannot use gene class repre-
sentatives to decrease the number of pairs that have to be
analyzed.

Results and discussion
To evaluate our method, we simulated all single and
double reaction knockouts for a number of genome-
scale metabolic network reconstructions from the BiGG-
database [24]. The computations were done on a Mac-
Book Air (2012), with 1.8 GHz Intel Core i5, 4GB RAM,
and running Java Oracle JDK 1.7.45 under Mac OS
X 10.9. To solve linear programs (LPs), we used CPLEX
Version 12.6.

Impact of double knockouts
Table 1 shows the impact of single and double reaction
knockouts for the different networks. In most cases, the
knockout of a single reaction class (due to the knockout
of one or more of its reactions) blocks the reactions in
4 to 5 other reaction classes in average. The least robust
system is S. aureus iSB619, where a single knockout has
an average impact of almost 12 coupled reaction classes.
In S. aureus iSB619, about 9.2% of all possible double
knockouts {r, s} have joint coupling effects, i.e., there exist
reactions t ∈ R that are blocked by the double knockout
{r, s}, but not by a single knockout of r or s alone. This is
a comparatively large number. For the bigger E. coli mod-
els iAF1260 and iJO1366, only around 1% of all double
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knockouts of two uncoupled reaction classes {r, s} have
an impact that exceeds the effects of the corresponding
two single knockouts. In S. aureus iSB619, double knock-
outs also have very strong combined effects. In addition
to the reaction classes that would be knocked out by r or s
alone, in average more than 7 reaction classes are coupled
to a double knockout corresponding to a joint coupling
{r, s} =0→ t in L. But, even for the most robust system,
M. tuberculosis iNJ661, a double knockout (if its impact is
different from the two single knockouts) in average has a
combined effect of 2 additional knocked out classes resp.
5.8 reactions.

Knockout options
In our next experiment, we take the opposite perspective
(Table 2). We analyse how robust an average reaction is
to single or double knockouts. More precisely, we ask the
following question: Given a reaction t, what are the possi-
ble choices for a single reaction r resp. a pair of reactions
{r, s} such that r =0→ t in L resp. {r, s} =0→ t in L holds. This
perspective corresponds to a lab experiment for finding
knockout targets for the reaction t. Here, we consider sin-
gle reactions instead of reaction classes. This means that
for {r, s} =0→ t in L with r, s, t ∈ Rep, we get |[r]| · |[s]|
knockout options for all the |[t]| reactions that belong to
the same reaction class as t.
For most of the studied networks, the average number

of knockout options for a given target reaction is in the
range of 25-85 single reactions and 100-150 reaction pairs.
With all double knockout information at hand, one can
reduce the set of all possible knockout candidates for a
wet lab experiment to a small number, and additionally
decide beforehand which of them have the smallest side
effects.

Table 2 Average number of knockout options

Model Single KOs Double KOs

Options Options

E. coli iJO1366 35.1 143

E. coli iAF1260 26.4 78.0

S. cerevisiae iND750 25.6 106

M. tuberculosis iNJ661 82.7 120

S. aureus iSB619 65.9 245

H. pylori iIT341 143 126

E. coli textbook 6.92 132

Single KOs options: Average number of reactions r that lead as single
knockouts to inactivity of a target reaction t: 1

|1L|
∑

t∈1L
∑

r=0→t inL
1.

Double KOs options: Average number of uncoupled reaction pairs { r, s} that lead
as double knockouts to inactivity of a target reaction t: 1

|1L|
∑

t∈1L
∑

{r,s}=0→t inL
1.

Impact on biomass production
To finish our discussion, we study the impact of knock-
outs on biomass production. To measure this, we counted
the number of single and double knockouts that block
the biomass reaction. Table 3 presents the results for the
largest available models of the respective organisms. For
two of them, more than one biomass reaction was avail-
able. In the case of E. coli iJO1366, we present the results
for the two biomass reactions, for S. aureus, we selected 2
out of the 14 available reactions.
We observe that for most of the organisms, the num-

ber of single knockouts that block biomass production is
very similar to the number of different double knockouts
(corresponding to joint couplings) having this property,
although the number of double knockout candidates is
much larger (quadratic in |1L|).

Algorithmic considerations
To perform a double knockout analysis, we first run
standard flux coupling analysis (FCA) using the L4FC
routine from [18]. Then we calculate the unblocked reac-
tions for each double knockout of a pair of reaction class
representatives. Table 4 presents the running times for
six genome-scale network reconstructions and the cen-
tral metabolism of E. coli. Even for our largest network,
E. coli iJO1366 with its 2583 reactions, the complete sim-
ulation of all double reaction knockouts took less than
1h 10 min.
Next we discuss the number of LPs we have to solve

in order to obtain this additional information. For all our
networks, double knockout analysis required solving 5 to
20 times as many LPs than single knockouts, i.e., classical
FCA. While this seems to be a large number, it is rela-
tively small compared to the complexity of the problem.
A full double knockout simulation is comparable to iter-
ating over all reactions r ∈ Rep, removing the reaction
r and performing a single knockout simulation for each
of the resulting subnetworks. Reusing known pathways
as witnesses and including reaction coupling information
as proposed in [18] allows performing |Rep| simulations
with only 5 to 20 times the effort in LP solving. Table 1
shows that the median value for |Rep| is 370 for our
networks.
In order to evaluate the runtime effect of our algo-

rithmic improvements, we considered two variants of
Algorithm 2:

Variant A (no representatives) In the main loop of
Algorithm 2, we do not iterate over all representatives
r, s ∈ Rep, r < s, but over all pairs of uncoupled reactions
r, s ∈ 1L, r < s, with not r =0→ s in L and not s =0→ r in L.
Variant B (no witnesses) Same as Variant A. Addition-

ally we do not save witnesses, thusW = ∅.
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Table 3 Number of knockouts for the biomass reaction in selected networks

Model Single knockouts Double knockouts

reaction id cl. size classes reactions cl. pairs reac. pairs

E. coli iJO1366

Ec_biomass_iJO1366_WT_53p95M 20 101 343 130 339

Ec_biomass_iJO1366_core_53p95M 1 80 288 90 268

S. cerevisiae iND750

biomass_SC4_bal 26 54 156 60 142

M. tuberculosis iNJ661

biomass_Mtb_9_60atp 160 64 154 48 83

S. aureus iSB619

SA_biomass_1a 8 25 63 59 157

SA_biomass_5a 1 58 215 54 100

H. pylori iIT341

BiomassHP_published 189 36 76 41 81

class size: Number of reactions in the same coupling class as the biomass reaction, i.e., number of reactions that carry flux if and only if the biomass reaction carries flux.
Single Knockouts: Number of different single knockouts (classes and reactions) that block the biomass reaction. Only reactions that are not partially coupled to the
biomass (from a different reaction class) are counted.
Double Knockouts: Number of different double knockouts (class pairs and reaction pairs) that block the biomass reaction when combined. Only reactions that are not
directionally coupled to the biomass are counted.

These two experiments allow determining time savings
due to representatives (comparing Algorithm 2 and Vari-
ant A) and time savings due to warm starts based on
knowledge of existing reaction sets (comparing Variant A
and B). We should emphasize here that Variant B is is

Table 4 Runtime and number of solved LPs for double
reaction knockouts (Algorithm 2)

Model Step Total

Blocked Couples dko

E. coli iJO1366
LPs 1718 9943 133225 144886

time 2.0 42.2 4016.4 1h 8min

E. coli iAF1260
LPs 1679 10780 52112 64571

time 1.7 31.5 2688.2 45min 21s

S. cerevisiae iND750
LPs 597 3987 90664 95248

time 0.33 6.8 397.8 6min 45s

M. tuberculosis iNJ661
LPs 327 3416 20647 24390

time 0.33 5.6 177.7 3min 4s

S. aureus iSB619
LPs 144 3638 19477 23259

time 0.09 2.8 43.2 46.0s

H. pylori iIT341
LPs 106 1812 6753 8671

time 0.06 1.9 18.0 20.0s

E. coli textbook
LPs 26 341 1739 2106

time 0.004 0.06 0.62 0.68s

The computation was done in three steps: Calculation of the blocked reactions,
flux coupling analysis to determine the coupled reactions, and finally the double
knockout simulations.
Times are given in seconds if not specified otherwise (numbers may not add up
due to rounding errors).

still more efficient than a naive brute force algorithm. The
runtime results are given in Table 5, where we stopped
computations after a timeout of 6h. Table 5 shows that the
efficiency of Algorithm 2 is mostly due to the re-use of (up
to 10000) pathways as witnesses (factor 10 in the case of
E. coli textbook and factor 100 for S. aureus). Neverthe-
less, iterating over the set of representatives adds another
improvement of up to 50% (S. aureus). Since it takes a very
small effort to calculate a set of representatives to profit
from this additional speed-up, we highly recommend to
iterate over representatives whenever possible.

Gene knockouts
Table 6 gives the runtimes and the number of LPs for
single and double gene knockouts. To determine the reac-
tions associated to a (double) gene knockout, we used
the library JEval that allows fast evaluation of logical

Table 5 Runtime of variants of Algorithm 2 for computing
double reaction knockouts

Model Algor. 2 Variant A Variant B
(no representatives) (no witnesses)

E. coli iJO1366 1h 8min 1h 59min > 6h

E. coli iAF1260 45min 21s 1h 30min > 6h

S. cerevisiae iND750 6min 45s 8min 39s > 6h

M. tuberculosis iNJ661 3min 4s 7min 42s > 6h

S. aureus iSB619 46s 1min 59s 2h 32min

H. pylori iIT341 20s 58.1s 52min

E. coli textbook 0.68s 2.2s 23.0s
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Table 6 Runtime and number of solved LPs for single and
double gene knockouts

Model Step

gko dgko

E. coli iJO1366
LPs 719 263844

time 1.2 3h 49min

E. coli iAF1260
LPs 516 229498

time 8.6 2h 55min

S. cerevisiae iND750
LPs 1323 308145

time 6.4 37min 36s

M. tuberculosis iNJ661
LPs 175 77346

time 1.2 15min 59s

S. aureus iSB619
LPs 49 38689

time 0.68 9min 42s

H. pylori iIT341
LPs 27 19348

time 0.24 1min 52s

E. coli textbook
LPs 2 2023

time 0.04 4.4s

Times are given in seconds if not specified otherwise.

formulas given as Java strings. As expected we are con-
fronted with longer runtimes up to almost 4h for double
gene knockouts compared to < 70 min for double reac-
tion knockouts. This is due to the fact that we need to
check every single pair of genes instead of a representative
selection like the one we could apply in double reaction
knockout analysis. In spite of this, with the methods pro-
posed here, a full simulation of double reaction or double
gene knockouts on a genome-scale metabolic network
reconstruction can still be performed in a reasonable time.

Conclusions
On the algorithmic side, this study presented the following
main results:

• Algorithm 2 is an effective method for a complete
double knockout analysis in genome-scale metabolic
networks.

• Using Algorithm 1, it is possible to compute the
impact of specific multiple knockout sets containing
3 or more reactions.

• By exploiting the information present in reaction
coupling data (obtained by FCA), one can significantly
decrease the number of candidates that need to be
tested in double and multiple knockout simulations.

Regarding the biological data, we can make the following
observations based on our computational experiments:

• In the genome-scale metabolic network
reconstructions that were considered in this study,
1-10% of the possible double knockout sets have joint

coupling effects. Thus, given a randomly chosen
reaction pair, the probability is high that the
combined effect of the double knockout (in terms of
other blocked reactions) will be the same as for the
two corresponding single knockouts.

• However, in all these networks, there exists a small
number of double knockouts showing synergistic
effects, blocking 5 to 20 additional reactions in
average. These double knockouts cannot be predicted
from the single knockout/reaction coupling data
alone.

Due to the algorithmic improvements, we are now able
to perform full double gene or reaction knockout simula-
tions in a few hours of computation time. Thus, whenever
one is interested in understanding the robustness of a net-
work to knockouts, one should take the opportunity and
run such an in silico simulation, before starting othermore
time consuming and expensive experiments.
A prototype implementation of double knockout simu-

lation is available at http://hoverboard.io/L4FC.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The paper is based on the PhD thesis of YG, which was supervised by AB. YG
implemented the algorithms and performed the computational experiments.
YG and AB together wrote the manuscript and approved the final version.

Acknowledgements
The PhD work of Yaron Goldstein was supported by the Berlin Mathematical
School and the Gerhard C. Starck Stiftung.

Received: 30 March 2014 Accepted: 4 December 2014

References
1. Bordbar A, Monk JM, King ZA, Palsson B. Constraint-based models

predict metabolic and associated cellular functions. Nat Rev Genet
2014;15(2):107–120.

2. Lewis NE, Nagarajan H, Palsson B. Constraining the metabolic
genotype-phenotype relationship using a phylogeny of in silico methods.
Nat Rev Microbiol 2012;10(4):291–305.

3. Varma A, Palsson BO. Predictions for oxygen supply control to enhance
population stability of engineered production strains. Biotechnol Bioeng
1994;43(4):275–285.

4. Orth JD, Thiele I, Palsson BO. What is flux balance analysis?. Nat
Biotechnol 2010;28(3):245–248.

5. Burgard AP, Nikolaev EV, Schilling CH, Maranas CD. Flux coupling
analysis of genome-scale metabolic network reconstructions. Genome
Res 2004;14(2):301–312.

6. Larhlimi A, David L, Selbig J, Bockmayr A. F2C2: a fast tool for the
computation of flux coupling in genome-scale metabolic networks. BMC
Bioinformatics 2012;13(1):57.

7. Tomar N, De RK. Comparing methods for metabolic network analysis and
an application to metabolic engineering. Gene 2013;521(1):1–14.

8. Zomorrodi AR, Suthers PF, Ranganathan S, Maranas CD. Mathematical
optimization applications in metabolic networks. Metabolic Eng
2012;14(6):672–686.

9. Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming
framework for identifying gene knockout strategies for microbial strain
optimization. Biotechnol Bioeng 2003;84(6):647–657.

http://hoverboard.io/L4FC


Goldstein and Bockmayr Algorithms for Molecular Biology  (2015) 10:1 Page 10 of 10

10. Tepper N, Shlomi T. Predicting metabolic engineering knockout
strategies for chemical production: accounting for competing pathways.
Bioinformatics 2010;26(4):536–543.

11. Patil KR, Rocha I, Förster J, Nielsen J. Evolutionary programming as a
platform for in silico metabolic engineering. BMC Bioinformatics
2005;6(1):308.

12. Lun DS, Rockwell G, Guido NJ, Baym M, Kelner JA, Berger B, Galagan JE,
Church GM. Large-scale identification of genetic design strategies using
local search. Mol Syst Biol 2009;5(1): 296.

13. Rocha I, Maia P, Evangelista P, Vilaça P, Soares S, Pinto JP, Nielsen J,
Patil KR, Ferreira EC, Rocha M. Optflux: an open-source software platform
for in silico metabolic engineering. BMC Syst Biol 2010;4(1):45.

14. Ohno S, Shimizu H, Furusawa C. FastPros screening of reaction knockout
strategies for metabolic engineering. Bioinformatics 2014;30(7):981–987.

15. Klamt S, Gilles ED. Minimal cut sets in biochemical reaction networks.
Bioinformatics 2004;20(2):226–234.

16. Jungreuthmayer C, Nair G, Klamt S, Zanghellini J. Comparison and
improvement of algorithms for computing minimal cut sets. BMC
Bioinformatics 2013;14(1):318.

17. von Kamp A, Klamt S. Enumeration of smallest intervention strategies in
genome-scale metabolic networks. PLOS Comput Biol 2014;10(1):
1003378.

18. Goldstein YAB, Bockmayr A. A lattice-theoretic framework for metabolic
pathway analysis In: Gupta A, Henzinger T, editors. Computational
Methods in Systems Biology. Lecture Notes in Computer Science. Vol.
8130, Berlin: Springer; 2013. p. 178–191.

19. Zhao Y, Tamura T, Akutsu T, Vert J-P. Flux balance impact degree: a new
definition of impact degree to properly treat reversible reactions in
metabolic networks. Bioinformatics 2013;29(17):2178–2185.

20. Nogales J, Gudmundsson S, Thiele I. An in silico re-design of the
metabolism in thermotoga maritima for increased biohydrogen
production. Int J Hydrogen Energy 2012;37(17):12205–12218.

21. Suthers PF, Zomorrodi A, Maranas CD. Genome-scale gene/reaction
essentiality and synthetic lethality analysis. Mol Syst Biol 2009;5(1):301.

22. Reimers AC, Goldstein YAB, Bockmayr A. Qualitative and thermodynamic
flux coupling analysis. Technical Report #1054, Matheon (March 2014).
http://nbn-resolving.de/urn:nbn:de:0296-matheon-12801

23. Pfeiffer T, Sánchez-Valdenebro I, Nuño JC, Montero F, Schuster S.
METATOOL: for studying metabolic networks. Bioinformatics 1999;15:
251–257.

24. Schellenberger J, Park JO, Conrad TM, Palsson BO. BiGG: a biochemical
genetic and genomic knowledgebase of large scale metabolic
reconstructions. BMC Bioinformatics 2010;11(213):213.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://nbn-resolving.de/urn:nbn:de:0296-matheon-12801

	Abstract
	Background
	Results
	Software
	Keywords

	Background
	Methods
	Reaction coupling in the context of knockout analysis
	Lattices and maximal elements
	Classes of partially coupled reactions
	Algorithms
	The case of gene knockouts

	Results and discussion
	Impact of double knockouts
	Knockout options
	Impact on biomass production
	Algorithmic considerations
	Gene knockouts

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References

