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Non-tuberculous mycobacteria (NTM) are a heterogeneous group of originally
environmental organi3sms, increasingly recognized as pathogens with rising prevalence
worldwide. Knowledge of NTM’s mechanisms of virulence is lacking, as molecular
research of these bacteria is challenging, sometimes more than that of M. tuberculosis
(Mtb), and far less resources are allocated to their investigation. While some of the
virulence mechanisms are common to several mycobacteria including Mtb, others NTM
species-specific. Among NTMs, Mycobacterium abscessus (Mabs) causes some of the
most severe and difficult to treat infections, especially chronic pulmonary infections. Mabs
survives and proliferates intracellularly by circumventing host defenses, using multiple
mechanisms, many of which remain poorly characterized. Some of these immune-evasion
mechanisms are also found in Mtb, including phagosome pore formation, inhibition of
phagosome maturation, cytokine response interference and apoptosis delay. While much
is known of the role of Mtb-secreted effector molecules in mediating the manipulation of
the host response, far less is known of the secreted effector molecules in Mabs. In this
review, we briefly summarize the knowledge of secreted effectors in Mtb (such as ESX
secretion, SecA2, TAT and others), and draw the parallel pathways in Mabs. We also
describe pathways that are unique to Mabs, differentiating it from Mtb. This review will
assist researchers interested in virulence-associated secretion in Mabs by providing the
knowledge base and framework for their studies.
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INTRODUCTION

The non-tuberculous mycobacteria (NTM) family is comprised of over 150 species, some of which
are increasingly recognized as emerging pathogens, causing infections in immunocompromised as
well as immunocompetent patients (1, 2). While most NTM are of only little pathogenic potential to
humans, some – like Mycobacterium marinum and Mycobacterium ulcerans, are important
pathogens, whereas others, like Mycobacterium kansasii, Mycobacterium fortuitum and
Mycobacterium abscessus (Mabs), are considered opportunistic pathogens, but nevertheless can
org July 2022 | Volume 13 | Article 9388951
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cause severe, often deadly, pulmonary infections (3–5). Mabs,
classified as a rapidly growing mycobacterium (RGM), causes
skin, lung and soft tissues infections that are very difficult to
eradicate (6). Mabs is many times – but not strictly – an
intracellular pathogen, and is found within phagocytic immune
cells (macrophages and dendritic cells) and within epithelial and
endothelial cells (7). To allow intracellular survival, these bacteria
require unique mechanisms of resistance to the mostly hostile
intracellular niche.

Mycobacterium tuberculosis (Mtb) employs various
strategies to evade the immune response inside the infected
cell: phagosome perforation and maturation arrest, cytokine-
response downregulation, inhibition of reactive oxygen
species (ROS) secretion, apoptosis prevention and more
(8–11). These are dependent on different effector proteins,
transported via specialized secretion systems that interrupt
host means of defense in versatile manners (12). Although
secretion systems and their respective substrates have been
under thorough investigation in Mtb, much less is known of
their counterparts in Mabs. Progress in bioinformatic
methods , secre tome analys i s and high-throughput
sequencing, combined with improved tools for transposon
mutagenesis and clues drawn from Mtb studies, allowed the
discovery of new effectors in Mabs. Recently, a considerable
amount of effort has been made to assess the contribution of
secreted proteins to the virulence of Mabs. Most studies
employed deletion mutants and evaluation of bacterial
proliferation in ex-vivo and in-vivo models of infection. In
this review, we follow the route of infection in Mtb,
introducing the secreted effector proteins known to affect
Mtb virulence, and then comparing them to their analogs in
Mabs. This approach, although may miss completely novel
effectors in Mabs (that are fundamentally different from
those of Mtb), will provide the reader with a solid starting
point in assessing these factors in Mabs. In addition, we
outline the gaps of knowledge regarding factors yet to be
identified in Mabs – gaps the filling of which will probably
require more complicated analyses of the Mabs’s secretome
and proteome, as well as in-depth bioinformatics look at the
bacterial genome.
SECRETION SYSTEMS IN
MYCOBACTERIA

Secretion systems play an essential role in promoting virulence in
mycobacteria (13–16). These sophisticated apparati enable the
export of effector proteins across the thick membrane into the
host cell, reducing immune response and promoting
bacterial survival.

Three groups of secretion systems were identified
in mycobacteria:

◼ Type VII secretion systems (T7SS): Known as ESX secretion
systems, these were named after the 6kDa Early Secretory
Antigenic Target (ESAT-6). Mtb’s ESAT-6 was established as
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a critical contributor to virulence, along with a second ESX-1
substrate CFP-10 (17). Partial deletion of the ESX-1 system
accounts for the attenuation observed in BCG bacteria
compared to their ancestor M. bovis (18, 19). The five
different mycobacterial ESX systems (ESX-1-5) are encoded
by paralogous loci that are widespread among the slow and
rapidly growing species (20). In Mtb, ESX-1, ESX-3 and ESX-
5 are critical components in virulence, while the roles of ESX-
2 and ESX-4 remain obscure (21–24). Mabs, however, has
only two identified ESX clusters: ESX-3, an essential secretion
system involved in iron and zinc homeostasis; and ESX-4,
recently shown to play a significant role in virulence, serving
as an analogue for Mtb’s ESX-1[ (25, 26)].

◼ The Twin-Arginine Translocation (TAT) pathway:
distinguished by the ability to transport polypeptides in
their folded state. Substrates utilizing the TAT export
system must hold a highly conserved twin-arginine leader
motif (S/TRRXFLK) which is found in the N terminus of the
protein (27, 28).

◼ The Sec pathway: The substrates exported across the
cytoplasmic membrane by Sec systems are initially
produced as precursor proteins, consisting of conserved
amino- terminal s ignal sequences (29) . During
translocation, the signal peptide is cleaved to generate the
mature exported protein. Two non-redundant Sec systems are
identified in Mtb: SecA1 – an essential “housekeeping”
system, and the accessory secretion factor - SecA2 (30, 31).

Generally, effector proteins secreted by mycobacteria each
utilize a specific mechanism of export, depending on their
individual traits.

Here, we will describe the main approaches Mtb uses to resist
host cell’s antibacterial attempts, trying to unravel the analogous
effectors in Mabs.
PHAGOSOME PERMEABILIZATION

As mycobacteria are inhaled into the lungs and reach the alveolar
cavity, they are phagocytized by alveolar macrophages (32). The
bacilli are enclosed in a vesicular phagosome which is next
subjected to fusion with the lysosome, forming a mature
phagosome (e.g phagolysosome) (33). Permeabilizing the
phagosomal membrane with eventual phagosomal escape is a
pivotal step in immune resistance, allowing the pathogen to
secrete effectors into the cytosol. A crucial effector involved in
phagosome rupture is the ESX-1 substrate EsxA/ESAT-6
(Rv3875), that creates a heterodimer with another secreted
protein, EsxB/CFP-10 (Rv3874) (17). Mtb mutants defective in
secretion of EsxA and/or EsxB fail to translocate to the cytosol
and are attenuated, as seen in the vaccine strain Mycobacterium
bovis BCG and in the H37Ra strain (19, 34–37). The mechanism
in which EsxA contributes to phagosome membrane rupture is
still a matter of debate, but it appears to induce gross membrane
disruption in a contact-dependent manner (38, 39). As
previously mentioned, Mabs does not possess an ESX-1
July 2022 | Volume 13 | Article 938895
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secretion system. However, work conducted by Laencina et al.
(26) presented evidence of Mabs EsxT (MAB_3753c) and EsxU
(MAB_3754c) serving as functional analogues to EsxA and EsxB,
respectively, as their deletion reduces phagosome-to-cytosol
contact. Moreover, rupture of the phagosomal membrane
occurs only in the presence of an intact eccB4 gene, a
structural component of Mabs Esx-4 secretion system.
Whether EsxT and EsxU directly damage the phagosome
membrane is yet to be investigated.
PHAGOSOME MATURATION AND
ACIDIFICATION

After the phagosome internalizes the mycobacterium, a sequence
of event initiates, which includes a decrease in pH and
acquisition of antimicrobial properties. The late phagosome
then fuses with the lysosome (Phagosome maturation), and the
bacilli are processed into small particles, that are next presented
to T-cells as antigens, initiating the adaptive immune response
(40). Many mycobacterial secreted effectors target to disrupt
this process.

Rab GTPases are molecular switches that coordinate the
changes in phagosomal membrane upon internalizing the
invader (41). Human Rab5 and Rab7 coordinate vesicle
trafficking between the early phagosome to late endosome
(Rab5) and from the late endosome to phagolysosome (Rab7)
(42). Nucleoside diphosphate kinase A (NdkA, Rv2445c) is an
Mtb GTPase secreted through the SecA2 pathway (30, 43, 44).
NdkA binds Rab5 and Rab7 and facilitates the transition
fromthe active GTP-bound state to the inactive GDP-bound
state, interfering with the phagolysosome formation (45, 46).
Also, NdkA inactivates Rac1 – a GTPase, required for
activation of NADPH oxidase 2 (NOX2), thus blocking
production of reactive oxygen species (ROS), and preventing
bacterial killing (47). In Mabs the only annotated Ndk protein
(MAB_1606) has an 86% similarity to Mtb’s NdkA, suggesting
a similar role and function. Currently, no data on MAB_1606
deletion in Mabs has been published, leaving the role of Ndk
in Mabs unexplored.

The next step in phagosome maturation that is manipulated
by Mtb is the production of lipid regulator phosphatidylinositol
3-phosphate (PI3P) from phosphatidylinositol (PI). PI3P is a
membrane tag that signals the macrophages to continue down
the phagolysosome biogenesis pathway (48). Also exported by
SecA2 pathway in Mtb (30), secreted acid phosphatase M
(SapM, Rv3310) dephosphorylates PI3P, limiting its ability to
recruit PI3P-binding proteins in the mycobacterium-
containing vacuole (MCV) membrane, and blocking the
maturation process (49–51). A deletion mutant of SapM in
Mtb is attenuated in human macrophages and in-vivo in guinea
pigs (50, 52, 53). However, although found in other slow-
growing nontuberculous mycobacteria such as M. avium and
M. marinum (50, 54, 55), a SapM analog has not yet been
identified in M. abscessus.
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The mature phagosome assembly is mediated by many
RabGTPase proteins, each necessary for to complete the
intricate process of phagolysosome fusion. Human Rab7L1,
in its active GTP-bound form Rab7L1-GTP is recruited to
bacilli-containing phagosomes, and signals other phago-
lysosomal markers such as the previously mentioned RAB7
(56). In Mtb, secreted protein kinase G (PknG) interacts with
Rab7L1, limiting the formation of the active GTP-bound state
and interfering with the successive signaling process (57–59).
A DpknG mutant in Mtb is attenuated in mice after
intravenous injections, but not by aerosol delivery (60).
Though PknG in Mabs is completely uninvestigated, we can
speculate with confidence that it performs in the same manner
as in Mtb. A putative protein encoded by MAB_4224 bears
considerable similarity (82%) to Mtb’s PknG (Rv0410c).
Furthermore, MAB_4244 lies between the gene encoding the
probable glutamine binding protein H (glnH, MAB_4223) and
the gene for acetate kinase A (ackA, MAB_4225c), exactly like
it does in Mtb (glnH Rv0411c, ackA Rv0409). The close
downstream proximity of pknG to glnH is of importance,
since these two genes are suggested to be co-expressed in a
conserved operon in Actinomycetes (61, 62). With the lack of a
well-established mechanism, it is thought that GlnH, through
protein-protein interactions, activates PknG via a probable
transmembrane protein, GlnX (61). All these suggest Mabs
PknG may play an important yet under-explored role in
Mabs pathogenesis.

Another Mtb effector found to reduce the recruitment of
EEA1, Rab5 and Rab7 and therefore inhibit phagosome
maturation, is TlyA (Rv1694) (63). TlyA serves as a ribosomal
RNA methyl transferase (rRNase) (64) and displays an
additional role as a hemolysin, when purified from Mtb and
expressed in M. smegmatis (Msme) (38, 65). Rahman et al. (66)
showed that TlyA forms oligomers on phagosome membrane
and red blood cells, finally leading to lysis. Mtb TlyA Knockout
demonstrated reduced growth in ex-vivo infected macrophages
and in mouse models, yet the lack of complementation
experiments precluded from drawing a definitive conclusion
regarding its role and effect (67). Mtb TlyA resides in close
proximity to RecN (Rv1696). MAB_2359 is a putative rRNA
methytransferase with 78% similarity to the Mtb’s TlyA, and is
also located in proximity to Mabs recN, suggesting it is a
TlyA analog, and that its role in pathogenesis should be
explored further.

ESCRT (The host Endosomal Sorting Complexes Required
for transport) pathway directs cargo destined for digestion in
lysosomes, such as the Mtb-containing vacuole (MCV) (68).
Moreover, ESCRT apparati facilitate antigen processing,
therefore promoting T-cell activation during Mtb infection
(69). The initial ESCRT machinery is assembled by several
components, one of which is HRS (Hepatocyte growth factor-
regulated tyrosine kinase substrate), a target for the Mtb Esx-3
secreted effector, EsxH (70). EsxH (Rv0288) forms a 1:1
heterodimer with another secreted molecule EsxG (Rv0287),
together they serve as distinctly functional paralogues to the
EsxA/EsxB complex in Mtb ESX-1 (71, 72). EsxH was
July 2022 | Volume 13 | Article 938895
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demonstrated by co-immunoprecipitation assays to interact
directly with HRS, diminishing the ESCRT assembly and
inhibiting phago-lysosome fusion (70). Knock-down of HRS
resulted in reduced MCV maturation, stressing the importance
of this EsxH target. However, overexpression of Mtb’s EsxH in
RAW cells had greater effect on phagosome maturation arrest
than HRS depletion, suggesting that an additional target is aimed
by EsxH (70). EsxH deletion caused considerable attenuation,
with a 3-4 log decrease of CFU in the lungs of mice (69, 72) -
however, some of this attenuation may be related to the role of
ESX-3 in iron acquisition, rather than phagosome maturation
arrest Among pathogenic mycobacteria, the Esx-3 cluster is
highly conserved (73). Therefore, it is not unexpected to
discover that Mabs EsxH (MAB_2228c) and EsxG
(MAB_2229c) share relatively high similarity with their
counterparts in Mtb (81% each). The contribution of Mabs
ESX-3 secretion system to host responses was well-studied by
Kim et el (25).. They created an Esx-3 deletion mutant
(MAB_2224c-2234c, Desx-3) to examine the effect on growth,
inflammatory response and pathophysiology in ex- and in-vivo
models. Although in-vitro growth of the mutant was not reduced,
intracellular growth was significantly reduced in bone marrow
derived macrophages (BMDM). Mice infected by the mutant
exhibited lower bacillary loads 7 days post infection, but with no
significant difference 14 days post infection. Also, mice infected
by Desx-3 showed less severe lung pathology and decreased
granulomatous infiltrates. Serum levels of TNF-a and IL-6, as
well as mRNA levels of proinflammatory cytokines were also
decreased in Desx-3 infected mice. A caveat of this study was the
lack of complementation experiment, which make interpretation
less straightforward. Additionally, since the ESX-3 secretion
system is essential for maintaining homeostasis in an iron and
zinc depleted environment, we cannot confidently attribute the
consequences of its deletion to the absence of the EsxG/H
complex and to it’s effect on phagosome maturation, from that
on iron homeostasis. To do that would necessitate additional
experiments which would attempt to separate the two functions
of the ESX-3 system.

Acidification of the late phagosome is prompted by the
presence of vacuolar ATPase (V-ATPase) proton pumps on
the phagosomal membrane (74). One of the three
phosphatases secreted by Mtb, protein tyrosine phosphatase A
(PtpA, Rv2234), binds subunit H of V-ATPase (75, 76). However,
the interaction between PtpA and subunit H was found to be
through protein-protein interaction, suggesting that V-ATPase is
not the catalytic substrate of PtpA (75). Rather, the interaction of
PtpA with V-ATPase is a prerequisite for the main purpose of
PtpA – dephosphorylating, and as a result inactivating, vacuolar
protein sorting 33B (VPS33B) (75, 77). VPS33B, a member of
ESCRT machinery, is involved in vesicle trafficking and
responsible for the necessary alterations of membranes to
promote phago-lysosome fusion. Bach et al. (77)showed direct
binding and co-localization of PtpA and VPS33B in the cytosol
and impaired recruitment of VPS33B to the lysosome in Mtb-
infected macrophages. Mtb PtpA knockout (DptpA) fails to
inhibit phagosome acidification and maturation in human
Frontiers in Immunology | www.frontiersin.org 4
THP-1 macrophages (75, 77). Interestingly, DptpA is
attenuated for growth in ex-vivo infected macrophages, but not
within in-vivo infected mouse model (78). However, this appears
to be specific to the mouse model, and does not undermine the
importance of PtpA in pathogenesis in humans. The putative
protein encoded by MAB_1900c shares great similarity (81%)
with PtpA in Mtb. The proximal gene MAB_1901c contains
considerable similarity (75%) to Rv2232, the adjacent gene to
ptpA in Mtb. Rv2232 encodes for protein tyrosine kinase (PtkA),
which phosphorylates and activates PtpA (77). Deleting ptkA in
Mtb also leads to growth reduction in infected macrophages (79).
The presence of this cluster in Mabs indicates an opportunity for
further investigation of the contribution of Mabs- PtpA
to virulence.

Another factor playing a role in blocking phagosome
maturation of Mtb is lipoamide dehydrogenase C (LpdC,
Rv0462). LpdC participates in the metabolism of branched-
chain amino acids and is also secreted via the SecA2 pathway
(30, 80). Its role in phagosome maturation inhibition was
found as it demonstrated a cholesterol-dependent interaction
with coronin-1 found on macrophages infected with Mtb and
BCG (81, 82). MAB_4127c has an 88% similarity, and
although some databases automatically annotated the gene
as lpdA, it is probably the closest analog to the lpdC (Rv0426)
from Mtb, whereas the true analog of Mtb ’s LpdA,
is MAB_3656c.

Overall, phagosome maturation seems to be a target for
manipulation by Mabs, much like Mtb. The effectors involved
in inhibiting this process are understudied in Mabs, and their
investigation promises to be both fruitful and interesting.
AUTOPHAGY INHIBITION

Autophagy is a conserved degradation process of the cell in
which unnecessary components and dysfunctional organelles are
discarded in a regulated manner, allowing elimination of some
and recycling of other materials through lysosome digestion (83).
Proper and regulated autophagy is important for immune
control of mycobacterial infections (84). Mycobacteria have
several effectors aimed at disrupting this process. One anti-
autophagy effector secreted by Mtb is the Enhanced
Intracellular Survival (Eis, Rv2416c) protein (85). Mtb Eis has
an Ne-acetyltransferase activity (86). Upon infection Eis
acetylates DUSP16/MKP-7, a JNK-specific phosphatase
therefore preventing DUSP16/MKP=7 from activating beclin1
(BCLN1), a necessary protein in autophagy regulation (86, 87).
Eis is also proposed to inhibit autophagy through IL-10
upregulation (88), and through a JNK-dependent mechanism,
affecting ROS production (89). An Mtb Eis deletion (Deis) causes
increase in JNK activity, leading to elevated ROS and increased
autophagy, proinflammatory response and host cell death.
Nevertheless, Deis does not show reduced virulence in mice
(89, 90). Mabs harbors two Eis encoding genes, Eis1
(MAB_4124), and Eis2 (MAB_4532c). Eis1 seems to be the
closest homologue to Mtb’s Eis by Bidirectional Best Hit
July 2022 | Volume 13 | Article 938895
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(BBH) search (91). However, it was shown that Mabs’ Eis1 does
not modify aminoglycosides, and the basis for this lack of activity
was pinpointed to structural reasons, where the active site is too
narrow to accommodate large substrates like these antibiotics
(92). Curiously, Mabs Eis2 deletion mutant (Deis2) was
dramatically attenuated in murine macrophages, showing
increased ROS levels. Moreover, Deis2 was unable to penetrate
the phagosomal membrane and induce phagosome-to-cytosol
contact compared to WT Mabs (91).
REDUCTION OF REACTIVE OXYGEN
SPECIES (ROS)

As previously mentioned, ROS are produced within phagosomes
of infected macrophage as an additional antimicrobial
ammunition. NADPH oxidase 2 (NOX2), the enzyme
producing ROS, is a multiprotein complex that promotes a
distinct phagosome maturation and autophagy-related pathway
called LC-3 associated phagocytosis (LAP) (93). In the process of
LAP, one membrane engulfs a pathogen, or pathogenic residues,
instead of a double membrane in autophagy. Mtb CpsA (Rv3484)
interferes with the recruitment of NOX2 to the phagosome and
inhibits LAP through an unknown target (94). However, no clear
analog in Mabs was found, and it is unclear if Mabs manipulates
this pathway in the macrophage.
MODULATING CYTOKINE RESPONSE

Mycobacterial infection induces the secretion of a large number
of cytokines, including interferon gamma (IFN-g), interleukin-1 (IL-
1), IL-2, IL-6, IL-10, IL12, IL-18 and tumor necrosis factor alpha
(TNF-a) (11, 95). The immune response is provoked by some and
downregulated by other cytokines to protect the host against
unfavorable pathology. Mtb survival depends on its ability to
subvert the immune response, in order to promote its
proliferation and cell-to-cell spread. The following are mechanism
of such immune-response and cytokine release modulation.

Enoyl coA hydratase A1 (EchA1, Rv0222) is secreted by Mtb
through an unknown mechanism and reaches the host cell cytosol.
Wang et al. found that EchA1 is subjected to ubiquitination by the
host cell ubiquitin ligase ANAPC2 (96). Ubiquitinated EchA1
promotes the recruitment of SHP1 – a protein tyrosine
phosphatase that interacts with TNF receptor-associated factor 6
(TRAF6) and inhibit its ubiquitination. Since ubiquitinated TRAF6
is a mediator in IL-1 signaling, its inhibition by Mtb EchA1 impairs
the production of proinflammatory cytokines. Mice infected with
Mtb EchA1 mutants produced much higher levels of IL-1b, IL-6
and IL-12 in lung tissue, and attenuation of DechA1 growth was
demonstrated in mice following aerosol infection (96). We found a
probable enoyl coA hydratase gene in Mabs genome (MAB_0606c)
with 44% similarity to Rv0222. One should note, though, that a 44%
similarity is quite low, and take this homology with caution.
No other information regarding this protein in Mabs is
currently known.
Frontiers in Immunology | www.frontiersin.org 5
Disulfide bond forming DsbE (also known as Mpt53,
Rv2878c) is an effector that was found to activate protective
host responses through promoting proinflammatory cytokine
production. Predicted to be secreted by SecA1/2 (43, 97), DsbE
binds, hence increases phosphorylation of TGF-b-activated
kinase 1 (TAK1), an important signaling molecule downstream
to TLR/TRAF6/TAB2 or TAB3 signaling pathway (98).
Phosphorylated Tak1 activates the NF-kb pathway and the
k inases JNK and p38 , l ead ing to biosynthes i s o f
proinflammatory cytokines TNF, IL-6 and IL-12. An Mtb
DdsbE mutant induces less TNF and IL-6 production in ex-vivo
macrophage models and in-vivo in mice lungs (98). Moreover,
DdsbE was hypervirulent in mice, with 1-2 log increase in CFU at
21 days post infection (98). It is therefore tempting to speculate
whether Mabs probable DsbE (99), with relatively high
resemblance to Mtb protein (78% similarity), stimulates
similar responses.
CELL DEATH MANIPULATION

Apoptosis and necrosis are two variants of cell death which
greatly differ in all aspects, such as energy requirements,
regulation, organelles fate and causes (100). Mtb produces
effectors that favor the development of necrosis and inhibit the
cell’s processes promoting apoptosis (101). Since the final
consequence of many augmented immune response processes
is delayed cell death, many effectors manipulate apoptosis
indirectly. For example, Mtb protein tyrosine phosphatase B
(PtpB, Rv0153c) is a broad-spectrum phosphatase that was
shown to inhibit the IFN-g-mediated activation of ERK1/2 and
p38 signaling pathway, hence inducing production of IL-6 and
inhibiting host cell death (102). However, no clear orthologue
proteins to PtpB were described in Mabs. The closest protein
found is MAB_4591, carrying a low similarity of 42%, which
should be taken very cautiously.

Apoptosis is a redox-sensitive process. Mtb exploits this
sensitivity and inhibits apoptosis by blocking ROS release by host
cell into the phagosome. Superoxide dismutase A (SodA, Rv3846) is
secreted by SecA2 and suspected to be involved in neutralization of
superoxides produced by NOX2 in the MCV (31). Since SodA in an
essential gene in Mtb, no deletion mutant could be established.
However, a mutant with reduced SodA activity was constructed in
Mtb and demonstrated in-vitro to be highly susceptible to killing by
hydrogen superoxide (103). Moreover, mice infected by SodA-
defective Mtb exhibited at least 10-fold more apoptotic cells in
their lungs as compared to those infected by the WT strain (103).
Mabs SodA (MAB_0118c) shares great similarity to its Mtb
counterpart (89%). It will be intriguing to test whether Mabs
mutants defective in SodA activity will have a phenotype
consistent with the one in Mtb.

Mtb, as well as other pathogenic mycobacteria aspires to
escape the intracellular niche in order to spread to other host
cells. Encouraging necrosis is an effective approach to
accomplish this goal (104). The outer membrane channel
protein CpnT is required for efficient nutrient uptake in Mtb
July 2022 | Volume 13 | Article 938895
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(105). While its N-terminal harbors a pore-forming capacity for
this matter, its C-terminal domain, also called tuberculosis
necrotizing toxin (TNT), can be released following proteolytic
cleavage. TNT targets host cell coenzyme NAD+, thereby leading
to its depletion (106). The necroptosis RIPK3/MLKL pathway is
then activated, prompting the host cell death (107). Since
deleting TNT does not attenuate bacilli growth in-vivo, it is
suggested that Mtb has alternative pathways to promote necrosis
(105). An analogous gene to Mtb CpnT/TNT analytic was not
identified in the Mabs genome. However, a recent study found a
cassette in a Mabs prophage with a polymorphic toxin (PT) that
contains a C-terminal domain related to Mtb TNT (108). This
finding offers a direction for further investigating CpnT/TNT
analogues in Mabs, potentially involved in virulence.
DISCUSSION

Like most intracellular pathogens, mycobacteria, while in the
macrophage, secrete a myriad of effector molecules into the
Frontiers in Immunology | www.frontiersin.org 6
phagolysosome as well as the cytosol in order to counter the
many mechanisms at the macrophage’s disposal aimed at
destroying this very pathogen. Knowledge of these secreted
effectors and their mechanisms of action can be implemented
into novel therapeutics, construction of attenuated mutants for
vaccine purposes and predictions of disease severity. Whereas in
M. tuberculosis there has been considerable progress in the
characterization of the compendium of secreted effectors, this
is not the case in most non-tuberculous mycobacteria, including
M. abscessus. Most known M. abscessus-secreted effectors are at
least structurally related to well-characterized secreted effectors
in M. tuberculosis. Novel, yet undiscovered effectors probably
exist, and may be shared by other rapid-growing mycobacteria
(such as M. fortuitum) – but as data on this is still scarce, it is
difficult to provide specific examples. Additional data and
research specifically into the pathogenesis of M. abscessus is
needed to characterize such effectors. In this review we attempted
to provide the “basic footwork” for researchers interested in
exploring the secreted effectors ofM. abscessus – by summarizing
the knowledge on those effectors that have been, at least partially,
TABLE 1 | Secreted effectors in M. tuberculosis, and their putative analogs in M. abscessus.

Name Gene ID
in Mtb

Secretion
pathway

Protein function
in Mtb

Host target Host cell process Impact of gene deletion on
Mtb virulence

Gene ID
Mabs

Identity /
similarity

EsxA Rv3875 ESX-1 ? TLR-2, SR-B1, B2M Phagosome maturation Attenuated ex-vivo and in
vivo

MAB_3754c No
identity

Please note that whereas EsxA (ESAT-6) of Mtb is part of the ESX1 system, MAB_3754c is part of the ESX-4 system in MABS. An ESX-1 system does not exist in
MABS. However, both system play what appears to be an analogous role in pathogenesis – hence the analogy we draw between EsxA and MAB_3754c, despite lack
of biochemical identity.
EsxH Rv0288 ESX-3 Iron acquisition HRS Phagosome maturation Attenuated ex vivo and in

vivo
MAB_2228c 65% /

81%
SapM Rv3310 SecA2 Phosphatase Phosphatidyl-inositol3-

phosphate
Phagosome maturation Attenuated ex vivo and in

vivo (guinea pig)
? –

PknG Rv0410c SecA2 Serine/Threonine
kinase

Rab7L1/Rab29 phagosome maturation Attenuated ex vivo and in
vivo

MAB_4224 73% /
82%

CpsA Rv3484 ? Contains LCP
and LytR
domains

Inhibits NOX2 activation phagosome maturation,
ROS production

Attenuated ex vivo and in
vivo (mouse and zebrafish
model)

? –

TlyA Rv1694 ? rRNA methylase,
hemolysin

? Phagosome maturation Attenuated ex vivo and in
vivo

MAB_2359 69% /
78%

LpdC Rv0462 SecA2 Lipoamide
reductase

Coronin-1 Phagosome maturation ? MAB_4127c 88%
similarity

NdkA Rv2445c SecA2 GTPase
Activation Protein
(GAP)

Rab5, Rab7, Rac1 Phagosome maturation,
ROS, apoptosis

Attenuated ex vivo and in
vivo (SCID mouse model
only)

MAB_1606 75% /
86%

PtpA Rv2234 ? Phosphatase VPS33B, Subunit H of
V-ATPase, ubiquitin,
GSK3

Cytokine response,
Phagosome maturation and
apoptosis

Attenuated in Guinea pigs,
less in mice

MAB_1900c 68% /
81%

PtpB Rv0153c ? Phosphatase ? Apoptosis Attenuated ex vivo and in
vivo (guinea pig)

MAB_4591 44%
similarity

Eis Rv2416c ? Lysine Nϵ-
acetyltransferase
activity

JNK ROS production, autophagy,
apoptosis

No attenuation in-vivo MAB_4532 29% /
44%

SodA Rv3846 SecA2 Superoxide
dismutase

Phagosomal
superoxides

ROS production Attenuated in-vivo MAB_0118c 82% /
89%

EchA1 Rv0222 Probable enoyl-
CoA hydratase

SHP1, TRAF6 Cytokine response Attenuated in vivo MAB_0606c 30% /
44%

CpnT/
TNT

Rv3903c ? Hydrolyses NAD
+

NAD+ Necrosis Not attenuated in-vivo Found in
prophages

–

MPT53/
DsbE

Rv2878c Predicted
SecA1/2

Disulfide
oxidoreductase

Tak1 Triggers Cytokine response Hypervirulent in-vivo MAB_3243 63% /
78%
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characterized, and by providing the basic links connecting
characterized M. tuberculosis effectors with genes and proteins
inM. abscessus, that may – or may not – play a homologous role
in this pathogen. These were also summarized in Table 1.
Figure 1 illustrates most of these effectors in a graphic
manner. Obviously, this approach may miss completely novel
and Mabs specific effectors that may very well exist - however
their identification will necessitate more complicated
experimental and bioinformatic analyses of the M. abscessus
secretome, proteome and genome.
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