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Abstract

After being cholera free for over 100 years, Peru experienced an unprecedented epidemic

of Vibrio cholerae O1 that began in 1991 and generated multiple waves of disease over sev-

eral years. We developed a mechanistic transmission model that accounts for seasonal vari-

ation in temperature to estimate spatial variability in the basic reproduction number (R0), the

initial concentration of vibrios in the environment, and cholera reporting rates. From 1991-

1997, cholera spread following a multi-wave pattern, with weekly incidence concentrated

during warm seasons. The epidemic first hit the coastal departments of Peru and subse-

quently spread through the highlands and jungle regions. The correlation between model

predictions and observations was high (range in R2: 58% to 97%). Department-level popula-

tion size and elevation explained significant variation in spatial-temporal transmission pat-

terns. The overall R0 across departments was estimated at 2.1 (95% CI: 0.8,7.3), high

enough for sustained transmission. Geographic-region level R0s varied substantially from

2.4 (95% CI: 1.1, 7.3) for the coastal region, 1.9 (0.7, 6.4) for the jungle region, and 1.5

(0.9, 2.2) for the highlands region. At the department level, mean R0 ranged from 0.8 to 6.9.

Department-level R0s were correlated with overall observed attack rates (Spearman ρ =

0.59, P = 0.002), elevation (ρ = −0.4, P = 0.04), and longitude (ρ = −0.6, P = 0.004). We

find that both R0 and the initial concentration of vibrios were higher in coastal departments

than other departments. Reporting rates were low, consistent with a substantial fraction of

asymptomatic or mild cases associated with the El Tor cholera biotype. Our results suggest

that cholera vibrios, autochthonous to plankton in the natural aquatic environment, may

have triggered outbreaks in multiple coastal locations along the Pacific coast of Peru. Our

methodology could be useful to investigate multi-wave epidemics of cholera and could be

extended to conduct near real-time forecasts and investigate the impact of vaccination

strategies.
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Author summary

After being cholera free for over 100 years and in the absence of an effective vaccine

against the disease, Peru experienced one of the worst multi-wave epidemics in South

American history from 1991-1997. Here we applied statistical and mathematical modeling

to a weekly spatio-temporal dataset of cholera cases to investigate transmission patterns

and variation in the basic reproduction number. Our findings indicate that the epidemic

first hit the coastal departments of Peru and subsequently spread through the highlands

and jungle regions. There were 3−4 consecutive well-defined waves concentrated during

the warm seasons. Cholera transmission potential and the initial concentration of vibrios

were higher in coastal departments compared to other departments. Moreover, reporting

rate estimates were low, consistent with the significant fraction of asymptomatic or mild

cases that is associated with the El Tor cholera biotype. Our results suggest that cholera

vibrios, autochthonous to plankton in the natural aquatic environment, may have been

present in multiple coastal locations, possibly leading to multiple disease introductions

along the Pacific coast of Peru.

Introduction

Largely transmitted through contaminated food or water, Vibrio cholerae continues to gener-

ate outbreaks of acute gastrointestinal illness particularly in lower-income countries with poor

sanitary infrastructure; it currently affects 1.3 to 4 million people annually worldwide [1]. Eco-

logical studies suggest that warm brackish waters are an ideal reservoir for V. cholerae, where it

can attach to aquatic organisms such as shellfish and zooplankton [2, 3]. The bacterium thrives

in warm water bodies, which increases the risk of cholera epidemics in susceptible populations

[4]. Although our understanding of the epidemiological and clinical characteristics of this

pathogen has advanced considerably [3], quantitative analysis of major historical epidemics in

immunologically naive populations is needed to elucidate the drivers of transmission.

Historically, cholera epidemics have been associated with one of two biotypes, both of

which belong to V. cholerae serogroup O1 [4]. Up to 1960, epidemic cholera was primarily

caused by the classical O1 biotype, but it was subsequently replaced by V. cholerae El Tor,

marking the beginning of the seventh cholera pandemic in 1961 [4]. Infection with the El Tor

biotype is associated with frequent mild or asymptomatic infection and the ability to survive in

both human hosts and the environment—a known evolutionary tradeoff [5]. Several case-con-

trol studies have shown asymptomatic controls to have 29% to 34% seroconversion, implying

the disease spreads effectively yet rarely causes significant symptoms [6, 7]. However, rapid

onset of watery diarrhea, vomiting, cramping, and subsequent dehydration occurs in approxi-

mately one out of every 10-50 infected individuals [4]. If left untreated, it can lead to shock,

renal failure, and eventually death [4]. Intravenous fluids and oral rehydration, along with

appropriate use of antibiotics, can reduce case-fatality to less than one percent [4].

V. cholerae El Tor was isolated for the first time from deceased pilgrims returning from La

Meca in El Tor control station, Egypt, in 1905. The ongoing seventh cholera pandemic origi-

nated in the Bay of Bengal, involving at least three separate waves of infection with the El Tor

strain [8]. The pandemic originated in Indonesia in 1961 [9], from there spreading through

India (1964) [10], Africa (1970) [11], Southern Europe (1970) [12], and South America (1991)

[13], returning to the Americas after more than 100 years [14]. In the absence of an effective

vaccine against cholera in the early 1990s [15], Peru experienced one of the worst multi-year

epidemics in South American history [16, 17, 18]. Between late January 1991 and December
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1993, the epidemic caused about a million cases and almost 9000 deaths [19]. Although it was

initially speculated that a Chinese ship imported the disease through an infected crew member

[20], it is more likely that the culprit pathogen was already widespread in the local environ-

ment, implicating an environmental/water-borne source [21].

A limited picture of the impact of the epidemic in Peru can be gleaned through largely

descriptive local reports of the epidemic and several case-control studies [16, 15, 22, 23, 6, 7].

For instance, the first cases of cholera in Peru were reported in the central coast in late January

1991 [24], with subsequent cases reported almost simultaneously in coastal cities farther north

[25]. Cholera then spread rapidly to the rest of the country [13], was widespread in sea and river

waters as well as in municipal sewage and seafood [26], and continued to generate outbreaks for

several more years [16]. It has been estimated that in 1991, between 3 and 11 million individuals

were infected, 2.4 million individuals developed cholera diarrhea, 322, 562 individuals sought

care, and 2, 909 Peruvians died [27]. A quantitative analysis of the spatial-temporal spread of

the devastating cholera epidemic in Peru is useful to elucidate the drivers of transmission in an

immunologically naive population at a time when an effective vaccine was unavailable.

Mathematical modeling have helped quantify the transmission rates and reproduction

numbers of cholera epidemics in various locations, which can inform control measures [28,

29, 30, 31, 32]. However, there is a scarcity of estimates of the basic reproduction number (R0)

in essentially naive populations, and the 1991-1997 cholera epidemic in Peru represents an

interesting case study [16, 17]. In this paper, we combine dynamic modeling based on ordinary

differential equations and statistical estimation methods along with a dataset of weekly cholera

cases across departments of Peru to generate estimates of the spatial-temporal variation in the

basic reproduction number at three spatial scales (i.e., national, regional, and departmental)

and assess the pattern of spread vis-à-vis environmental and socio-demographic variables.

Setting

Peru is located on the Pacific coast, sharing borders with Bolivia, Brazil, Chile, Colombia, and

Ecuador. In 1990, Peru’s population exceeded 22 million, and was heterogeneously distributed

across a surface area of 1 285 220 km2 comprising 25 administrative units (24 departments and

1 constitutional province hereafter referred to as 25 departments; S1 Fig). Peru is characterized

by three geographic zones with diverse climates: the dry, desert western coast along the Pacific

Ocean, the temperate Andean highlands or more central departments, and the tropical Ama-

zon jungle toward the East. In a country like Peru, we expect variability in cholera dynamics

across different geographic regions, as temperature is known to influence transmission [2].

At the time of the epidemic, Peru struggled with access to healthcare, environmental sanita-

tion, and political and economic issues [15], which complicated the implementation of control

interventions necessary to mitigate a large epidemic [20]. Inadequate water treatment and defi-

ciencies in water storage systems have also been documented throughout the country [15, 33].

Further, between 1987 and 1990, Peru’s economy had declined dramatically, with the gross

domestic product dropping by 23%, the per capita income and purchase power falling by one

third, and public expenditures being reduced by 52% in health and 28% in education [34].

Given the great magnitude of the epidemic, the healthcare infrastructure was overrun by the

large number of cases presenting to clinics and hospitals [35].

Materials and methods

Epidemiologic data

Peru’s General Office of Epidemiology launched the epidemiological surveillance system along

with the Peruvian Field Epidemiology Training Program in 1989, not long before the cholera
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epidemic hit Peru [36, 37, 38, 39]. This surveillance system generates weekly surveillance

reports across 25 departments by relying on a network of over 6,000 geographically distributed

health-care units reporting cases [40]. During the 1991-1997 cholera epidemic, epidemiologi-

cal surveillance included both confirmed and suspected cases. A suspected case was defined as

any patient older than five years presenting with acute and watery diarrhea [41, 42], a case defi-

nition that remained stable during the epidemic. Confirmed cases were laboratory-confirmed

with Vibrio cholerae 01 El Tor Inaba [43, 41]. Time series of weekly incidences across depart-

ments are available in a public repository [44].

Environmental and geographic data

Weekly temperature time series were obtained from the European Centre for Medium-Range

Weather Forecasts’s ERA-Interim atmospheric reanalysis archive from 1991 to 1997. The

ERA-interim model allows estimation of daily minimum, mean, and maximum temperatures

by department [45], which we used to assess the relationship between case incidence and tem-

perature at the department level. We also collected several geographic variables including ele-

vation, illiteracy rate, population size, latitude, and longitude, which were used in spatial-

temporal analysis [46] (S2 Fig). These datasets are available online [44].

The basic reproduction number (R0)

The basic reproduction number (R0) is a key epidemiological metric for assessing the trans-

mission potential of infectious disease outbreaks [47]. R0 is typically defined as the average

number of secondary cases generated by a primary case in an entirely susceptible population

[47]. In general, if R0 > 1 an epidemic is expected, while disease transmission cannot be sus-

tained if R0 < 1. In the context of infectious disease transmission that is partly driven by an

environmental component (e.g., temperature), the actual value of R0 depends on time. Thus,

we denote R0ðtÞ as the time dependent basic reproduction number in the absence of suscepti-

ble depletion. In our study, we define the mean R0 as the average of R0ðtÞ during our study

period. We compare mean R0 estimates at three different spatial scales: national, regional

(e.g., coastal, jungle, highlands), and department.

Mathematical model of cholera transmission dynamics

We estimated the mean R0 at the department level using a mechanistic model of cholera trans-

mission together with a novel parameter estimation approach. We adapted a compartmental

dynamic model that has been previously used to estimate transmission potential of cholera epi-

demics [28, 29, 30, 48, 49]. Our cholera model, consisting of 4 equations (Eqs (0.1)–(0.4)) and

8 parameters, incorporates the effects of local temperature fluctuations on the environmental

transmission rate (Table 1). In addition to susceptible (S), infectious (I), and removed (R) com-

partments, this model includes a compartment (B) that models the concentration of vibrios in

the environment (e.g., water supply). Hence, the model accounts for two transmission path-

ways: 1) cholera exposure from the contaminated environment/water supply and 2) human-

to-human transmission via close contact with infectious individuals.

In this model, individuals in a population of size N are born and die at rate μ. Susceptible

individuals can be infected through the environment with time-dependent transmission rate

βe(t) or through human contact with transmission rate βh. Therefore, they move from suscepti-

ble to infectious classes at rates βe(t)B/(B + κ) (where κ is the 50% infectious dose in the envi-

ronment and B is the current concentration of vibrios in the environment) [28] and βhI.
Vibrios are shed by infectious individuals into the environment at rate λ, and then die at

rate δ. Infected individuals are assumed to recover and acquire protective immunity for the
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duration of the entire epidemic period at rate γ [50]. The overall transmission dynamics can be

mathematically described by the following set of nonlinear differential equations:

dS
dt
¼ mN � bhSðtÞIðtÞ � beðtÞSðtÞ

BðtÞ
BðtÞ þ k

� mSðtÞ ð0:1Þ

dI
dt
¼ bhSðtÞIðtÞ þ beðtÞSðtÞ

BðtÞ
BðtÞ þ k

� mIðtÞ � gIðtÞ ð0:2Þ

dR
dt
¼ gIðtÞ � mRðtÞ ð0:3Þ

dB
dt
¼ lIðtÞ � dBðtÞ; ð0:4Þ

with initial conditions

Sð0Þ ¼ N � C1; Ið0Þ ¼ C1; Rð0Þ ¼ 0; Bð0Þ ¼ B1; ð0:5Þ

where N is the population size for a given department in Peru, C1 is the number of cases

observed in the first week in each department divided by a reporting rate, and B1 is the initial

concentration of vibrios in the environment. We assume that reported data, D, is available for

the weekly incidence cases subject to an unknown reporting rate, ψ. In our model, the weekly

temperature variation, T(t), directly influences the cholera transmission rate from the environ-

ment. To reflect that, βe(t) is further broken down into two components: βe(t) = βe1 + βe2T(t),
where T(t) represents the mean temperature at time t for the corresponding department.

According to (0.1)–(0.5), the cumulative number of human cases, C(t), satisfies the following

differential equation:

dC
dt
¼ bhSðtÞIðtÞ þ beðtÞSðtÞ

BðtÞ
BðtÞ þ k

: ð0:6Þ

By fitting c dC
dt to the reported incidence data, D(t), we estimate five system parameters: βh, βe1,

βe2 (the three transmission coefficients), B1 (the initial concentration of vibrios in the environ-

ment), and ψ (the reporting rate). The reporting rate, ψ, is a scaling factor used to adjust for

possible underreporting of cases, owing to, for instance, a large proportion of asymptomatic

Table 1. Parameter definitions and baseline values associated with the mechanistic cholera transmission model.

Symbol Definition Value Reference

μ Natural birth & death rate 1/(60 � 52) weeks−1

κ 50% infectious dose 106 �mL−1 [48]

γ Recovery rate 7/5 weeks−1 [51]

λ Rate of contribution of vibrios from infected individuals to environment 70 �mL−1�weeks−1 [48]

δ Death rate of vibrios in environment 7/30 weeks−1 [14]

βh Human to human transmission rate Estimated

βe1 Baseline environmental transmission rate Estimated

βe2 Relative environmental transmission forcing Estimated

B1 Initial concentration of vibrios Estimated

ψ Reporting rate Estimated

https://doi.org/10.1371/journal.pntd.0008045.t001
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cholera cases [14]. Table 1 includes all model parameters and their definitions, as well as the

values chosen for the parameters that are pre-estimated.

For this compartmental model, the time-dependent basic reproduction number (R0ðtÞ) is

given by [28]:

R0ðtÞ ¼
N

dkðgþ mÞ
ðlbeðtÞ þ dkbhÞ ð0:7Þ

The effective reproduction number at calendar time t accounts for the depletion of suscepti-

ble individuals and is given by ReðtÞ:

ReðtÞ ¼
N

dkðgþ mÞ
ðlbeðtÞ þ dkbhÞs

�ðtÞ; ð0:8Þ

where s�(t) is the fraction of susceptible individuals in the population at time t. In the next sec-

tion we describe the algorithm for stable estimation of the unknown disease parameters, βh,
βe1, βe2, B1, and ψ, for each department. Unlike most previously used inversion schemes, this

approach does not rely on numerical solution of a nonlinear system (0.1)–(0.5) at every step of

the iterative process [52]. Instead, it effectively combines analytical and numerical optimiza-

tion tools in order to reduce computational complexity and the resulting noise propagation in

the recovered parameter values.

Parameter identifiability

Prior studies have underscored parameter identifiability issues related to infectious disease

transmission models based on ordinary-differential equations [53, 54, 55]. Lack of identifiabil-

ity, or non-identifiability, which is evident when parameter estimates are associated with large

uncertainties, may be attributed to the model structure (structural identifiability) or due to the

lack of information in a given dataset, which could be associated with the number of observa-

tions and the spatial granularity of the data [53]. Because the time series of reported incident

cases stems from the aggregation of sub-epidemics associated with multiple exposure types

[56], it can give rise to indistinguishable epidemic waves. In the context of cholera transmis-

sion dynamics, it is difficult to disentangle the contributions of different transmission routes

(e.g., environmental exposure versus cases stemming from person-to-person transmission)

[54]. While it is difficult to estimate the transmission coefficients (βh, βe1, βe2), we show that it

is still feasible to derive composite R0 estimates, which is consistent with prior studies [53, 54].

We report estimates for three key parameters and their associated uncertainty at the level of

departments: 1) R0, 2) the initial concentration of vibrios in the environment, and 3) the

reporting rate.

Mathematical preliminaries and optimization algorithm

In this subsection we present our novel problem-oriented parameter estimation method,

which takes full advantage of the available incidence data in the construction of a parameter-

to-data map for the least squares problem (LSP). Even though the LSP still needs to be solved

by a regularized trust-region nonlinear optimization algorithm, this algorithm is no longer

combined with a numerical solution of the nonlinear system of differential equations at every

step of the iterative process, which differs from standard estimation methods. As a result, the

total computational error and the propagation of noise in the estimated parameters are signifi-

cantly reduced, hence bringing accuracy and stability in the inversion scheme. Moreover, our

effective use of incidence data while analytically solving the ODE system (0.1)–(0.5) and subse-

quently discretizing its solution makes it possible to form a parameter-to-data map, which,
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despite being nonlinear in ψ and B1, turns out to be linear in all three transmission parameters,

βh, βe1, and βe2, thus further reducing computational complexity of the proposed method.

Indeed, replacing the force of infection, bhSðtÞIðtÞ þ beðtÞSðtÞ
BðtÞ
BðtÞþk, with dC

dt in the first two

equations of compartmental model (0.1)–(0.5), one gets linear nonhomogeneous ordinary dif-

ferential equations (ODEs) for S(t) and I(t), respectively:

dS
dt
¼ � mSðtÞ �

dC
dt
þ mN ð0:9Þ

dI
dt
¼ � ðmþ gÞIðtÞ þ

dC
dt
: ð0:10Þ

Taking into account initial conditions (0.5), one arrives at the following analytical solutions to

(0.9) and (0.10), respectively:

SðtÞ ¼ N � expð� mtÞC1 �

Z t

0

expð� mðt � sÞÞC0ðsÞ ds ð0:11Þ

IðtÞ ¼ expð� ðmþ gÞtÞC1 þ

Z t

0

expð� ðmþ gÞðt � sÞÞC0ðsÞ ds: ð0:12Þ

To derive the equation for B(t) in terms of C0(t), one can first write B(t) as

BðtÞ ¼ expð� dtÞB1 þ l

Z t

0

expð� dðt � sÞÞIðsÞ ds: ð0:13Þ

Substituting (0.12) for I(s) into (0.13) and integrating by parts to eliminate the inner integral,

one arrives at the following identity:

BðtÞ ¼ expð� dtÞB1 þ
lC1

mþ g � d
½expð� dtÞ � expð� ðmþ gÞtÞ�

þ
l

mþ g � d

Z t

0

C0ðsÞ½expð� dðt � sÞÞ � expð� ðmþ gÞðt � sÞÞ� ds:
ð0:14Þ

The next step in our algorithm is to obtain discrete analogs of S(t), I(t), and B(t) at the mesh

points t1, t2,. . ., tm, where ti = i − 1, i = 1, 2, . . .,m, and t1 = 0 is the first week of the outbreak.

Recall that c dC
dt must be fitted to the reported incidence data, D(t). Considering that, we replace

C1 with D1/ψ and C0(s) with D(s)/ψ under each integral in (0.11), (0.12), and (0.14). Given dis-

crete data, D = [D1, D2, . . ., Dm]>, reported weekly, we interpolate D as follows:

Dð0Þ ¼ Dðt1Þ ¼ D1; and DðtÞ ¼ Djþ1 for t 2 ðtj; tjþ1�; j ¼ 1; 2; :::;m � 1: ð0:15Þ

From (0.15), one concludes that S1 = N − D1/ψ and for i = 2, 3, . . .,m,

Si ¼ N �
expð� mtiÞD1

c
�
Xi� 1

j¼1

Djþ1

c

Z tjþ1

tj

expð� mðti � sÞÞ ds: ð0:16Þ

Evaluating integrals analytically and substituting i − 1 for ti, one gets

S1½c� ¼ N � D1=c

Si½c� ¼ N �
expð� mði � 1ÞÞD1

c
�

1

mc

Xi� 1

j¼1

Djþ1½expð� mði � j � 1ÞÞ � expð� mði � jÞÞ�;
ð0:17Þ
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i = 2, 3, . . .,m. Likewise, identities (0.12) and (0.14) yield

I1½c� ¼ D1=c

Ii½c� ¼
expð� ðmþ gÞði � 1ÞÞD1

c

þ
1

ðmþ gÞc

Xi� 1

j¼1

Djþ1½expð� ðmþ gÞði � j � 1ÞÞ � expð� ðmþ gÞði � jÞÞ�;

ð0:18Þ

and

Bi½c;B1� ¼ expð� dði � 1ÞÞB1 þ
lD1

ðmþ g � dÞc
½expð� dði � 1ÞÞ � expð� ðmþ gÞði � 1ÞÞ�

þ
l

ðmþ g � dÞc

Xi� 1

j¼1

Djþ1

"
expð� dði � j � 1ÞÞ � expð� dði � jÞÞ

d

�
expð� ðmþ gÞði � j � 1ÞÞ � expð� ðmþ gÞði � jÞÞ
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i = 2, 3, . . .,m. This implies that estimation of the unknown parameters, βh, βe1, βe2, B1, ψ, can

now be cast as the following nonlinear least squares problem:

min
bh ;be1 ;be2 ;B1 ;c

1

2

�
�
�
�
�
cS½c�

(
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�
�
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(

bhIi½c� þ ðbe1 þ be2TiÞ
Bi½c;B1�

Bi½c;B1� þ k

 )

� Di

!2

; ð0:21Þ

where D = [D1, D2, . . ., Dm]> and T = [T1, T2, . . ., Tm]> are reported data sets for incident

cases and mean weekly temperature fluctuations, respectively, and the expressions for Si[ψ],

Ii[ψ], and Bi[ψ, B1] are given by (0.17), (0.18) and (0.19).

After the five unknown parameters have been recovered from the corresponding epidemic

data sets using our proposed optimization algorithm, 500 additional incidence curves are gen-

erated via parametric bootstrap [57] in order to quantify uncertainty in the estimated parame-

ters and derive 95% confidence intervals (S1 Table). Matlab code is available upon request

from the authors.

Spatial analysis

We used Spearman’s rho (ρ) and multiple linear regression to assess the relationship between

department-level predictors, cumulative incidence, week of epidemic onset, estimates of basic

reproduction numbers, reporting rates, and initial concentrations of vibrios. For each depart-

ment, epidemic onset was defined as the first week with reported cholera cases. Additionally,

we generated maps of cholera attack rates by year. Maps were created using the choropleth

package in R.

Spatial autocorrelation

Spatial autocorrelation is a measure of similarity of nearby observations. We assessed spatial

autocorrelation of attack rates (cumulative cases during the study period) across departments

using Moran’s I statistic [58]. Moran’s I is calculated using a nearest neighbor matrix wij of
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the 25 spatial units where wij = 1 when departments i and j share a border. All other entries are

equal to zero. The statistic is calculated as in Eq (0.22), where N is the number of departments,

xi is the cholera incidence in department i, �x is the mean cholera incidence across departments,

andW is the sum of entries in matrix wij:

I ¼
N
PN

i¼1

PN
j¼1
wijðxi � �xÞðxj � �xÞ

W
PN

i¼1
ðxi � �xÞ2

: ð0:22Þ

To determine significance of Moran’s I , we used a nonparametric random data permutation

test [59]. We sampled 10,000 random permutations of Peruvian departments given our

observed data, generating a reference distribution of Moran’s statistics under the null hypothe-

sis of no spatial autocorrelation. P-values were calculated as the probability of obtaining the

observed Moran’s I or a more extreme value from the reference distribution [60].

Spatial heterogeneity (Gini index)

We also quantified heterogeneity in attack rates using the Lorenz curve and Gini index [61,

62]. The Lorenz curve is a graphical display of the cumulative proportion of cholera cases

against the cumulative proportion of population. Under the assumption of homogeneity, the

distributions will be balanced, and the Lorenz curve will fall on the diagonal. As heterogeneity

in attack rates increases, the curve will become farther from this reference line. The Gini index

is a summary measure of heterogeneity, calculated as the ratio of the area between the Lorenz

curve and the reference line to the total area beneath the reference line. The Gini index ranges

from 0 to 1, with a larger value indicating greater spatial heterogeneity.

Results

The first cholera cases were reported to the Peruvian Ministry of Health in late January of

1991. Infection spread so rapidly that by late February, the coastal departments had already

received the brunt of the epidemic, though infection would resurge in subsequent years (Fig

1). As seen in Fig 2, the epidemic progressed in three spatial waves, first hitting the coast and

subsequently spreading through the highlands and jungle regions. Most of the cases occurred

during the first three years of the epidemic (S3 Fig). Moreover, our results indicate that larger

populations tended to have earlier epidemic onset (Spearman ρ = −0.519, P< 0.01), with the

epidemic thereafter spreading to less populous areas (S4 Fig). We did not observe a significant

relationship between elevation and epidemic onset (ρ = 0.212, P = 0.309) (S4 Fig), though ele-

vation did contribute to case incidence, likely modulated by temperature (Fig 3 and S5 Fig).

We also found that cholera persistence, estimated as the proportion of weeks with cholera

reports, was positively correlated with population size (Spearman ρ = 0.61, P = 0.001).

Throughout 1991, coastal departments saw far more cases than the remaining regions (Fig

1). Variability in observed case incidence was related to population size (ρ = 0.67, P< 0.001),

as illustrated by differences in regional attack rates (Fig 4a). However, some of the highest

observed attack rates occurred in the jungle and not the more populous coastal cities. For

example, Loreto and Ucayali suffered attack rates as high as 3% in 1991. Interestingly, these

departments were also among the last to be hit by the epidemic (Fig 4b). Moreover, there was

also extreme variation in attack rates within regions. For example, Moquegua saw an attack

rate of less than 0.5% in 1991, while La Libertad saw over 2.6%. Both are coastal departments.

Further spatial analysis revealed that Moran’s I was weak over the course of the epidemic

(P> 0.08), which indicates that cholera incidence in one department was not strongly corre-

lated with incidence in neighboring departments, likely due to the rapid spread of cholera
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across the entire territory in a matter of a few weeks. Additionally, as the epidemic progressed

we saw greater spatial heterogeneity, with G = 0.16 for all seven years of the epidemic (1991-

1997).

There was also a clear seasonal trend throughout the course of the epidemic. Cases surged

at the beginning of each epidemic year, a pattern that would persist until 1995. We hypothe-

sized that this seasonal trend was a result of environmental drivers, and we chose to assess how

fluctuations in temperature might contribute to cholera incidence in each department. Aver-

age minimum temperature was correlated with average case incidence over the first three

years of the epidemic and correlation was strongest in the coastal departments (Fig 3). The

highlands region showed weaker positive correlations, whereas the jungle departments did not

show a consistent relationship between temperature and cholera incidence.

Our mechanistic transmission model yielded good fits to weekly incidence curves across

all 25 departments in Peru (Fig 5), allowing us to derive time-dependent R0ðtÞ, mean R0

Fig 1. Color scale image of weekly cholera cases by department. Weekly cases have been square root transformed to reduce variability in the amplitude of the

time series while dashed lines separate the coast, highland, and jungle regions. The epidemic hit the coastal departments early, with the highest case counts

concentrated in this region.

https://doi.org/10.1371/journal.pntd.0008045.g001
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estimates, and estimates of the effective reproduction number across departments. The

model showed characteristic seasonal fluctuation in transmission potential (Fig 6 and S6

Fig) as well as in the estimated concentration of vibrios in the environment (S7 Fig). The

correlation between model predictions and observations (S8 Fig) was high and on average

above 80% across the great majority of the departments (range: 58% to 97%). Across the 25

departments, we estimated R0 ¼ 2:1 (95%CI:, 0.8, 7.3), large enough for sustained transmis-

sion. Our department-level mean R0s showed substantial variability across departments,

ranging from 0.8 to 6.9 (Fig 7). Mean R0 estimates ranged from 1.1 to 6.9 in the coast,

0.75-3.2 in the jungle, and 0.9-2.0 in the highlands. In particular, the highest mean R0 was

observed in the coastal department of Ancash (Fig 7). Overall, mean R0 was higher for

departments that were closer to the coast (Spearman ρ = −0.56, P = 0.004). We also found

that the department-level R0s were correlated with the overall attack rates (Spearman

ρ = 0.58, P = 0.002), elevation (ρ = −0.41, P = 0.04), and population size (ρ = 0.62,

P< 0.001). Thus, these results indicate that the epidemic in the coastal region not only

exhibited an early epidemic onset based on the timing of the first reported cases, which is

consistent with being in close proximity to an aquatic reservoir, but also higher transmis-

sion potential relative to the jungle and highlands regions.

Fig 2. Weekly incidence of cholera cases in Peru by region, January 1991 through December 1997. Curves represent the national and regional weekly

proportions of total cases reported during 1991-1997.

https://doi.org/10.1371/journal.pntd.0008045.g002
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Fig 3. Time series of weekly cholera cases (red solid line) and temperature (blue curves; minimum, mean, and maximum temperature) across 25

departments during the 1991-1997 cholera epidemic in Peru.

https://doi.org/10.1371/journal.pntd.0008045.g003

Fig 4. a) Cholera attack rates per 100,000 for Peruvian departments in 1991. The highest attack rates occurred in the jungle region. Coastal departments also

showed consistently high attack rates. b) Map showing week of epidemic onset by department. Darker regions experienced a later onset, defined as the first week in

1991 with reported cholera cases. The map was created using the function admin1_choropleth using R.

https://doi.org/10.1371/journal.pntd.0008045.g004
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We also assessed the variability in estimates of initial concentration of vibrios (B1) and

reporting rates (ψ) between departments. We found that the initial concentration of vibrios was

higher in coastal departments compared to other departments (log10(B1) = 6.1 vs log10(B1) =

5.2, Wilcoxon test, P = 0.02; Fig 8). On the other hand, reporting rates were low, which is consis-

tent with the significant fraction of asymptomatic or mild cases that is associated with cholera

infections with the El Tor cholera biotype. Moreover, mean estimates of reporting rates across

departments were negatively correlated with illiteracy rates in 1994 (ρ = −0.56, P = 0.003), possi-

bly indicating weaker surveillance in poorer areas (S9 Fig).

Discussion

In this paper we have characterized the spatial-temporal dynamics of the great cholera epi-

demic in Peru (1991-1997) by fitting statistical and mechanistic models to spatially disaggre-

gated weekly incidence time series. Our results shed light on geographic variability in

estimates of basic reproduction number (R0), initial concentration of vibrios in the environ-

ment, and reporting rates. Overall our findings indicate that the initial spread of the epidemic

observed in coastal areas aligns with higher R0 estimates and concentrations of vibrios in the

environment in this geographic region. These findings are consistent with early reports of

cholera cases in coastal cities including Lima, Chancay, Chimbote, Trujillo, Chiclayo and

Piura [21]. These results suggest that cholera vibrios, autochthonous to plankton in the natural

aquatic environment, may have triggered outbreaks in multiple locations along the Pacific

Fig 5. Mechanistic model fits to weekly cholera incidence across 25 departments in Peru, 1991-1997. The black dots correspond to the data, whereas the model

mean fit is the red solid line and the dashed red lines correspond to the 95% prediction intervals.

https://doi.org/10.1371/journal.pntd.0008045.g005
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coast of Peru before propagating through the highlands and jungle areas [21]. Nevertheless, we

cannot rule out that infected travelers arriving from a cholera outbreak area may have contrib-

uted to seeding the epidemic [63, 64, 65].

Our department-level estimates of R0 in the immunologically naive Peruvian population

are generally consistent with the cholera modeling literature. For example, Phelps et al.

recently examined cholera epidemics in immunologically naïve populations of 19th century

Denmark, and found basic reproduction numbers ranging from 1.7 to 2.6 [63]. Similarly,

mean estimates ranged between 1.6 and 3 in the 2010 Haiti outbreak [66, 67, 32], and were

also consistently greater than 2 in Yemen (2016) [68]. Other estimates have been reported

as high as 5 [69] in Bangladesh (2005) [69], and reached 19.1 and 7.32 in India (2009) and

Guinea-Bissau (2008), respectively [70, 30].

Mean estimates for R0 were greater than one in most coastal and jungle departments, while

estimates were lower in the highlands region (Fig 7). This indicates increased transmission in

coastal and tropical climates although available case data were not sufficient to disentangle the

contributions of environmental and human-to-human transmission pathways to R0. We note

Fig 6. Time-dependent R0s across 25 department throughout the epidemic (1991-1997). The mean is the red solid line and the dashed red lines correspond to

the 95% confidence intervals.

https://doi.org/10.1371/journal.pntd.0008045.g006
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that previous studies suggest a large environmental component of transmission in geographic

regions neighboring an aquatic reservoir. For example, Mukandavire et al. found that although

transmission was driven by environmental contamination in Haiti, only one department-level

estimate favored the environmental component of the reproduction number [29], and it coin-

cided with the location of the contaminated river. Conversely, in Zimbabwe, Mukandavire

et al. suggests that human-to-human transmission by far outweighed environmental transmis-

sion, likely because the country is far from any natural cholera reservoir [28]. Our results sug-

gest higher transmission suitability in coastal areas, which also observed earlier case reports.

The observed spatial-temporal variation in cholera dynamics in Peru is consistent with pre-

vious evidence from Mexico, Africa, and Cameroon as well. Studies have found complex envi-

ronmental factors to be implicated in cholera transmission patterns. For instance, Ngwa et al.

used a regression model to identify associations between risk of cholera transmission and envi-

ronmental variables in Cameroon [71]. They found significant associations between cholera,

average daily maximum temperature and precipitation levels. Nkoko et al. studied the Great

Lakes Region of Africa from 1978 to 2008 and found that abnormally warm El Niño events

corresponded to increases in cholera incidence [72]. This is consistent with hypotheses that El

Niño may have influenced the 1991 epidemic in Peru [21]. For example, studies have found

significant correlations between cholera incidence and elevated sea surface temperature during

Fig 7. Mean estimates of R0 and their 95% confidence intervals across 25 departments in Peru. The horizontal dashed line at 1.0 is shown for reference. The

dashed vertical lines separate the departments in the coast, jungle and highlands areas in Peru.

https://doi.org/10.1371/journal.pntd.0008045.g007
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El Niño events [73]. Additionally, Latin American countries near other large bodies of water

were not affected to the same degree as Peru [74]. The El Niño event may also help explain

why cholera is able to persist in the environment without causing endemic infections in a

country like Peru [73].

Separating the contributions of human-to-human transmission and environmental trans-

mission was not feasible in the absence of disaggregated case time series arising from each

transmission route. More than one possible combination of transmission parameters could

have given rise to the Peruvian epidemic curves as noted in another cholera modeling study

[54]. Also, we only saw a weak relationship between R0 and mean temperature across depart-

ments. Finally, it is important to point out that R0 is not the sole driver of outbreaks in our

cholera model. When the concentration of vibrios in the environment is large, our model can

yield substantial outbreaks even for R0 values that are below 1.0.

Fig 8. Mean estimates of the initial concentration of vibrios and their 95% confidence intervals across 25 departments in Peru. The dashed vertical lines

separate the departments in the coast, jungle and highlands areas in Peru.

https://doi.org/10.1371/journal.pntd.0008045.g008
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The parameter estimation inverse problem, resulting from this model, is cast as a nonlinear

LSP constrained by a system of nonlinear differential equations. In general, a standard

approach to identifying parameters from this LSP involves the use of some regularized gradi-

ent or Gauss-Newton-type optimization scheme combined with a numerical method for

solving the ODE system. Even with regularization, this method is highly unstable [52] due to

severe noise propagation aggravated by computational errors at every step of the iterative pro-

cess. As an alternative to this technique, in our study we design a new problem-specific param-

eter estimation procedure, which, due to its unique use of incidence data, leads to analytic

expressions for S(t) (the number of susceptible individuals), I(t) (the number of infected indi-

viduals), and B(t) (the concentration of vibrios in the environment). As such, it no longer relies

on numerical solvers for nonlinear differential equations. This allows us to substantially reduce

accumulation of computational errors and their magnified impact on the recovered parame-

ters, hence making parameter estimation much more stable and accurate.

Our study is not exempt of limitations. There was substantial underreporting of cases

due to prevalence of asymptomatic or mild infections linked to the El Tor biotype [5]. We

considered a broad case definition of cholera that includes confirmed and suspected cases [5].

Although our mechanistic model accounts for underreporting of cases, misclassification can-

not be ruled out during epidemics. Additionally, the environmental component in our trans-

mission model was only modulated by temperature and did not incorporate potential effects

of other environmental variables such as rainfall (see e.g., [75]). Further, additional indicators

of environmental transmission may help explain the strong environmental component to

transmission in the jungle despite the weak association between temperature and case inci-

dence in this geographic region. Finally, our model did not account for diffusion between

departments due to lack of reliable data on movement and connectivity patterns in Peru. How-

ever, our spatial analysis revealed relatively weak spatial autocorrelation throughout the epi-

demic, indicating diffusion was limited (see also [76]).

In summary, the 1991-1997 cholera epidemic in Peru was characterized by distinct waves of

transmission through the three geographic regions. R0 and initial concentrations of vibrios

were substantially higher in coastal areas compared to other regions. Spread throughout Peru

was unique compared to other Latin American countries. Using a mechanistic modeling

approach that integrates fluctuations in the environmental transmission route, we were able to

capture the multiple transmission waves of this epidemic. This methodology could be useful to

investigate future epidemics of cholera and could be extended to generate near real-time fore-

casts and projections of vaccination impacts.

Disclaimer

This work does not necessarily represent the views of the US government, the NIH, or PAHO/

WHO.

Supporting information

S1 Fig. Map of Peru with departmental divisions (created using QGIS). The geography of

Peru covers a range of features, from a western coastal plain (yellow), the Andes Mountains in

the center (brown), and the eastern jungle of the Amazon (green).

(TIF)

S2 Fig. Maps of elevation, illiteracy rate, population size, and mean temperature across 25

departments in Peru. These datasets are available online [44].

(TIF)
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S3 Fig. Normalized curves of cumulative incidence at the department level, January 1991

through December 1997. The national curve (black dashed line) is also shown for reference.

(TIF)

S4 Fig. Spearman (nonparametric) correlations between the week of epidemic onset and

(a) population size and (b) elevation (Km). Departments with larger populations tended to

have an earlier epidemic onset (P< 0.01), while there was no significant relationship between

elevation and epidemic onset.

(TIF)

S5 Fig. Spearman (nonparametric) correlation between department seven-year cumulative

incidence rate and elevation. Departments with higher elevation tended to have a lower inci-

dence rate from 1991-1997.

(TIF)

S6 Fig. Effective reproduction numbers across 25 department throughout the epidemic

(1991-1997). The mean reproduction number is the red solid line and the dashed red lines

correspond to the 95% confidence intervals. The ensemble of cyan curves display the uncer-

tainty in the effective reproduction number.

(TIF)

S7 Fig. Estimated mean curves of the concentration of vibrios in the environment and

their 95% confidence intervals across 25 departments in Peru.

(TIF)

S8 Fig. Correlation of the mechanistic model predictions and observations across 25

departments in Peru, 1991-1997.

(TIF)

S9 Fig. Estimates of the reporting rates and their 95% confidence intervals across 25

departments in Peru. The dashed vertical lines separate departments in coast, jungle and

other areas in Peru.

(TIF)

S1 Table.
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